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Abstract—Internet Service Providers furnishing cloud storage
services usually rely on big data centers. These centralized
architectures induce many drawbacks in terms of scalability,
reliability, and high access latency as data centers are single
points of failure and are not necessarily located close to the
users. This paper introduces Mistore, a distributed storage system
aiming at guaranteeing data availability, durability, low access
latency by leveraging the Digital Subscriber Line infrastructure
of an ISP. Mistore uses the available storage resources of a large
number of home gateways and points of presence for content
storage and caching facilities reducing the role of the data center
to a load balancer. Mistore also targets data consistency by
providing multiple types of consistency criteria on content and
a versioning system allowing users to get access to any prior
versions of their contents. Mistore validation has been achieved
through extensive simulations

I. INTRODUCTION

Most of the existing architectures for data storage of Internet

Service Providers (ISPs) are based on very large centralized

datacenters that store and manage all the information related

to their clients and their data. With the ever growing number

of clients and the amount of data, centralized architectures

reach their limit in terms of scalability, reliability, and access

latencies. These drawbacks are commonly addressed by decen-

tralizing the system over multiple geo-distributed nodes. Data

are then placed on nodes close to users which reduces data

access latencies and improves the scalability and reliability of

the data by eliminating the single point of failure issue. Most

of the storage systems addressing these issues either rely on

peer to peer (P2P) technologies where peers are responsible

for storing a subset of the data, or take advantage of the

presence of large datacenters. In the former case, transient

peers availability requires expensive maintenance procedures

to reach an acceptable overall availability, while in the latter

case, clients suffer from high data access latencies due to

the remoteness of datacenters from users. This has recently

led to the design of hybrid approaches relying on both peers

and datacenters, where peers reduce datacenters workload and

data access latencies, and improve system scalability while

datacenters compensate peers instability.

In this paper, we investigate the design of a hybrid dis-

tributed storage system by leveraging highly available nodes in

the network infrastructure of an ISP. Specifically, our approach

combines the use of datacenters with home gateways and

points of presence (POPs) equipments. Let us first briefly

describe the Digital Subscriber Line (DSL) of an ISP. Fig. 1

illustrates a simple but common network infrastructure pro-

viding access to Internet through a DSL technology. Each

user is equipped with a home gateway that provides access to

multiple services like telephone, television and Internet. Each

line of subscribers is first aggregated by a Digital Subscriber

Line Access Multiplexer (DSLAM) which can aggregate thou-

sands of lines. At a second level, the subscriber lines are

aggregated in a high-capacity Asynchronous Transfer Mode

(ATM) or Gigabit Ethernet link from the DSLAM to the IP

network of the ISP. The flow coming from a DSLAM enters

the ISP network via a POP that can handle links from a large

number of DSLAMs. The ISP network is directly connected

to the Internet backbone, and uses large datacenters to store

information related to their subscribers and their data when

a storage service is provided.

Based on this classical infrastructure, we aim at leveraging

the Home Gateways (HGs) to take advantage of their native

resources (i.e. computing, memory, and storage)a, and to

the fact that users let most of the time their HGs powered

on [1]. Thus, exploiting resources provided by HGs should

yield a large number of high available and intelligent storage

nodes located very close to the users. Second, we also aim at

leveraging the POPs to benefit from their natural geographic

repartition and their position at the edge of the ISP network,

and the fact that all the traffic within and across ISPs goes

through the POPs. We plan to use the POPs to bring the intel-

ligence of the storage system close to users, as pioneered in

[2] for content caching and distribution in Content Delivery

Networks (CDNs).

This paper presents Mistore, a distributed storage system

dedicated to users who access Internet via a DSL technology

that ensures data availability, durability, and low access latency

by fully exploiting HGs storage capacities, POPs physical

localizations, and datacenters. The focus of the paper is on

how data consistency and replication are managed in Mistore.

aFor instance the livebox play (http://liveboxplay.orange.fr/) of the french
ISP Orange contains a 1.2GHz Intel Atom CE4257 processor, 2GB of RAM,
and a hard drive of 320GB.
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Figure 1. Simple overview of a DSL infrastructure of an ISP.

