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Abstract—Energy-efficiency is of primary interest in future
HPC systems as their computational growth is limited by the
supercomputer peak power consumption. A significant part of
the power consumed by a supercomputer machine is caused
by the cooling infrastructure. Todays thermal design is based
on coarse grain models which consider the silicon die of the
processing elements as an isothermal surface. Similarly feedback
control loops uses the same assumption to modulate the cooling
effort with the goal of reducing cooling cost and maintaining the
silicon temperature in a safe working range. Recent processors
development has brought into the market CPUs that integrate
a large number of complex cores. Differently from massively
parallel CPUs for which the area and power consumption of
each core is very limited, the cores of these processors can
consume tens of watts and thus, under heterogeneous workloads,
creating significant thermal gradients. In this paper we first
characterize the power and thermal characteristics of new server-
class Intel Xeon computing node based on Haswell v3 architecture
considering both the computational and the cooling components.
We show that these systems are characterized by significant on-
die thermal gradients and that the current O.S. task allocation
strategy is not capable of taking advantage of that, leading to max
CPU temperature and extra cooling activity. To solve this issue we
propose a novel task allocation strategy that reduces the cooling
power while matching the HPC performance requirements.

I. INTRODUCTION AND RELATED WORK

Even if the end of Dennard’s scaling [7] has marked the end

of clock scaling, the pace dictated by Moore’s law has now

made possible to integrate in the same die several billions of

transistors [9]. On top of heterogeneous architectures which

use the available transistors to extend the general purpose

processors with extra functionality and HW-accelerated com-

puting kernels (i.e. cryptography, graphic and video processing

units, GPUs, VPUs, big data accelerators, etc), multi-core and

many-core architectures replicate the same core several times

on the same die to keep satisfying the users performance

requirements.

Todays multi-core and many-cores platforms have become

a mass product permeating several market segments: span-

ning from the ultra-low power mobile domain, to the high

performance computing domain [5], [9], [13], [14], [17].

Even if multi-core architectures are significantly more energy-

efficient than single-core ones, the transistors count achievable

by todays technology together with the peak performance

required by todays datacenters and supercomputers [8] have

made todays systems thermally and power limited. Differently

from mobile architectures which are constrained by the battery

power and large idle periods, in the high performance comput-

ing domain the processors are thermally constrained. Indeed

they are required to sustain the peak performance which leads

to long high power consumption phases and costly cooling

solutions.

Even if the cooling cost of these machines can be reduced

by adopting advanced cooling strategies, such as liquid cooling

and free-cooling, due to physical constraints and high invest-

ment costs a large slice of servers and supercomputers are

still be based on air-cooling. In an air-cooled blade, cold air is

forced to flow through the processors heatsink by mean of a

set of rotating fans present inside each server node. Authors in

[16] show that fan power can account for up to 23% of typical

server power and scales super-linearly with node utilization.

Several works in literature have proposed techniques to

control the rotating speed of the fans to achieve a higher

energy efficiency. This can be done either by reducing the fan

speed and balancing the power gain in the fans with the power

loss due to the increased leakage power caused by the higher

silicon temperature [4], [10], [18] or by balancing the CPU

temperature by mean of task migration and dynamic thermal

management [1], [6].

Authors in [4], [10] show that the fan power can be

reduced by iteratively modulating the fan speed based on

die temperature and a node power measurements. Indeed by

reducing the fan power iteratively with small steps, until the

silicon temperature raises and the overall power decreases, it

is possible to account for leakage power while finding the

energy minimum. This technique can lead to an energy saving

of the 5%. Authors in [18] use only load measurements and

a pre-calibrated open-loop controller based on a set of look-

up tables to find the optimal fan speed based on the server

input load. With this technique the authors were able to reduce

the fan power, achieving up to the 9% of energy-efficiency

gain. Differently Lee et al. [11] use the signal coming from

an external thermocouple, positioned on the heat spreader, to

implement an optimal PID controller scheme. The results show

that up to 14% of a servers fan cooling power can be saved

if the fan control permits a small overshoots in the thermal

response.

