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Abstract—The polyhedral model can be used to automatically
generate distributed-memory communications for affine nested
loops. Recently, new communication schemes that reduce the
communication volume have been presented. In this paper we
study the extra computational effort introduced at run-time
by the code generated to manage the communication details
across distributed processes. We focus on the most sophisticated
communication scheme so far introduced (the FOP scheme). We
present an asymptotic cost study of the FOP scheme in terms
of two main run-time parameters: The problem size, and the
number of processors. Based on this study, we identify scalability
limitations in current implementations of these techniques, and
propose a simple implementation alternative to eliminate one of
them. Experimental results are presented, showing the potential
impact on performance of these implementation limitations when
using these codes in large parallel systems.

Keywords—Polyhedral model, distributed-memory, run-time,
complexity

I. INTRODUCTION

The polyhedral model has been proved to be a useful tool to
transform and generate parallel programs for codes with affine
nested loops [1]. It can also be used to automatically gener-
ate code for distributed-memory platforms. The dependence
analysis supported by the model allows to generate code that
identifies which values should be communicated across pro-
cesses, packing/unpacking the data, and executing the proper
communication operations [2]. Griebl [5] presents a model
to use the polyhedral model over distributed systems. How-
ever, his technique produces many redundant communication.
Recently, several communication schemes has been presented
in order to reduce the volume of data communicated [3], [6].
The automatically generated codes are capable of coordinating
the computation and communication across heterogeneous
devices. This allows the exploitation of parallelism in het-
erogeneous clusters with GPUs or other accelerators, which
is the current trend to build huge parallel systems [8]. The
scale of the machines and problems that can be currently
faced, grows by several orders of magnitude comparing with

those found in most performance evaluations done previously
with distributed-memory polyhedral generated codes. And it
will continue growing up, with exascale computing being an
important research focus.

In this paper we study the codes generated by the most
sophisticated communication scheme introduced so far (the
FOP scheme [6]). We present a study of the extra cost
introduced at run-time by the generated codes to manage the
communications. We do an asymptotic complexity analysis in
terms of two main run-time parameters: The problem size N ,
measured as the number of data elements to be processed,
and the number of processors P . Our complexity model
highlights some potential scalability limitations in terms of
the problem size N , and the number of processors P , in the
current implementations of these techniques. Specifically, we
focus on the implementation included in the current Pluto
compiler framework [4]. We identify and isolate one of this
limitations, related to the application of the distribution policy
used to schedule the iterations of a parallelized loop. We
discuss that for deterministic distribution policies, a simple
implementation alternative, previously exploited in Hitmap [7]
(a run-time library for management of distributed hierarchical
tiling arrays), eliminates this specific scalability problem.

We present three cases of study: 1-D and 2-D Jacobi solvers,
and Floyd-Warshall algorithm. The reference codes of these
three examples are included in Polybench [9]. Our experimen-
tal results show the potential high impact of these scalability
limitations on the performance of the application, for huge
data sizes and clusters. We also show how the proposed
implementation alternative highly alleviates the performance
problems, as predicted by our complexity model.

The rest of the paper is organized as follows: Section 2
summarizes the main features of FOP-scheme generated codes.
Section 3 presents the cost model. Section 4 discusses our
implementation alternative. Section 5 describes the application
of the model to one case of study. Section 6 presents the



experimental study and results. Section 7 concludes the paper.

II. THE COMMUNICATION SCHEME

The FOP communication scheme is a model for the au-
tomatic generation of communication code for distributed-
memory parallel programs, in the context of polyhedral code
transformations. It is based in dependence analysis across tiles,
for parallel programs that distribute the iterations of tiled
loops. It has been designed to reduce the volume of data
communicated across processors, compared with other state-
of-the-art systems to automatically generate communication
code for affine-loop nests. It has been also proved that it
provides good performance for small and medium sized data
sets, and small number of distributed-memory processes [6].
In that work, the authors describe the conceptual approach and
the solution design in detail. An implementation of this scheme
is included in the current version of the Pluto compiler [4].
In this section, we summarize the main features of the FOP
scheme, and some design and implementation decisions of the
generated codes.