Data consistency: System designers usually face the CAP

theorem (tradeoffs about Consistency, Availability and net-

work Partition tolerance) when designing a distributed storage

system [3], [4]. We choose to serialize the write requests

in order to avoid the complexity of conflicts resolution to

application developers. On the other hand multiple consistency

criteria to parametrize the read requests are provided, namely

a readers/writer mutual exclusion, an atomic consistency,

and an eventual monotonic-read consistency criteria. We also

provide a versioning system on data. This mechanism creates

a new version of a piece of data when an update (i.e. a write

request) is performed on it. This mechanism naturally provides

a linear history about data and their updates.

Data replication: We ensure data availability and durability

through replication. Users send their write requests to the

closest POP that will perform the data replication on behalf to

them. It aims to mitigate the bottleneck that users low upload

bandwidths may cause by moving the replication overhead to

the IP core network of the ISP where the bandwidth is much

larger. To reduce latencies data are replicated synchronously

on POPs and asynchronously on HGs and stripping techniques

can be used to store and retrieve the data fragments.

The remainder of the paper is organized as follows. Sec-

tion II presents related works. Section III presents the system

model and the assumptions considered. The architecture is

presented in section IV. The different consistency criteria

are defined in Section V and the way we implement it as

well as read and write operations is described in Section VI.

Section VII presents the evaluation of our design choices and

we conclude in Section VIII.

II. RELATED WORK

Architecture: Recently, some works have investigated new

designs of distributed storage systems to face dynamicity

issues of pure P2P systems and the cost on large data

centers [5]. The hybrid approaches, sometimes called peer-

assisted approaches [6] are promising and are developed even

for content distribution purpose [7]. Some works investigate

the use of distributed and stable small datacenters or home

gateways [1]. In contrast to those approaches, Mistore is

dedicated to an ISP which is a clear advantage over other

providers because they master all the network infrastructure

and thus they can push contents closer to the users [8].

Multiple consistency criteria: It is well known that the

strong consistency models have lower performance than the

weak consistency models in terms of availability, latency, and

scalability [3], [4], [9]. Most of cloud storage provide the

eventual consistency forms [3]. However, even if the eventual

consistency is sufficient for a large panel of applications

some others require strong consistency criteria [10]. Moreover,

a strong consistency is a desirable property for application

programmers as it is easy to reason about. As a consequence,

several systems target strong consistency while others aims

at adding strong consistency features to provide multiple

consistency criteria in their system [11], [12]. Mistore follows

this vision by giving the possibility to choose the consistency

criteria adapted to the application needs.

III. SYSTEM MODEL

Mistore targets personal data (e.g., documents, pictures,

videos, music, etc). In the following, these data will be called

objects. Communications are assumed to be reliable, and

messages between two nodes are assumed to be received in

the order they have been sent. POPs are interconnected via

highly available and redundant channels provided by the ISP.

Network partitions at this level occur with a negligible proba-

bility as the IP core network can recover and restore its state

to avoid service disruption due to links/nodes failures [13],

[14]. So we assume a system with no network partitions

between the POPs. We assume different failures models for

POPs, HGs, and the datacenter. The model of failure for POPs

and datacenter is crash recovery, i.e., we suppose that they

both recover from a consistent state by using stable storage.

Conversely, the model of failures exhibited by HGs is fail stop.

We assume that crash are eventually detected by an eventual

perfect detector failure [15]. We leave for future work more

aggressive failures, Byzantine failures and objects corruption.

IV. MISTORE ARCHITECTURE

We consider a DSL infrastructure operated by a single

ISP (See Fig. 1), whose main components are as follows.

The home gateways are connected in a client/server mode

to the POP aggregating their xDSL lines and form its region.

They communicate with the storage system via this POP.

A fraction of the storage capacity of HGs is dedicated to

the storage system. One part of this fraction stores some of

the data that have been warehoused within the storage system.

Note that these data do not necessarily belong to the owner

of the HG. The other part of the fraction caches the data

recently or frequently accessed by the HG owner. The Points

of Presence provide several functionalities. They cache some

data that transit through them, implement the data consistency

and replication strategy of the storage system, and monitor the

HGs they aggregate. Monitoring data (e.g., storage capacity,

data stored, availability state, etc.) are periodically transferred



to datacenters. The datacenter main role is to collect and store

metadata and usage patterns from the HGs and POPs. It also

offers a backup functionality for objects when their primary

POP is unavailable (See Section V).