In case of multi-core and multi-socket systems the fan

power can be reduced by migrating tasks in between different



cores to take advantage of the thermal capacitance of the

heat dissipation materials, reducing the overall die temperature

by migrating jobs in between the hot and cold cores [1],

[6]. Even if these techniques can achieve up to the 78% of

cooling power reduction they require to constantly migrate

workloads in between cores. This can be detrimental for the

performance of HPC applications which is often based on

message passing, for which best design practices suggest to

bind the MPI tasks to the different cores. Moreover these

analysis have been conducted on simulators which are based

on general assumptions about the heat propagation in real

digital designs and thus they cannot model the real behaviour

of a complex supercomputing systems. Authors of [3], [12]

proposes a combination of machine learning and constraint

programming to extract the thermal interaction in between

cores of a many-core system and translating them in rules for

mapping tasks to cores. These rules are embedded as constraint

in an optimization problem which find the best core in which

running each task. Even if the proposed technique is shown

to reduce cores slowdown induced by thermal protection

mechanisms it is evaluated only in simulations and is not clear

how it would perform in a real supercomputing systems.

By looking at todays Top500 list (November 2015), which

ranks the worldwide supercomputers by their peak double-

precision floating point operations per second (GFLOPs) we

can notice that 85% of the supercomputers today uses Intel

Xeon Class processors and that 26% uses recent Intel Xeon

Haswell processors [9]. In the previous top500 edition (June

2015) the supercomputers based on Intel Haswell processors

were at 19% (5% in November 2014) showing a growth of

almost 2x in the last six months. Previous generation Intel’s

CPU, namely Sandy Bridge were used by 46% of November

2014 supercomputers. This suggests that in the near future

Intel Xeon processors based on Haswell architecture could

power the half of worldwide supercomputers. Todays fastest

Intel Xeon Haswell CPU integrates 18 cores on the same

die and achieves a theoretical peak performance of almost

700 GFLOPs. This extraordinary peak performance is possible

only by an increased complexity in the core logic which

leads to large area and power density. The elevate number

of core integrated in the same die and the large area and

power consumption of each core make this device significantly

different from previous multi-core and many-core systems

[15], suggesting the presence of strong thermal effects and not

idealities which, if modeled, can be used by dynamic thermal

management policies to further increase the energy-efficiency

of a large share of future green supercomputers.

In this paper we show the characterization of the thermal

and power effects on the Intel Xeon E5-2699 v3 processors

and server node. We first show that this device is affected by

strong on-chip thermal gradient during normal operation and

balanced workload (up to 10oC), which can increase to 24oC

under unbalanced workloads showing practical opportunities

for DTM techniques. Secondly we measured the impact of

the fan power on the overall power budget which can cause

an additional 20% power loss during peak computational

phases. Finally we show the effectiveness of a job allocation

techniques which minimize the package temperature reduc-

ing the fan speed and power. The proposed technique does

not affect the computational performance and is capable of

achieving the 4% of energy saving during load peak. To the

best of authors knowledge this work is the first analysis which

characterizes the thermal heterogeneity present in large server-

class multi-cores based on large Out-of-Order cores, showing

the potentials and the challenges of DTM techniques for this

class of devices.

II. ARCHITECTURE AND MODELING

In this section we describe the target Intel Xeon E5-2699 v3

based server platform, the power and thermal characterization

results. As early introduced this is the first study which

quantifies the impact of thermal variation on top-class multi-

cores for next generation green supercomputing platforms.

This work is based on a 2U Intel ”Wildcat Pass” server

platform. It was configured with two Intel Xeon E5-2699 v3

(Haswell) and 128GB of DDR4 RAM and it is air cooled. The

server chassis is a 2U full-width type.
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Fig. 1. 2U Intel ”Wildcat Pass” server platform

From Fig.1 we can see that the two CPU sockets are placed

in front of the six fans that pull the cold air from the front of

the blade and push it toward the CPU’s heatsinks and DRAM.

As a result the two CPU are equally cooled by the airflow.