The code dedicated to calculate and execute communica-
tions is inserted at the end of distributed loops which originate
a communication need. The analysis of RAW dependences
is done separately for each different data structure (array
variable) involved in a distributed loop nest. For a given
iteration of a distributed loop, the FO (flow-out) set is defined
as the set of data generated/written during the iteration, that
is required/read during the execution of other iterations. At
compile time, the FOP scheme determines a dependences
partition. A partition of the flow-out set in terms of subsets
of target iterations that can be located in different tiles. Each
part of the set is treated independently, leading to a different
piece of communication code. This partition is application
dependent. The generated code for a given partition can have
two different flavors. Multicast operations that send all the
data in a partition to every processor that requires data from it.
And Unicast operations that issue a different communication
for each iteration that requires data from this partition. To
avoid sending more than one time the same data to the
same processor, unicast operations are only chosen when it
is possible to determine, at compile or run-time, that the
receiving iterations are all scheduled at different processors.
The authors of FOP propose some rules to determine when
it is safe to introduce unicast operations, multicast being the
default choice. In this work we will focus on the default and
less complex multicast operations.

For multicast operations, FOP introduces one piece of code
for each distributed loop, part of the dependences partition, and
array variable. The code uses several auxiliary data structures.
One data buffer per processor involved in the computation, to
store the data to be sent. One single receive buffer to store
all the data received from other processors. Two counters per
processor, to store the amount of data to be sent or received
to/from a remote processor. Each piece of code contain three
stages:

1) Pack: Pack data while identifying target processors. The
iterations space of the distributed loop assigned to the
local processor is traversed again. For each iteration a
function generated with application specific information
(σ) is used to identify which other iterations (and thus,
processors) require data from this partition and iteration.
The data is packed (copied) into the corresponding output
buffers and the counters that measure the data to be sent
to each other processor are updated.

2) Coordination and communication: Interchange of com-
munication sizes across processors, and issue the required
point-to-point communications. The coordination step is
done with the standard all-to-all MPI collective operation.
Each processor sends the value of each output-buffer
counter to the corresponding receiving process. This
interchange avoids the need to traverse the iteration space
scheduled on any other processor, doing the same analysis
as for packing, only to obtain the sizes of data that we
expect to receive from each other processor. After the
coordination step, asynchronous send and receive opera-
tions are issued for each processor with a non-zero value
in the corresponding counter. With all the receive counters
available, it is possible to compute displacements to use
one single buffer for all the receive operations.

3) Unpack: Unpack received data. The whole iteration space
of the distributed loops is traversed identifying which
iterations are scheduled on remote processors for which
we have received data. For each one of these iterations it
is tested if the local processor is one of the receivers of the
data for this partition and iteration (again with a function
specifically generated for this application). In that case,
the data is unpacked from the buffer to the actual array
variable.

III. COST MODEL

In this section we present a cost model for the run-time
computational effort of the communication management code
introduced by the FOP scheme [6]. It is the scheme for poly-
hedral model computations with less communication volume
introduced so far. We use as reference for specific design
decisions the codes introduced by the current implementation
of Pluto. Our model measures the asymptotic cost of the
calculations needed to issue the communications in terms
of two run-time parameters: Number of processors (P ), and
Problem size (N ), measured as the number of data elements
to be processed. The model does not take into account the
actual cost of the communications, which is dependent on
external factors related to the platform and the communica-
tion topology. We model only the extra costs introduced by
the automatically generated code to prepare and launch the
communication activities (calculations to pack/unpack, and
other local coordination activities). The objective is to find
scalability limitations introduced when applying the scheme,
that could be eliminated by design or implementation changes.

As commented in the previous section, in this work we will



focus on the cost of the lower complexity multicast operations.
Unicast operations, that may introduce further limitations, will
be covered in an extended future work.

An excerpt of the code generated for a 1D Jacobi parallel
program included in the Polybench [9] benchmark is shown
in Fig. 1. It will be used as example while discussing the cost
model.

A. General cost for a distributed loop

For simplicity of the discussion, let us consider a single
distributed loop L, with an iteration index t. Let D(t) ⊂ P(Z)
be the Domain of t, the subset of iterations that are traversed
by the loop index. Let O(L◦) be the upper-bound of the run-
time cost of calculating the communications needed for all the
iterations of D(t) scheduled to a given processor. From now
on, constant factors that are application dependent, and not
affected by run-time parameters will be denoted with cname,
where the name will be a single lower-case letter.