We leave for future work our vision to leverage the DCs

knowledge on the system to implement multi- and auto-tiered

storage features which can refer to an automated placement

of data on nodes to optimize performance, availability, and

recovery [16]. Indeed, we have nodes of different types and

locations that could be distinguished in three tiers for storing

cold, warm, and hot data while allowing data to move from

one tier to another depending on data access patterns. Cold

data are infrequently or never accessed, and thus could be

efficiently and inexpensively handled by datacenters. Warm

data are data that have been recently accessed in the storage

system and present a higher probability to be accessed than

cold data. They could be stored in regions from where their

users access the storage system to reduce access latencies.

Finally, Hot data are frequently accessed and could be stored

in POPs and distributed like in a CDN. It would allow to

answer users requests while avoiding to overload HGs that

have low upload bandwidths or datacenters that exhibit large

access latencies. Looking in this perspective, we recall that

this paper focuses on the way Mistore deals data consistency

and data replication on the HGs and the POPs.

V. OBJECT CONSISTENCY

Mistore replicates user objects to guarantee both their

durability and availability. Now, as objects can be updated,

consistency issues must be taken into account. Before diving

into the different consistency criteria provided by Mistore, we

briefly recall the main concepts and definitions that we will

use. Traditionally consistency criteria are classified according

to the fact that, given a distributed execution satisfying the

considered criteria, it is always possible or not to build

an history of this execution that could have been executed

on a single processor and produce the same visible result.

When this property is satisfied, the considered consistency

criteria is said to be strong, otherwise it is weak. A strong

consistency criteria requires stronger synchronization between

processes that participates to the computation. This impacts the

performance of the protocol but make the life of application

developers easier. One can expect better performance of weak

consistency criteria at the cost of more complex situations

to deal with when manipulating data. Mistore implements

both strong and weak consistency criteria. We rapidly expose

the theory behind strong consistency criteria [17], and give a

formal treatment of the weak consistency criteria implemented

by Mistore.

A. Processes and operations

We consider a concurrent system composed of a set Π of

n processes denoted p1, p2, . . . , pn that cooperate through a

finite set of shared objects X (e.g., files in the case of Mistore).

Each shared object x ∈ X supports two types of operations:

a read operation, and a write operation. The execution of

writing value v into object x by process pi is denoted by

wi(x)v. Conversely, the execution of reading value v from

object x by process pi is denoted ri(x)v. We may omit the

identity of the process that performs the operation when it is

not relevant. To simplify we assume that each value written

in an object is unique.b

B. History, legality and linear extension

Let hi|W denotes the set of write operations performed

by process pi. Conversely let hi|R denotes the set of read

operations performed by process pi. Let hi = hi|R ∪hi|W de-

notes the set of operations (both read and write) performed

by process pi. We assume that on a given process pi only a

single operation can occur at a given time. Hence operations

in hi are naturally totally ordered by an order relation that we

denote →i. We call local history of pi the set hi ordered by

→i. It is denoted by ĥi = (hi,→i).

Definition 1 (Global history): A global history Ĥ =
(H,→H) of a concurrent system (Π, X) is a set H partially

ordered by →H , with H =
⋃

i hi and →H a partial order

relation containing →rf (that is →rf⊆→H ), where →rf is

a partial order relation called read from order and defined as

follows. For any two operations op1 ∈ H and op2 ∈ H , we

say that op1 →rf op2 if and only if

1) either ∃i such that op1 ∈ hi and op2 ∈ hi and op1 →i

op2,

2) or ∃x, v such that op1 = w(x)v and op2 = r(x)v,

3) or ∃op3 ∈ H such that op1 →rf op3 and op3 →rf op2.

Definition 2 (Linear extension of a global history): Given

a global history Ĥ = (H,→H), a linear extension of Ĥ

and denoted ~H = (H,→) is a total order → on H that is

compatible with →H , that is for any two operations op1 ∈ H

and op2 ∈ H if op1 →H op2 then op1 → op2.