The fans provide a variable airflow regulated by the on-board

fan controller. In this chassis two separated controllers are

implemented, one per CPU, each independently controlling the

speeds of three of the six fan as described in Fig.2. The inputs

of the controllers are the package temperatures Tpkg0−1 which

can be directly read from the server telemetry system. The

main task of the controller is to maintain the CPU temperatures

Tpkg0−1 below a safe physical limit fixed to TtreshH = 66 oC. In

particular the controller is in the active state, i.e. it enables its

output, when the input temperatures Tpkg0−1 are respectively

higher than a lower temperature threshold TtreshL = 56 oC.

Otherwise the fan speed is fixed at its minimum value (3600

RPM c.a.). The server platform features a set of sensors

which can be queried on-line through the IPMI interface.

They are used to monitor each fan speed (Fan RPM), the



power consumed by the two power supply units (PSU) and

the package temperature Tpkg0−1 with a sampling time of 2s.

FAN

CONTROLLER

CPU0
FAN

#1,#2,#3

Tpkg0S1,2,3

Airflow

(V1,2,3)

CPU1
FAN

#4,#5,#6

Airflow

(V4,5,6)

OLLER

S4,5,6 Tpkg1

Fig. 2. Fan controller

The tested Intel server integrates two Intel Xeon E5-2699 v3

which is the top-class server processor based on ”Haswell v3”

architecture and featuring 18 cores, 36 HW threads, 2.3GHz of

nominal frequency and 3.6 GHz of maximum frequency with a

TDP of 145Watts. The Intel server processors belonging to the

”Haswell v3” architecture introduce a series of architectural

novelty in terms of energy efficiency. The instruction paral-

lelism is increased thanks to the introduction of the AVX2,

a new ISA extension based on 256-bit wide integer SIMD

instructions. Together with the new FMA3 (Fused Multiply-

Accumulate) instructions, this new architecture is able to bring

the whole peak performances to 16 FLOPS/cycle in double

precision. However, due to the increased processing density,

the AVX HW units are more demanding in terms of power

consumption than the other core units. In addition to turbo

mode, to enforce the TDP constraints in the case of AVX-based

workloads, the Haswell CPU provides a mechanism to lower

the core frequency when a certain number of AVX instructions

are executed over a period. The AVX frequencies are selected

according to the number of active cores and TDP limits.

A second major improvement of the ”v3” server processors

is an enhanced DVFS infrastructure that features on-die and

per-core voltage regulators. This reduces the power consump-

tion by reducing the absolute current flowing in the CPU and

enables more fine grained and aggressive thermal and power

management. As previous Intel architectures, the selected

device has built-in performance counters (PMU) which can

be queried by the software to obtain architectural metrics

(IPC, CPU load and current clock frequency) and physical

parameters such as (per core temperature and per CPU power

consumption). To monitor these parameters online we used a

similar approach to the one used in [2] with a sampling period

of 2s. In the next section we use this monitoring infrastructure

to characterize the performance and power trade-off of the

target architecture.

A. Power and performance characterization

In this section we report the results of a set of tests aiming to

highlight the corner-case behaviors of the target server blade

and Haswell processor in terms of power consumption and

performance.

In the first test we isolate the different blade power con-

tributions by running the same PowerVirus1 on all the 36

cores (two sockets) while measuring all the different available

sensors. Fig.3 shows the cores load (Load) and temperatures

(Core Temperatures), the average fan speed (Fan Speed) and

PSU total power (Power). From figure we can notice that, after
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Fig. 3. Power step test results.

the PowerVirus starts, all the cores see a load step (60s), the

power increases as well and the temperature of the CPUs too.