Each combination of distributed-loop, variable, and part of
the dependences partition, leads to one Instance of communi-
cation code. In Fig. 1, lines 9 to 35 are the code generated
for one communication instance associated to array variable b.
Lines 36 to 61 contain a similar code, generated for a second
communication instance associated to array variable a.

Let cz be the number of combinations of different array
variables, and parts of the dependences partition introduced by
the FOP scheme for the loop L, and O(y◦) the upper-bound
of the cost of one communication instance.

O(L◦) = cz ×O(y◦)

The cost of one instance of communication y◦ is the sum of
the costs of its three consecutive stages previously described:
packing, coordination, and unpacking. In the following sec-
tions we model the execution of one instance of code for a
generic iteration of the outer loops. We will focus on the outer
loops iterations that lead to maximum parallelism potential of
the distributed loops.

B. Problem size and number of iterations

The loops parallelized by the polyhedral model tools repre-
sent a transformed space of the original loops. The cardinality
of the iterations set of a distributed loop is a function of
the problem size |D(t)| = f(N), that can be determined in
terms of the transformations applied. We are mainly interested
in the loops where the cardinality grows asymptotically with
N , allowing to exploit more parallelism for bigger problem
sizes. Some constants are introduced by the transformations
that reduce the overall cost. For example, when tiling is
applied, the tile size ct appears as a divisor |D(t)| = f(N/ct),
with an asymptotic upper-bound still in the order of N :
|D(t)| ∈ O(N).

C. Distribution policy

A Distribution Policy function Π : D(t),N → P(D(t))
is used to determine the subset of a domain D(t) that is
scheduled on a processor rank p ∈ [0, P −1]. The Inverse Dis-
tribution Policy function, π : Z→ [0, P −1], maps each index
of the domain to the corresponding processor rank. In general,
distribution policies try to obtain a good load balance. Thus,
we assume that the number of iterations scheduled on each
processor is similar: ∀p ∈ [0, P −1], |Π(D(t), p)| ' f(N)/P .
The run-time cost of applying these functions is denoted with
Π◦, and π◦ respectively.

The function Π is used to compute the iterations of the
loop scheduled to the local process. In the example code of
Fig. 1, lines 6 and 7 calculate the lower and upper limits
of the iteration space to be distributed lb dist and ub dist.
These are the inputs for the Π function implemented in the
polyrt loop dist function. The outputs, lbp and ubp, are the
lower and upper limits of the locally scheduled iterations.
The cost of this function is associated to the parallelization
of the algorithm. Thus, we do not consider it as a specific
cost introduced by the communication calculations.

D. Packing stage

The packing stage traverses the subset of locally scheduled
iterations. See the loop in lines 9 to 15 in Fig. 1, that traverses
iterations from lbp to ubp. It has two main contributions to the
overall cost that are computed for each iteration considered.

First, each iteration applies a function σ(i), specifically
generated for each application, to obtain the list of receiving
processors. The sigma function contains a constant number
of conditionals cc, dependent on the application source code.
Each conditional potentially applies π to obtain the rank of the
processor that has a target iteration. Thus, obtaining the target
processors for all the iterations scheduled to a processor, is
done in f(N)/P × cc × π◦.

Second, each iteration traverses the list of processors to
detect the ones that should receive data from the local process.
This is done in O(P ), with a very small constant cs, as it
executes a simple conditional. See line 12 in Fig. 1. The actual
packing operation is done only for the processors detected as
receivers (condition evaluated to true). The code for packing
data in the output buffers is application dependent and only
traverses the data that is going to be sent. However, data
are packed (copied) in a different buffer for each receiving
processor. Thus, there could be multiples copies of the same
data. In the worst case, all processors should receive the same
data. This is dependent on the communication structure of the
application. For example, neighbor synchronization communi-
cations have O(1) number of processors involved for each data
subset, while some communications in LU reductions result
in O(P ) processors involved. Let us model the cardinality of
the number of communications with an h-relation function
h(P ). Let cv be the mean volume of data to be sent by one