A linear extension of a global history Ĥ can be seen as a

topological sort of the directed acyclic graphc induced by the

partial order relation →H .

We assume that an initial value has been written (by a ficti-

tious write operation) in each variable. With this assumption,

a linear history is legal if the following holds.

Definition 3 (Legality of a read): Let ~H = (H,→) be a

linear extension. A read operation opr = r(x)v ∈ H is legal

if and only if:

1) there exists a corresponding write operation opw =
w(x)v ∈ H such that opw → opr,

bThis hypothesis can be easily implemented by assuming that each value
written in an object is a triplet of the form of (pi, v, counti) where counti
is a counter maintained by process pi counting its write operations.

cThis graph G = (V,E) is defined by its vertexes V = H and there is a
edge between two vertices op1 ∈ V and op2 ∈ V if and only if op1 →H

op2.



2) and for all operations op such that opw → op → opr
op 6= w(x)⋆.

Definition 4 (Legality of a linear extension): A linear ex-

tension ~H = (H,→) is legal if and only if all of its read

operations are legal.

A linear history is legal when both its read and write

operations respect the expected semantics of variables on a

single threaded processor: a read operation on a variable

returns the last value written in this variable.

C. Strong consistency criteria

Definition 5 (Sequential consistency): A global history

H = (H,→H) is sequentially consistent if it admits a linear

extension which is legal.

This consistency criterion is the simplest and weakest exam-

ple of strong consistency criteria. It means that the concurrent

execution could have happened on a single processor. This

criteria has been first proposed by Lamport in [18].

We now present a stronger consistency criteria which brings

into play physical real time. Each operation op happening on a

process starts at a given real time denoted by op.start and ends

at a given real time denoted by op.end (we have op.start <

op.end). With these notations in hand, we can specify the

partial order relation denoted by →rt as follows.

Definition 6 (Real time precedence): Let H be a set of

operations, and let op1, op2 ∈ H be any two operations. We

say that op1 precedes op2 with respect to real time, which is

denoted by op1 →rt op2, if and only if op1.end ≤ op2.start.

Definition 7 (Real time concurrency): We say that two

operations op1 and op2 are real-time concurrent, which will

be denoted by op1‖rt
op2, if and only if neither op1 →rt op2,

nor op2 →rt op1.

Definition 8 (Atomicity): A global history Ĥ = (H,→H)
is atomically consistent if it admits a linear extension ~H =
(H,→) such that:

1) ~H is sequentially consistent,

2) and →rt⊆→ (i.e → is compatible with →rt).

Definition 9 (Read/write order): Let H be a set of opera-

tions, and let op1, op2 ∈ H be any two operations. We say

that op1 precedes op2 with respect to the read/write order,

which will be denoted by op1 →rw op2, if and only if:

• either op1 →rt op2,

• or op1‖rt
op2, op1 = r(x)⋆ and op2 = w(x)⋆, then

1) op1 →rw op2 ⇔ op1.start ≤ op2.start,

2) op2 →rw op1 ⇔ op2.start < op1.start.

It is clear that →rt⊆→rw.

Definition 10 (Read/write mutual exclusion): A global his-

tory Ĥ = (H,→H) is compatible with the read-write mutual

exclusion consistency criteria if it admits a linear extension
~H = (H,→) such that →rw⊆→.

D. Weak consistency criterion

From these criteria, we propose to define a weak consistency

criteria, that we will call monotonic read consistency. To the

best of our knowledge it is the first time that a weak criteria

is defined in the same formalism framework as strong ones.

Definition 11 (Local history): Let Ĥ = (H,→H) be a

global history. A local history (Hi,→Hi
) with respect to

process pi is defined as follows :

• Hi = hi ∪
(⋃

j 6=i hj |W

)
,

• →Hi
is compatible with →H : for any operations op1

and op2 in Hi, we have op1 →i op2 ⇔ op1 → op2.

Definition 12 (Read monotonic local history): Let Ĥ =
(H,→H) be a global history. Ĥ is consistent with the read

monotonic consistency criteria if and only if for all processes

pi ∈ Π, the local history (Hi,→Hi
) is sequentially consistent.