TABLE I
POWER BREAKDOWN

PSU power (W) 2xCPU power (W) 2xDRAM (W)

Idle 76.4 36.7 8.2

Full load (fan@minimum speed) 404.7 289.8 24.5

Full load (fan@maximum speed) 508.4 289.8 24.5

It can be noticed that the thermal transient seen by each core

is characterized by two time constants. Indeed the temperature

increases of almost 10oC in few seconds and then takes almost

30s to increase of a similar quantity. As a consequence of

the cores temperature increase the fans increase their rotation

speed (95s) as well, leading to a power overhead and efficiency

loss which is visible in the Power plot of Fig.3. Table I

quantifies the power consumption of the different components

in the server node. From it we can notice that the CPU and

DRAM account for the 59% of the total power in the Idle

state and almost the same at full load (61%). In the same

circumstance the extra fan speed, needed to cool down the

CPUs, causes a 20% increase in power consumption. If we

consider an ideal cooling circuit (with no extra fan power)

the CPU and DRAM power would increase their impact on

the total power of the 78%. This however is far from a fully

energy proportional system.

These results suggest that dynamic thermal management

(DTM) policies aiming at reducing the fan speed can lead up

1Cpuburn power virus by Robert Redelmeier: it takes advantage of the
superscalar architecture to maximize the CPU power consumption. The binary
used in this work is ”burnP6” installed from default repository.



to the 20% of gain in energy-efficiency. Moreover the dynamic

power management (DPM) techniques, which increase the

energy-efficiency of the CPUs, impact only for the 60% on

total node power in air-cooled future servers. This percentage

increases up to the 80% in ideal free-cooled/water-cooled

future server nodes.

B. Thermal characterization and hardware heterogeneity

In this section we report the results of a set of tests aiming

to highlight the thermal behaviors and characteristics of the

target server blade and Haswell processor. As we will show

there are significant thermal heterogeneity sources which can

be exploited by DTM policies.

1) Test 1: steady-state and fan control active: As early

introduced, our test system is equipped with an Intel E5-2699

CPU which features 18 cores over a chip area of 662mm2.

The first test aims to measure the cores homogeneity from the

thermal dissipation perspective and the maximum achievable

thermal gradient. The basic idea is to apply the same workload

(PowerVirus) to each core, one by one for a total of 36

experiment steps. At each step we measure the steady-state

temperatures for all the cores and also the corresponding speed

of the fans (1-6). The final results of this test are collected

in the tables showed in Fig. 4. The left subplot shows on

the x-axis the Core-Id, on the y-axis the experiment step (i-

th experiment step = i-th core active) and the color code

represents the core steady-state temperature. Core-Ids 0-18 and

Core-Ids 19-36 share the same die. The right subplot shows

on the x-axis the Fan-Id and with color code the fan speed. In

this experiment all cores have turbo mode enabled to obtain

the highest power consumption. However during the tests we

verified that the active cores are running at the same real

frequency (3.6GHz).
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Fig. 4. Intra-die and inter-die thermal variation

The first information which we can extract from the left

plot is the presence of a significant thermal gradient within the

same die. For all the experiment steps, the active core reaches

the steady-state temperature amounting to 60 − 65oC. The

minimum temperature between inactive cores of the same CPU

is between 38 and 48oC. Compared to its idle temperature,

the active core increases its own steady-state temperature of

almost 20oC. The maximum intra-die thermal gradient is 24oC

(experimental step 8), while the average gradient (among the

experiment steps and considering only active CPUs) is 18.2oC.

If we consider the inactive CPU only (CPU1, from experiment

step 19-36) we see an average thermal gradient equal to 6.2oC.

In addition to the strong presence of thermal gradients, from

the same figure we can see that, according to the active cores

position, a subset of neighboring cores are hotter then others.

We can appreciate a temperature difference of almost 10oC

between the active core and the first thermal neighbors. This

temperature gradient increases of additional 8− 10oC if we

consider the coldest core in the same die. From the same plot

we can notice that there is no inter-die thermal interaction.

The maximum inter-die gradient is 27oC and the average

gradient is 24oC, that is 5.8oC higher than the intra-die average

gradient. From the DTM perspective this means that the core

temperature depends primarily by its own power consumption

and by a subset of thermal neighbors, suggesting opportunities

for distributed DTM policies.