1 if ((N >= 1) && (T >= 1) && (N >= 4)) {
2 for (t2 = -1; t2 <= floord (3 * T + N - 4, 32); t2++) {
3 /* Sequential Code */
4 .....
5 /* End sequential code */
6 _lb_dist = max (ceild (2 * t2, 3), ceild (32 * t2 - T + 1, 32));
7 _ub_dist = min (min (floord (2 * T + N - 4, 32), floord (64 * t2 + N + 60, 96)), t2);
8 polyrt_loop_dist (_lb_dist, _ub_dist, nprocs, my_rank, &lbp, &ubp);
9 for (t4 = lbp; t4 <= ubp; t4++) {

10 clear_sender_receiver_lists (nprocs);
11 sigma_b_1_0 (t2, t4, T, N, my_rank, nprocs);
12 for (__p = 0; __p < nprocs; __p++) {
13 if (receiver_list[__p] != 0) {
14 send_counts_b[__p] = pack_b_1_0 (t2, t4, send_buf_b[__p], send_counts_b[__p]);
15 } } }
16 if (t2 <= floord (3 * T + N - 5, 32)) {
17 MPI_Alltoall (send_counts_b, ..., recv_counts_b, ...);
18 req_count = 0;
19 for (__p = 0; __p < nprocs; __p++)
20 if (send_counts_b[__p] >= 1)
21 MPI_Isend (send_buf_b[__p], send_counts_b[__p],... );
22 for (__p = 0; __p < nprocs; __p++)
23 if (recv_counts_b[__p] >= 1)
24 MPI_Irecv (recv_buf_b + displs_b[__p], ...);
25 MPI_Waitall (req_count, reqs, stats);
26 for (__p = 0; __p < nprocs; __p++) {
27 send_counts_b[__p] = 0;
28 curr_displs_b[__p] = displs_b[__p];
29 } }
30 for (t4 = _lb_dist; t4 <= _ub_dist; t4++) {
31 proc = pi_0 (t2, t4, T, N, nprocs);
32 if ((my_rank != proc) && (recv_counts_b[proc] > 0)) {
33 if (is_receiver_b_1_0 (t2, t4, T, N, my_rank, nprocs) !=0) {
34 curr_displs_b[proc] = unpack_b_1_0 (t2, t4, recv_buf_b, curr_displs_b[proc]);
35 } } }
36 for (t4 = lbp; t4 <= ubp; t4++) {
37 clear_sender_receiver_lists (nprocs);
38 sigma_a_1_0 (t2, t4, T, N, my_rank, nprocs);
39 for (__p = 0; __p < nprocs; __p++) {
40 if (receiver_list[__p] != 0) {
41 send_counts_a[__p] = pack_a_1_0 (t2, t4, send_buf_a[__p], send_counts_a[__p]);
42 } } }
43 MPI_Alltoall (send_counts_a, ..., recv_counts_a, ...);
44 req_count = 0;
45 for (__p = 0; __p < nprocs; __p++)
46 if (send_counts_a[__p] >= 1)
47 MPI_Isend (send_buf_a[__p], ...);
48 for (__p = 0; __p < nprocs; __p++)
49 if (recv_counts_a[__p] >= 1)
50 MPI_Irecv (recv_buf_a + displs_a[__p],...);
51 MPI_Waitall (req_count, reqs, stats);
52 for (__p = 0; __p < nprocs; __p++) {
53 send_counts_a[__p] = 0;
54 curr_displs_a[__p] = displs_a[__p];
55 }
56 for (t4 = _lb_dist; t4 <= _ub_dist; t4++) {
57 proc = pi_0 (t2, t4, T, N, nprocs);
58 if ((my_rank != proc) && (recv_counts_a[proc] > 0)) {
59 if (is_receiver_a_1_0 (t2, t4, T, N, my_rank, nprocs) !=0) {
60 curr_displs_a[proc] = unpack_a_1_0 (t2, t4, recv_buf_a, curr_displs_a[proc]);
61 } } }
62 } }