VI. IMPLEMENTATION

Mistore implements the different levels of consistency de-

scribed in Section V through a lock service. Two types of locks

exist. A read lock that ensures the mutual exclusion consis-

tency criteria, and a write lock that ensures the SWMR model.

The lock service follows a primary-backup scheme [19]. A

primary and backup lock server per object is implemented and

are executed by the POPs. Fig. 2 and Fig. 3 show the pseudo-

code executed by HGs and POPs to acquire a lock from

respectively their associated POP and the primary POP of the

concerned object. The lock on an object is created by function

GRANTLOCK shown in Fig. 4. Function ISAVAILABLE checks

if a requested lock on a specific object can be granted to a

HG. To deal with nodes failures, a lease is associated with

each granted lock [20], [21]. At lease time, that is, at the

expiration time of the lock, a client has to renew the lease

if the current read/write operation is not completed. This is

achieved by contacting the primary in charge of the object.

Note that for communication costs reasons, the lease time is

only activated on the primary, not on the backup. Thus, the

primary does not have to acknowledge the backup each time

a lock lease is renewed. The backup activates the lease time

of a lock only when it takes over this role upon detection of

the primary failure.

A. Write operation

A write operation on an object creates a new version of this

object in Mistore. When a client wants to write (update) an

object o, it sends a request to the POP p associated to his HG

as presented in Fig. 5 and Fig 6. If o is written for the first time,

a primary and a backup POP are affected to it (See Fig 7).

These POPs are responsible for the replication of that object

and for its consistency management. The primary is the POP

associated with the client HG issuing the creation request. The

backup is randomly determined by the primary among the

other POPs of the system (invocation of the GETBACKUP()



1: function ACQUIRELOCK(oid, lockType)
2: myPOP ← GETMYPOP()
3: lock ← myPOP.ACQUIRELOCK(selfID, oid, lockType)
4: return lock
5: end function

Figure 2. Home gateway: Function ACQUIRELOCK.

1: function ACQUIRELOCK(hgid, oid, lockType)
2: if self.ISPRIMARYOF(oid) then

3: lock ← GRANTLOCK(hgid, oid, lockType)
4: else

5: primary ← GETPRIMARYOF(oid)
6: lock ← primary.ACQUIRELOCK(hgid, oid, lockType)
7: end if

8: return lock
9: end function

Figure 3. Point of Presence: Function ACQUIRELOCK.

1: function GRANTLOCK(hgid, oid, lockType)
2: lock ← null
3: if typeOf(lockType) = readLock then

4: if ¬ ISAVAILABLE(hgid, oid, writeLock) then

5: lock ← INCREMENTLOCK(hgid, oid, readLock)
6: end if

7: else

8: if ISAVAILABLE(hgid, oid, lockType) then

9: lock ← LOCK(hgid, oid, lockType)
10: end if

11: end if

12: return lock
13: end function

Figure 4. Point of Presence : Function GRANTLOCK.

function in Fig. 7). The create operation returns oid the

identifier of an object o, which is the concatenation of the

identifiers of o primary, o backup, o HG, and a creation

counter that represents the number of objects created by the

HG that owns o. In the following the primary and the backup

of object o are respectively denoted by op and ob. When the

primary of an object is unavailable, its backup becomes the

primary and the datacenter becomes the new backup. When

the primary recovers, it takes over its role. Our solution only

makes use of one backup because of the high availability of

these nodes [22]. A write operation on object on o that has

already been created in the system must contain the write lock

for o to respect the SWMR model. Note that as a client can

crash or goes off before the end of a write operation, the write

lock on o is maintained by POP p as long as the operation

is not completed to ensure the SWMR model. POP p locally

caches a copy of o and asks both the primary op and the

backup ob to replicate o. When op and ob receive this request,

they both locally cache o, acknowledge POP p (as described

in Fig. 8), and trigger the replication operation on their HGs

(see Lines 3–7 in Fig. 8, and Fig. 9). Upon receipt of both

acknowledgements, POP p releases the write lock and notifies

the client that the write operation is completed. Object o is

then available for subsequent read and write operations, which

makes the replication process on HGs transparent to clients.