Finally from the right plot of Fig.4 we can see that, even

if in all the experiment step the cores have executed the same

benchmark and at the same operating point, some cores have

activated the fan while other not. This suggests that not only

the cores show significant thermal variability inside the die

but their thermal impact on the package temperature (Tpkg0−1)

depends on the core position. This effect can be exploited

by thermal-aware job allocation policies to allocate power

intensive jobs in the cores which impact less the package

temperature. It must be noted that the similarity in the steady-

state temperature of the active core was an effect of the fan

control policy.

2) Test 2: steady-state and fan control not-active: The

second test tries to better quantify the thermal heterogeneity

present between similar cores in the same die and decoupling

it from the fan speed noise. For this purpose we exploited

the RAPL power capping feature to fix a power budget of

49W to each CPU. This value is empirically chosen to avoid

the increase of the fan speed while running the PowerVirus

in each core. In this way, observed thermal variations are

due to different cooling efficiency for the cores rather than

different power. In this test we used only the CPU0 and we

run the PowerVirus sequentially, on one core at a time while

the others are kept idle, for a total of 18 step experiment.

Then, for each step, we measured the steady-state temperature

of the active core. Every step runs for 10 minutes and between

two consecutive tests the system was kept idle for another

10 minutes. The temperature values resulting from these tests

are the average (over a time interval of one minute) of the

temperature samples measured after the thermal transient has

been settled (steady-state).

Fig.5 collects the results of this test. It shows the steady-

state temperature reached by the core in each of the 18

experiment steps. On the x-axis there is the active Core-

Ids while the y-axis reports its own steady-state temperature.

Active Core-Ids are ranked in a descent order. From the plot

we can notice that the core 6 is the hottest one while core
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8 is the coldest, showing a difference of almost 7oC. It is

clear that under thermal limitations an optimal DTM policy

will reduce the performance of core 6 in the measure of

the 10% more than of the core 8. This will translate in a

visible thermally induced performance heterogeneity inside

future green supercomputers.

As already seen from Fig. 4, not all the cores affect similarly

the package temperature and thus not all the cores require the

same amount of cooling. To evaluate this, differently from

Fig.5, in Fig.6 we have ranked the cores according to their

impact on the package temperature (Tpkg). On the figure we

show on the y-axis, with different bars, the core maximum

temperature and the corresponding package temperature. From

the plot we can notice that self-heating and cooling cost

are two similar objective metrics but the resulting core rank

is different. Indeed the ranking obtained ordering the cores

according to their cooling cost is different from the ranking

obtained ordering them considering their sensitivity to self-

heating.
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Fig. 6. Tcore max vs Tpkg (same job in all the cores but at reduced frequency
to avoid fan activation)

As a matter of fact, upcoming high-performance computing

nodes based on large multi-cores CPUs are affected by a

significant thermal heterogeneity and cooling heterogeneity.

DTM can exploit this kind of heterogeneities to reduce the

active-cooling costs and power consumption that impacts for

the 20% of the total system power. In the next section we will

validate these considerations by implementing directly on the

Intel Xeon E5-2699 v3 HW a thermal-aware job allocation

policy.

III. TEST CASE: THERMAL ALLOCATION FOR FAN

CONTROL

In this section we take advantage of the previous characteri-

zation results to implement on the Intel Xeon E5-2699 v3 pro-

cessor a thermal-aware job dispatcher which takes advantage

of the intrinsic thermal heterogeneity to reduce the cooling

cost, i.e. the fan speed. With this test we aim to underline

the importance and the feasibility of DTM policies which

exploits the thermal heterogeneity on real next-generation

green supercomputer hardware.

We started by analyzing the job entering in a real supercom-

puter, in a production environment, to evaluate their thermal

and power heterogeneity. For this purpose we analyzed the

traces recorded from the job scheduler running on the EU-

RORA supercomputer [2]. Eurora is employed by several users

for different applications ranging from weather forecasting

and big data analysis to heavy scientific workloads, thus it

represents a good sample for our purposes. We calculated the

average temperature and power of each job executed in a time

window of 3 months and the results are displayed in Fig.7.