Figure 1. Excerpt of the generated communication code for a 1D Jacobi solver using the FOP scheme



iteration for the array variable considered. This is typically
a constant determined by the application and transformations
applied. Thus, the cost of this second part of the packing stage
can be estimated with: f(N)/P × (cs×P + cv × h(P )). The
overall cost of the whole packing stage is estimated as:

pack◦ = f(N)/P × (cc × π◦ + cs × P + cv × h(P ))

E. Coordination and communication stage

The coordination stage includes several actions, see lines
16 to 19 in Fig. 1. It starts with an MPI all-to-all collective
communication operation to interchange counters. In general,
this type of all-to-all communications are assumed to be
done in O(P ). Then, the actual point-to-point communications
needed are launched traversing the processor ranks in O(P ).
The actual cost of the communications is not modelled for this
work, only the preparation and launching activities. Finally, a
last loop is executed that also traverses the processor ranks in
O(P ) for simple bookeeping operations. We model the overall
cost of this stage (without actual communication costs) by:

coord◦ = P

F. Unpacking stage

The data received from a processor has been packed in
iteration order. Thus, they should be unpacked in the same
order. See lines 30 to 35 in Fig. 1. This stage traverses the
whole iteration space of the distributed loop (from lb dist
to ub dist in the example code), using the π function to
determine which iterations are scheduled in remote processors.
The cost of this operation is modelled with f(N)× π◦.

A second part of the cost appears only for iterations on
remote processors from which data has been received at the
local process during the communication stage. In the worst
case this condition check, for a given iteration, can be satisfied
for all the rest of P processors. But we can model again the
number of iterations that are going to be detected as valid
across the whole space with the h-relation function h(P ) of
the application. Each locally scheduled iteration produces a
mean of h(P ) communications received from other iterations.
For these set of valid iterations, a second check is done with a
application tailored function that contains one or more pieces
of code (a constant number cd of them, dependent on the
source code) and internally applying the π function. Finally,
the actual unpack operation is done only once for each data
element, and the cost directly depends on the volume of data
communicated v. The overall cost of the whole unpacking
stage is modelled by:

unpack◦ = f(N)× π◦ + f(N)/P × h(P )× (π◦ + cd + v)

G. Total cost

Our final cost model is dependent on two functions, and
some constants, that should be determined for each appli-
cation: f(N), h(P ), v, cc, cd. As we are mainly interested

in the asymptotic behaviour, it should not be difficult to
determine the order of the functions in terms of N and P .
The constants only give us a rough idea of the weight of
each part of the formula, but they cannot be considered alone
for a really precise model, as the amount of arithmetical
operations generated by the loop transformations to access the
data elements, pack/unpack them, and similar operations has
not been considered.

The overall cost of calculating a generic communication
instance y◦, can be estimated as the accumulation of the three
stages: y◦ = pack◦ + coord◦ + unpack◦.

y◦ = f(N)/P × (cc × π◦ + cs × P + cv × h(P ))

+P

+f(N)× π◦ + f(N)/P × h(P )× (π◦ + cd + v)

After multiplicative constant factors elimination, and some
simplification the asymptotic upper-bound can be modelled as:

O(y◦) = O(f(N)× π◦ + f(N)/P × π◦ × h(P ) + P )

IV. PROPOSAL: IMPLEMENTATION ALTERNATIVE

As it can be observed in the cost model formula, a key
operation is the identification of the processor that owns an
iteration of the distributed loop, using the inverse distribution
policy function π. It appears several times in the cost model,
as a multiplier factor.

Given an unknown distribution policy function Π, a simple
way to build π is to execute a loop that applies Π to
each processor rank, checking if the iteration parameter is
in the resulting set. See pseudocode in Fig. 2 (left). The
implementation solution previously presented, makes the π
function independent on the Π policy implemented, as far
as the policy returns a block of contiguous iterations. The
run-time Polyrt library version included in the current Pluto
distribution, contains only one Π function: A classical block
distribution policy. See pseudocode in Fig. 2 (middle).

With the current Pluto’s implementation, the cost of the
functions is: O(Π◦) = O(1), and O(π◦) = O(P ). For
more generic partition policies the cost may increase, because
checking if an index is inside a block range can be done in
O(1), but for a generic set of n indexes the search cost is at
least O(log n) if it is sorted, or O(n) if it is is not. In this last
case the cost of π could go up to O(π◦) = O(P ×N).