1: function WRITE(obj, param)
2: myPOP ← self.GETPOP()
3: writeAck ← myPOP.WRITE(o, param)
4: UPDATECACHE(writeAck.oid, writeAck.oversion, o)
5: return writeAck
6: end function

Figure 5. Home gateway: Function WRITE.

1: function WRITE(o, param)
2: if ¬param.writeLock then

3: oid ← CREATE(o, param)
4: onewV ersion ← 1
5: else

6: KEEPALIVE(param.writeLock)
7: oid ← param.writeLock.oid
8: onewV ersion ← param.writeLock.oversion + 1
9: end if

10: UPDATECACHE(oid, onewV ersion, o)
11: primary ← PRIMARYOF(oid)
12: primaryStoreAck ← primary.STORE(o, param)
13: backup ← BACKUPOF(oid)
14: backupStoreAck ← backup.STORE(o, param)
15: self.LOG OUT(param, primaryStoreAck, backupStoreAck)
16: return [oid, onewV ersion]
17: end function

Figure 6. Point of Presence: Function WRITE.

1: function CREATE(o, param)
2: backup ← GETBACKUP(o, param)
3: oid ← CREATEID(self, backup, param.HG, param.counter)
4: return oid
5: end function

Figure 7. Point of Presence: Function CREATE.

1: function STORE(o, param)
2: UPDATECACHE(param.oid, param.oversion, o)
3: HGList ← GETHGLIST(param.availability)
4: for each hg in HGList do

5: storeAck ← hg.STORE(param.oid, param.oversion, o)
6: self.LOG IN(param, storeAck)
7: end for

8: return [self, param.oid, param.oversion]
9: end function

Figure 8. Point of Presence: Function STORE.

1: function STORE(oid, o, oversion)
2: self.WRITEONDISK(oid, o, oversion)
3: UPDATECACHE(oid, oversion, o)
4: return [self, oid, oversion]
5: end function

Figure 9. Home Gateway: Function STORE.

B. Read operation

Mistore gives the opportunity to specify the consistency

criteria that the read object must guarantee, or a specific

version of desired object. Both choices are specified in the

version flag parameter of the read operation. In addition, in

the quest of reducing the latency of read operations, Mistore

favors readings from local caches prior to propagating the

request to both the primary and the backup of the object.

Read operations handle two parameters, the identifier oid of

the requested object, and the version flag which indicates

both the consistency criteria and the versioning view. The



1: function READ(oid, versionFlag)
2: if ISCACHED(oid, versionFlag) then

3: o ← self.READONDISK(oid, versionFlag)
4: else

5: myPOP ← self.GETPOP()
6: o ← myPOP.READ(oid, versionFlag)
7: end if

8: UPDATECACHE(oid, versionFlag.objVersion, obj)
9: return o

10: end function

Figure 10. Home Gateway: Function READ.

1: function READ(oid, versionFlag)
2: if CHECKREADLOCK(versionFlag.readLock) then

3: KEEPALIVE(versionFlag.readLock)
4: end if

5: if ISCACHED(oid, versionFlag) then

6: o ← self.READONDISK(oid, versionFlag)
7: else

8: POPReplica ← RANDOM(primaryOf(oid),
backupOf(oid))

9: o ← POPReplica.RETRIEVE(oid, versionFlag)
10: end if

11: UPDATECACHE(oid, versionFlag.oversion, o)
12: return o
13: end function

Figure 11. Point of Presence: Function READ.

1: function RETRIEVE(oid, versionFlag)
2: o ← null

3: if ISCACHED(oid, versionFlag) then

4: o ← self.READONDISK(oid, versionFlag)
5: else

6: HGReplica ← GETHGREPLICA(oid, versionFlag)
7: o ← HGReplica.RETRIEVE(oid, versionFlag)
8: end if

9: UPDATECACHE(oid, versionFlag.oversion, o)
10: return o
11: end function

Figure 12. Point of Presence: Function RETRIEVE.