Each point of the scatter plot represents a single job that ran

on a single or multiple nodes. In the figure we can notice

several clusters of points which distributes along virtual lines.

These are jobs spanning an increasing number of nodes. If we

check the distribution of the temperature values (on the left)

we notice that the jobs temperatures are collected into two

main heterogeneous groups, the first at high temperatures (hot

jobs) and the second at relatively cold temperatures (cold jobs).

Moreover, looking at the power distribution on the bottom, we

see that the majority of the EURORA jobs ran on a single

node.

#Job

#
J
o

b

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

70

80

Power (W)

T
e

m
p

e
ra

tu
re

 (
o
C

)

Per Job Average Temperature vs Power

Fig. 7. Average (per job) power and temperature for the EURORA system

This analysis highlights the presence of jobs with hetero-

geneous power requirements on the supercomputer workload.

Moreover naturally the jobs tend to cluster in hot and cold jobs.

This property of supercomputer workload matches perfectly

the thermal heterogeneity of the tested Intel Xeon E5-2699 v3

which is representative of future high performance computing

infrastructure. In the following subsections we leverage these

properties together to deploy a simple but yet effective alloca-

tion policy which reduces the fan power while preserving the

computational performance.

A. Cooling-Aware Job Allocation Policy

Starting from the the cooling system properties of the tested

device, where the fan speed is regulated by a controller based

on the package temperature signal, we analyze the impact

of each single core temperature to the package temperature.

From it we can deduce a simple model that maps the core

temperatures to the package temperatures. This model, in turn,

can be used proactively to map a given job to a certain core

by looking at:



• job average load

• core thermal influence to package temperature.

As example, jobs having an high load (hot jobs) can be

mapped to cores having a low influence on the package

temperatures (cold cores) and, in turn reducing to the fan

activity. In the following text we made the assumption that

hot jobs are composed by hot tasks, as well as cold jobs are

composed by cold tasks.

This model can be easily learned using the technique

showed in Section II-B2. The model is learned offline and

is a list of core ranked from the core which impacts less

the package temperature to the one which impacts more. The

model obtained for the Intel Xeon E5-2699 v3 platform is

showed in figure Fig.6. The online allocation algorithm (1)

first ranks the job to be executed in a descend order according

to their average load (Hot job first) and then, based on the

platform model, (2) allocates the first job of the job list into

the first core of the core list.

To evaluate the proposed algorithm we have created a series

of synthetic tasks, in a number equals to the number of the

cores of a CPU. Each task has a different load which is

generated randomly with a normal distribution in the range

of 30% and 100% core load. This set of task is generated

only once and used for all experiments in order to compare

the resulting behaviour. Successively the scheduler routine

allocates each task to the cores of the real Intel Xeon CPU

following different policies. To compare the effectiveness of

the proposed approach we consider different task allocation

policies:

• OS: This is the ordinary case, where the tasks are

allocated to the CPU by the default Linux task scheduler

which performs load balancing.

• Random: this policy binds each task to a specific core in

a random order.

• Cooling Aware: in this case, the core affinity of each

task is established considering the Cooling Aware model

explained previously in this section.

For each test case and allocation policy we measure the total

blade power consumption which includes the fan power and

the whole server board. This allows to consider also the

potential increase of the CPU’s leakage power. Indeed since

we are going to lower the speed of the fans, the average

CPU temperature increase may induce more leakage power.

Moreover, we monitor the fan speed to evaluate the direct

impact of the policy in terms of RPM reduction. These results

are obtained using only one CPU (CPU0) and with turbo

enabled.