We propose to use a different approach previously used
in Hitmap [7], a run-time library for distributed hierarchical
tiling arrays management. In Hitmap, the programmer of the
distribution policies is forced to develop plug-ins that include
both the direct and the inverse distribution policies functions.
In Hitmap, the classical partition policies (block, cyclic, etc.)
have implementations where the cost of Π◦ and π◦ is quite
similar, and it is always O(1). This solution can be exploited
for any deterministic distribution policy based on an invertible
function. For non-invertible functions the programmer may



function pi(Dom d,int i,int P)
do p = 0, P-1
d’ = PI(d,p)
if i in d’ then return p

enddo

function PI(Dom d,int p,int P)
if (p < |d|%P)

r.lb = d.lb + (|d|/P)*p + p
r.ub = r.lb + (|d|/P)

else
r.lb = d.lb + (|d|/P)*p + |d|%P
r.ub = r.lb + (|d|/P) - 1

endif
return r

function pi_Alt(Dom d,int i,int P)
off = i - d.lb;
lim = (|d|/P + 1)*(|d|%P)
if ( off < lim )
return off/(|d|/P + 1)

else
return (off-lim)/(|d|/P) + |d|%P

endif

Figure 2. Pseudo-codes of the original π (left) and Π (middle) functions, and our alternative implementation proposed for π (right). Dom < lb, ub >
represents a tuple with the lower and upper bound of a contiguous 1-dimensional iteration space. |d| = d.ub− d.lb+ 1 represents the domain cardinality.

chose to pay the extra run-time cost factor, or pay an extra
memory cost. It is always possible to store in an array the index
of the assigned processor for all the elements in the iteration
space, keeping the O(1) run-time cost for the π function.

We have introduced in Polyrt (Pluto’s runtime helper func-
tions) a direct implementation of the inverse distribution
policy for block partitions, eliminating a multiplier factor of
P in several stages of the communication calculation. See
pseudocode in Fig. 2 (right).

The asymptotic impact of this change can be seen in the cost
model. After substituting the costs of the π function derived
from the current implementation, the result is:

O(y◦) = (f(N)× P + f(N)× h(P ) + P )

With the alternative implementation, multiplier P factors com-
ing from the π function disappear:

O(y◦) = (f(N) + f(N)/P × h(P ) + P )

It is specially remarkable that in the original implementation,
the size problem is multiplied by the number of processors dur-
ing the unpacking stage. In the following sections we present
empirical evidence of the impact of creating a specific π
function for each distribution policy Π, directly implementing
the inverse function with a cost bounded by O(1).

V. CASE STUDY: 1-D JACOBI

To show how to apply the cost model, we have chosen as
case study the 1-dimensional Jacobi program. This application
is a good example to study because the code produced by Pluto
includes only one distributed loop with multicast operations, it
has a simple neighbor synchronization communication struc-
ture, and it is very easy to find proper approximations for the
application dependent functions.

A. Cost model parametrization

The code has been generated using the default tile sizes
in the Pluto example (ct = 32 iterations for any tiled loop).
The function that computes the number of iterations in the
transformed parallel loop, has two input parameters: f(N,T ).
Where N is the array size, and T is the number of iterations
of the original sequential code before transformations. The
formula used to compute the limits of the distributed loop
index t4 depend on the value of the outer loop index t2

(see lines 6 to 8 in Fig. 1). These loops create a pipelined
execution. During the application progress, the amount of
distributed iterations of the t4 loop grows, it keeps stable for a
while, and then decreases. The maximum degree of parallelism
obtained in the stable phase is related to the problem size
parameters, and can be approximated with: if (3T ≥ N), then
f(N,T ) ' 0.01N ; if (3T < N), then lim f(N,T )T→∞ =
3.125T . Thus, f(N,T ) grows linearly with the problem size
parameters O(f(N,T )) = O(min(N, 3T )). For simplicity,
let us assume that T is always big enough to obtain the
maximum degree of parallelism for a given input array size.
Thus, O(f(N)) = O(N).