1: function RETRIEVE(oid, versionFlag)
2: o ← self.READONDISK(oid, versionFlag)
3: UPDATECACHE(oid, versionFlag.oversion, o)
4: return o
5: end function

Figure 13. Home gateway: Function RETRIEVE.

different types of consistency criteria handled by Mistore are

the read/write mutal exclusion criteria, the atomicity, and the

eventual monotonic-read consistency one. If the read operation

must be handled by the primary or the backup POPs then a

single one is chosen (through a random choice). Figure 10

shows the code executed by HGs to handle a read operation,

Figure 11 the code executed by a POP when it receives a read

operation from a HG located in its region. Figure 12 shows the

code executed by a POP to retrieve a requested object from

its cache or from the HGs in its region and finally Figure 13

describes the code executed by a HG to retrieve an object from

its local disk. In the following we present how the different

consistency criteria are handled.

Read/write mutual exclusion: When a read operation is

invoked with the read/write mutual exclusion flag, a read lock

TABLE I
NETWORK PARAMETERS USED IN SIMULATION

Network path Upload (MB/s) Download (MB/s) Latency (ms)

HG - POP 5 20 75

POP1 - POP2 40000 40000 5

POP - DC 10000 10000 5

must be provided. When a POP receives this request from a

HG, it maintains the read lock active until the requested object

has been received by the HG that invoked the read operation.

A read lock contains the last version number of an object o and

ensures that as long as the read lock is active, no concurrent

write operation on o will be executed. Thus, the read operation

can read the object from the cache of any POP if it contains

the last version of o, otherwise the request must be forwarded

to the primary or the backup of the object.

Atomic consistency: When a read operation is invoked with

the atomic consistency flag, no read lock must be provided.

The read operation is forwarded to the primary or the backup

of the object.

Eventual monotonic-read: When a read operation is invoked

with the eventual monotonic-read flag, no read lock must be

provided but the version flag must contain the most recent

version number known by the client. The read operation can

read the object from the cache of any POP if it contains

a version equal to or newer than the version flag, otherwise

the request must be forwarded to the primary or the backup

of the object.

Versioning view: An object may be read from the cache of

any POP or HG if it contains a version of the object equal to

the one requested with the version flag, otherwise the request

must be forwarded to the primary or the backup of the object.

VII. EVALUATION

We have implemented Mistore on the Peersim simulator and

performed all the simulations based on network parameters

observed in an ISP infrastructure (see Table I).

Fig. 14 illustrates different write requests schemes. We

observe that latencies are the lowest when objects are written

synchronously on both their primary and backup POPs, the

best case being when the write requests originate from the

primary or the backup region. This gives us the insight that

the primary and backup POPs of an object should be the POPs

of the regions from which originate most of the write requests

on the object. We also observe that writing synchronously an

object in a remote HG shows the worst performance due to the

low users network bandwidth. Both observations validate our

choice to replicate objects on their primary and backup POPs

in a synchronous way, and to replicate them asynchronously

in the HGs of their regions. However the performance of

writing objects in HGs can be considerably improved when

a data stripping method is applied on objects (i.e. the object

is fragmented in several blocks that are stored in parallel in
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Figure 14. Write latencies. HG-DC: writing on the datacenter.
HG-POP-P/B: writing an object on both its primary and backup POPs from
a region different from these POPs region. HG-POP-P/B-HG: writing an
object on HGs of both its primary and backup POPs from a region different
from the primary and backup regions. HG-P/B: writing an object on both
its primary and backup POPs from one these POPs region. HG-P/B-HG):
writing on HGs of both the primary and backup POPs of an object from one
of these POPs regions. No stripping: an object replica is written entirely
in one HG. Stripping x20: an object replica is fragmented in 20 blocks
stored in parallel in 20 different HGs.
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Figure 15. Read latencies. HG-DC: reading on the datacenter.
HG1-POP1-POP2: reading on the POP of a region different from the one
where the request is issued. HG1-POP1-POP2-HG2: reading on one HG
connected to the POP of a region different from the one where the request is
issued. HG1-POP1: reading on the POP of a region from where the request
is issued. No stripping: the object is read entirely in 1 HG. Stripping
x20: the 20 blocks stored in different HGs composing the object are read in
parallel.

different HGs). Nevertheless we observe that gains obtained

by using data stripping are more substantial on big size objects

than on smaller ones.