In Fig.8 we report the variables measured during the test:

the fan speed for the active CPU, the total power consumption

of the board taken from the PSU sensors and the temperature

of the CPU package. In this sets of results we report only

the results for one socket as the other one was giving similar

results. From them we can notice that our policy decreases the

overall power and fan speed. To have a more robust evaluation

of the performance of the designed policy we performed a set
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Fig. 8. Comparison of the different policies during the tests execution

of different run for each policy and we collected aggregated

results which are resumed in Fig.9. In this plot we correlate

the energy consumption (PSU) of the server board with the

average speed of the fans. The values are normalized w.r.t.

the maximum value. We can notice that the Cooling-Aware

scheduler, in the average, performs better than the ”Random”

and the ”OS” approach which shows the worsts results.
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Fig. 9. Normalized fan activity versus average PSU energy for the different
policies

The proposed cooling-aware job allocation policy can lead

to an overall increase in the energy-efficiency of up to 4%.

The results of this test are a confirmation that future server

architecture can take advantage of their thermal heterogeneity

to improve the overall node energy-efficiency by reducing the

cooling cost.

B. Future Works

In future works we aim to validate this results by con-

sidering real-workloads, the coupling of the thermal-aware



allocation strategy with standard power management policies

and a multi-blade and rack system. In our vision to become

applicable to a real HPC environment several additional com-

ponents still need to be developed: (i) a job power predictor

which allows to estimate if a job which is going to execute in

the machine is going to be hot and cold. This will enable the

batch job scheduler to decide where to allocate the job; (ii)

modelling the thermal heterogeneity at the rack level. Indeed

air-cooled blades receives a different quantity of inlet cold

air accordingly to the their height with respect to the floor;

(iii) a more open fan-speed control policy which allows a co-

design of the optimal cooling-aware power management and

allocation policy.

IV. CONCLUSION

This work evaluates the thermal and power characteristics

of server node based on the Intel Xeon E5-2699 v3 CPU.

This CPU is peculiar because it integrates on the same

silicon die a large number (18) of powerful processors. We

proof with empirical data that these devices are affected by

strong on-chip thermal gradient during normal operation and

balanced workload (up to 10oC), which can increase to 24oC

under unbalanced workloads showing practical opportunities

for DTM techniques. We show that fan power accounts for

the 20% of the node power and we show that job alloca-

tion strategies which minimizes the package temperature are

capable of reducing the fan speed and power improving the

system energy-efficiency. The proposed technique is capable of

saving the 4% of energy during peak load without affecting the

computational performance. To the best of author’s knowledge,

this work represents the first analysis which characterizes the

thermal heterogeneity present in a large server-class multi-

cores CPU based on ”fat” cores, showing the potentials and

challenges of DTM techniques for this class of devices.

V. ACKNOWLEDGMENTS

This work was supported, in parts, by the FP7 ERC Advance project MUL-
TITHERMAN (g.a. 291125), by the EU H2020 FETHPC project ANTAREX
(g.a. 67623) and by the YINS RTD project (no. 20NA21 150939), evaluated
by the Swiss NSF and funded by Nano-Tera.ch with Swiss Confederation
financing

REFERENCES

[1] R. Ayoub, S. Sharifi, and T. S. Rosing. Gentlecool: Cooling aware
proactive workload scheduling in multi-machine systems. In Proceed-

ings of the Conference on Design, Automation and Test in Europe, pages
295–298. European Design and Automation Association, 2010.

[2] A. Bartolini, M. Cacciari, C. Cavazzoni, G. Tecchiolli, and L. Benini.
Unveiling eurora-thermal and power characterization of the most energy-
efficient supercomputer in the world. In Proceedings of the conference

on Design, Automation & Test in Europe, page 277. European Design
and Automation Association, 2014.

[3] A. Bartolini, M. Lombardi, M. Milano, and L. Benini. Principles and

Practice of Constraint Programming – CP 2011: 17th International Con-

ference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings,
chapter Neuron Constraints to Model Complex Real-World Problems,
pages 115–129. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[4] J. Chen, R. Tan, G. Xing, and X. Wang. Ptec: A system for predictive
thermal and energy control in data centers. In Real-Time Systems

Symposium (RTSS), 2014 IEEE, pages 218–227. IEEE, 2014.
[5] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini. PULP: A Ultra-Low

Power Parallel Accelerator for Energy-Efficient and Flexible Embedded
Vision. Journal of Signal Processing Systems, pages 1–16, 2015.
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