There are two communications instances, one for array a,
and one for array b. Thus, cz = 2. The h-relation function
h(P ) is typically O(1) in neighbor synchronization applica-
tions. Indeed, experimental measures with the generated code
for the 1-D Jacobi program show that the mean values of the h-
relation across iterations and processors are: h̄(P ) ' 1 for the
code instance generated for the array a, and h̄(P ) ' 0.25 for
the code instance generated for the array b. The data volume
cv communicated by each distributed iteration has been also
measured: cv = 188 data elements for a array, and cv = 63
data elements for b array. Inspecting the generated code, we
observe that the other constant values are the following. For
the a array cc = 7, cd = 7, and for the b array cc = 1, cd = 1.

For an asymptotic behaviour study, we can nevertheless
ignore the application constants, and simplify the resulting
model for the overall cost of the communications needed for
one iteration of the outer loop as:

O(L◦) = O(N × π◦ +N/P × π◦ + P )

After substituting the costs of the π function derived from
the current implementation, the result is:

O(L◦) = O(N × P +N + P )

With the alternative implementation, multiplier P factors com-
ing from the π function disappear:

O(L◦) = O(N +N/P + P )

B. Simulation study

Doing real experiments for big data sizes, and large number
of processors, may require a huge amount of computation
time in critical supercomputer infrastructures. Fortunately, we
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Figure 3. Execution times with the original and alternative π function with different problem sizes N
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Figure 4. Execution times with the original and alternative π function with different number of processes P

can modify the codes generated by Pluto to simulate a given
amount of the outer loop iterations in a chosen processor, with
the desired N and P parameters, using a reduced amount
of memory. This allow us to perform an empirical study to
investigate the effects of scaling the N and P parameters
to sizes that resemble high-end supercomputers. Experimental
results in a smaller real case and machine are presented in
Sect. VI.

The modifications need in the generated code of the 1D
Jacobi example include: (1) Adding some code to read param-
eters for the chosen limits for the outer loop (t2 index); (2)
change the declarations of the a and b arrays to have a small
fixed size (4096 elements); (3) modify all array accesses to
use the resulting index modulo 4096 to stay into the fixed
arrays boundaries; (4) eliminate the MPI calls; (5) at the
start of each t2 iteration, locally compute the send counters
for all the remote processors, in order to simulate the all-
to-all MPI communication eliminated, that coordinates the
communication sizes across processors. This is done out of
the code sections that are measured with time counters.

We preserve the same time measuring mechanisms included
in the original code, for the computation section, and for
each one of the three communication calculation stages. The
data results produced by this simulation are not correct. The
communication codes pack and unpack dummy values in
the buffers, and in the constricted arrays. But all the com-
munication preparation calculations, and packing/unpacking
operations, are done exactly as in the original code. Thus,
the time measures are consistent with the real case, except for
the actual communication costs which are intentionally not
included or considered in the study.

We discuss results obtained using the simulation program
in an PC machine with an Intel-i3 M370 (2.4 GHz) CPU,
running a Linux 3.2.29 kernel. The native compiler used
is GCC v4.7.1, with the optimization flag −O3. We have
compiled two versions of the simulation code: One using the
original implementation of the π function (Org); and one using
the alternative implementation of the inverse function (Alt).
The programs are executed with a large range of problem
sizes (N ∈ [103, 106], T = N/3), and number of processors



(P ∈ [102, 104]). The simulation starts at the first iteration of
the outer loop t2, where the maximum range of the distributed
loop t4 is achieved. Then, the code runs 100 consecutive
iterations of t2. Measures have been replicated with arbitrary
processor numbers p = 4, 17, 29, ..., obtaining the same
results.

Figure 3 and 4 shows the measured cost for 100 iterations of
the communication code stages of the original (Org) program
and the alternative code (Alt), when fixing one of the run-time
parameters (N or P ). The execution times of the sequential
part of the code, that do the actual computation, are also shown
with a line. Notice the logarithmic scale on y-axis.

We can observe with the original π function implementation
how fast the calculations associated with communication code
exceed by orders of magnitude the computation time, when the
parameters grow. The product of N and P in the unpacking
code due to the cost of the π function dominates the cost,
growing to more than one minute of clock time for big problem
sizes, or a high number of processors.