Fig. 15 illustrates performances of different read requests

scenarios on remote nodes. First, latencies are the lowest

when objects are read on a POP, the best case being the

one when this POP is the one of the region from where the

read request comes. Reading an object entirely on a remote

HG is in general slow due to the low upload bandwidth of

users. However, the latencies can be reduced when objects

are read from several HGs in parallel. This motivates to use

data stripping methods when storing objects such that they can

be retrieved by aggregating the bandwidth of several HGs.

Nevertheless, as for write requests, data stripping is more

efficient on big size data objects. These results give us some

insights for cache replacement policies. Actually, differences,

regarding latencies, between storing small objects on their

primary and backup or synchronously in remote HGs is not

very large so we believe that big objects should have the

priority to be kept in cache. Moreover, small objects may also

be stored synchronously in remote HGs without a big impact

on performance. We have also evaluated the impact of HGs

and POPs failures on write and read operation latencies. Prior

to describing simulation results, we briefly present how the

system reacts to failures.

Crash of HGs: When a HG fails by crashing, the list of

objects it stores is retrieved from the index maintained by

the POP in its region. To keep a given degree of redundancy,

these objects may need to be recovered from other replicas and

replicated in another HG. The results of the pending requests

of a lost HG are cached in the POP in its region. Thus, when

the HG recovers, acknowledgments are sent to the HG for

write requests, and read requests are satisfied by accessing the

cache of the POP in the region.

Crash of POPs: The failure of a POP means no Internet

connection for the clients in its region. Thus we cannot not

evaluate read and write latencies for users in a region where the

POP is unavailable. Moreover, the crash of a POP means the

crash of the primary or the backup of several objects. Without

the primary of an object, its consistency can not be ensured

so a new primary must be elected. As soon as the crash of a

primary of an object is detected, its backup becomes the new

primary and the datacenter becomes the new backup when an

operation requiring a lock is activated. The backup can then

trigger the lease of the locks it holds and takes over the service

to the point where the old primary crashed. A crash of a POP

is considered to be transient so a primary takes over the service

when it recovers.

Fig. 16 shows that during a write operation, if either the

primary or the backup POP of the object becomes available,

the operation can finish without incurring a large latency

overhead. This is due to the fact that the replication occurs in

the IP core network, and thus the low user bandwidth is not

involved when an object has to be replicated to a datacenter

due to the unavailability of one of its primary or backup POP.

Fig. 17 shows the results of read operations during POPs and

HGs unavailability. As argued before, we do not plot scenarios

where the closest POP is unavailable — as it cuts users Internet

connection — nor scenarios where the primary or the backup is

unavailable — it does not incur any overhead as the object may

be read on the available primary or backup POP. Similarly,

we do not plot scenarios where HGs are unavailable since the

POP knows which HGs are available and then will choose the

available HGs to retrieve the requested objects. Now, when the

POP (primary or backup) becomes unavailable after retrieving

objects from the HGs and before forwarding them to their
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Figure 17. Read latencies in presence of crashes. HG1-POP1-P/B-HG2
(No stripping) and HG1-POP1-P/B-HG2 (Stripping x20), see
Fig. 15 for the meanings. HG1-POP1-P/B-[HG2] (No Stripping):

attempt to read an object in a HG located in a remote region but this remote
HG is unavailable. HG1-POP1-[P/B]-HG2 (No Stripping): attempt
to read an object in a remote HG located in a remote region but the POP
of that region (primary or backup) becomes unavailable before transmitting
the retrieved object. HG1-POP1-[P/B]-HG2 (Stripping x20): the
same as the previous one but the object is retrieved by aggregating the object
from 20 HGs in parallel before their associated POP becomes unavailable.

requester, we can observe that the overhead regarding latencies

is very large when objects are not stripped over several HGs.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented the main principles of

Mistore, a distributed storage system to backup and share

content dedicated to users who access Internet via a DSL

technology. For future work, we plan to bring more storage

intelligence close to the users (i.e. in POPs or/and HGs).

We also seek to integrate efficient placement algorithms to

minimize the amount of metadata to maintain in order to

place/locate objects in Mistore. We are convinced that our

architecture could also be suitable for user-generated content

distribution and storage costs reduction via a multi-tiered data

management. Evaluation of those points are other directions

for future work.
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