With out proposed alternative implementation, the P mul-
tiplier introduced by the π function disappears. It can be seen
in the right of figure 4 how the unpacking part of the code
is no more affected by it. When the number of processors P
grows, the amount of work to be done by each local process
is proportionally reduced. Nevertheless, the communication
code cost is still dependent on the overall problem size. In
our experiments, it exceeds the cost of the computation in
one order of magnitude for enough number of processors. We
can see in the figure 3 how the cost of the unpacking function
grows faster than the computation effort for big problem sizes.

VI. EXPERIMENTAL STUDY

In this section we discuss a real experimental study per-
formed to verify that the asymptotic behaviour of real codes
executed in real machines follows the same behaviour as the
simulation results, and can be predicted using the proposed
cost model.

A. Experimental environment

We have chosen three study cases included with Pluto
compiler as examples, and also included in the Polybench
benchmarks. The first one is the already discussed 1D Jacobi
program. The second one is a 2D Jacobi program, and the
third one a Floyd-Warshall’s algorithm implementation. This
programs represents examples of the classes of programs in
Polybench that generates communication code. Linear algebra
examples do not derive in actual communications because
Pluto transformations assume that the whole data structures
are not distributed, but replicated on each processor, deriving
in empty sets of flow-out dependences across processors.

We have compiled two versions of each generated program.
One using the original implementation of the π function (Org);
and one using the alternative implementation of the inverse

π function proposed (Alt). The experiments were executed
in a shared-memory machine (Heracles), a Dell PowerEdge
R815 server, with 4 AMD Opteron 6376 processors at 2.3
GHz, with 16 cores each, adding up to 64 cores in total. For
this experimentation using a real platform, we have limited
the problem size N , and the number of processors P to the
maximum supported by the target machine.

B. Results

Figure 5 show the experimental performance measures
obtained for the three study cases. We can observe the same
predicted results than in the simulation study in Sect. V-B,
but in a smaller scale due to the smaller N and P parameter
values.

The impact on the performance of changing the original
π function by our proposed alternative is more noticeable in
some problems than in others. It depends on the ratio between
sequential computation and communications times. For the
three cases of study, the most noticeable effect appears for
the Floyd-warshall case, where the packing/unpacking cost is
almost 30% of the total execution time, as reported in [3].
This is due to: (1) A higher h(P ) factor of this algorithm
comparing with the neighbor synchronization structure of the
Jacobi programs; and (2) a higher number of communication
instances in the loop. This effect is also predicted by the
proposed cost model.

We can also observe that, as predicted by the model, even
after applying our proposed alternative implementation of the
π function, there is still a proportional increment of the com-
munication calculation cost at run-time, with the problem size
N . The FOP scheme relays on checking if communications
are needed for the whole space of distributed tiles, on each
processor.

Our results show that the cost model is an useful tool to
predict the asymptotic behaviour of the code introduced to
manage the communication. It can be used to locate scalability
limitations, in order to take design or implementation decisions
to avoid them. We also show how our proposed alternative for
the implementation of the π function leads to the elimination
of one of these scalability problems.

VII. CONCLUSION

This paper presents a model for the run-time cost of
the codes generated by a state-of-the-art polyhedral-model
technique (FOP scheme), for communication management in
a distributed-memory environment. The model allows to study
the asymptotic behaviour of the performance of these parts of
the code, in terms of the problem size N , and the number
of processors P . It highlights potential scalability limitations,
helping researchers to identify them and possibly eliminate
them in future designs and implementations.

This study shows how the model is used to detect scalability
limitations. We also propose and alternative way of imple-
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Figure 5. Execution times of the codes generated using the FOP scheme, with the original and the alternative π function implementation, for the three study
cases: 1D Jacobi, 2D Jacobi, and Floyd-Warshall’s algorithm.



menting the functions associated to the distribution policies,
that eliminates a P factor from several parts of the cost model.

We present a case study, and experimental results with three
study cases that confirm that the model is useful for asymptotic
performance prediction of these communication management
codes. The results show how the alternative implementation
proposed highly alleviates one of the scalability problems.

This paper only covers the FOP multicast communication
operations. Future work will present an extension of the model
for both multicast and unicast operations, and a further study
of the behaviour of more complex applications.
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