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Abstract—In this paper, we propose three approaches to
accelerate the B&B execution time using Multi and Many-
core systems to solve the NP-hard Blocking Job Shop Schedul-
ing problem (BJSS). The first approach is based on Mas-
ter/Worker paradigm where the workers independently explore
the branches sent by the master. The second approach is a
node-based parallelization that does not change the design
of the B&B algorithm, except that the bounding process is
faster since it is calculated in parallel using several threads
organized in one GPU block. The third approach is a Multi-
Core CPU/GPU hybridization that benefits from the power
of both the CPU-cores and the GPU at the same time.
This hybridization is based on concurrent kernels execution
provided by Nvidia Multi process Service (MPS) i.e. each
host process (Master or Worker) launches his own kernel to
accelerate the bounding process on GPU. The obtained results
using Taillard instances confirm the efficiency of our proposals.
The first two approaches are respectively three and eighteen
times faster compared to the sequential version. The results of
the hybrid approach show a relative speedup over ninety times
as compared to the sequential approach and therefore prove
the advantage of using both the CPU-cores and the GPU at the
same time. Keywords-Job shop; blocking with swap; GPGPU;
Multi-core CPU; parallel computing; Branch-and-Bound.

I. INTRODUCTION

The job shop scheduling problem (JSSP) consists in
scheduling a set of jobs on a set of machines. Each job
has its own sequence of crossing on machines. The classical
JSSP assumes an infinite storage space between machines
which is not realistic. The BJSS is a version of the classical
JSSP with no storage space between machines, where a job
has to wait on a current machine until the next one becomes
available. Our goal is to minimize the completion time of
all jobs (Makespan). The classical JSSP is known to be NP-
hard in the strong sense [11], and the blocking extension
of this problem BJSS appears to be even more difficult
to solve [15]. This problem has several application areas
such as: manufacturing systems with no storage space, train
scheduling, hospital resource scheduling, etc.

The B&B algorithm is an exact method based on intelli-
gent enumeration of all feasible solutions. Nevertheless, its

sequential case takes a huge amount of time to solve small
instances and remains inefficient when dealing with large
instances. Therefore, the parallelization of this method is
essential. In the literature, several CPU and GPU parallel
B&B algorithms have been proposed [6], [13], [2], [5], [4].
However, most authors exploit only the CPU-core or only
the GPU which may results in the under-utilization of these
resources and a loss of a significant computing power, hence,
a loss in performance.

In this paper, we propose three approaches to accel-
erate the B&B execution time using Multi and Many-
core systems. The first approach is a tree based paral-
lelization, exploiting Multi-core CPU-processors available
in all recent PCs. The proposed approach is based on
Master/Worker paradigm where the workers independently
explore the branches sent by the master. The performance
of this approach depends on the number of used CPU-
cores. The second approach is a node-based parallelization
(Parallel Evaluation of the Bound), exploiting the idea that
the evaluation of each node can be calculated in parallel.
Therefore, at each iteration one node will be sent for parallel
evaluation on GPU by using several threads organized in one
GPU block. Experiments show that this version is 18 times
faster than the sequential B&B version. The drawback of the
first two approaches is the underuse of the CPU and GPU
resources. To overcome this drawback, we propose a hybrid
CPU-core/GPU approach to benefit from both the multi-core
CPU and the GPU at the same time. This approach is based
on the concurrent kernels execution provided by Nvidia MPS
i.e. each host process (master or worker) launches his own
kernel to accelerate his bounding process on the GPU. The
obtained results, using the Taillard instances show a relative
speedup of 93x as compared to an optimized sequential
B&B version which confirms the efficiency of the proposed
hybridization.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the blocking job shop scheduling problem,
the alternative graph model and related work. Section 3
contains a brief description of the sequential B&B algo-



rithm and its components. Section 4 presents the proposed
parallelization approaches of the B&B algorithm. Section
5 discusses computational results. Finally conclusions and
perspectives are presented in Section 6.

II. BLOCKING JOB SHOP SCHEDULING PROBLEM

A. Problem Formulation

The classical JSSP can be defined by a set J of n jobs
(J1, ..., Jn) to be processed on a set M of m machines
(M1, ...,Mm). Each machine can process at most one job
at a given time. The execution of a job on a machine is
called operation. We note by O the set of all operations
(o1, ..., on∗m). Each operation oi needs to use a machine
M(i) for an uninterrupted duration called processing time
pi. Each job has its own sequence of crossing on machines
which creates precedence constraints between consecutive
operations of the same job. A solution (schedule) for this
problem consists to assign a starting and finishing times ti
and ci for each operation oi (i = 1, ..., n ∗m); while satis-
fying all constraints. Our goal is to minimize the Makespan
(Cmax). The JSSP assumes an unlimited intermediate buffer
capacity between consecutive operations of a job which is
impossible in real manufacturing. The BJSS is a version of
the classical JSSP with no intermediate buffers, where a job
has to wait on the current machine until the next machine
becomes available for processing. This problem can be
modelled as an alternative graph representation introduced
by Mascis et al. [1] which is a generalization of the
disjunctive graph of Roy and Sussman [4]. This model can
be defined as G = (N,F,A). N represents a set of nodes
(operations) with two additional dummy nodes (start and
finish) modelling the start and the finishing of the schedule.
F represents a set of fixed arcs imposed by precedence
constraints between consecutive operations of the same job
and fqp is the length of arc (q, p) ∈ F . Finally, A is a set of
alternative pairs ((i, j), (h, k)) representing the processing
order for concurrent operations on the same machine and
aij is the length of alternative arc (i, j). Each arc represents
the fact that one operation must be completed before starting
the processing of the other operation. A selection S1 is a
set of arcs obtained from A by choosing at most one arc
from each pair, and G(S1) = (N,F ∪ S1) represents the
obtained graph. We note that a selection S1 is feasible if
there is no positive length cycle in G(S1) and the evaluation
(Makespan) of S1 is the longest path in G(S1). We say
that S1 is a complete selection if exactly one arc is chosen
from each pair, therefore |A| = |S1|. We define a schedule
(solution of the problem) as a complete feasible selection.
Finally, given a feasible selection S1, let l(i, j) be the length
of the longest path from operation i to j in G(S1). We call
the last operation of each job (example or) an ideal operation
because the machine becomes immediately available after
the end of its processing time pr. If oi is a blocking

operation, we denote by σ(i) the operation immediately
following oi in the same job.

Table 1 represents a BJSS instance with two products
(jobs) and three machines. The first product (J1) has 5 min
processing time on machine M1, 3 min on M2 and 8 min on
machine M3. The second product (J2) has 8 min processing
time on machine M2, 2 min on M1 and 7 min on machine
M3.

Table 1
BJSS INSTANCE WITH TWO JOBS AND THREE MACHINES.

job sequence processing times

J1 M1,M2,M3 5, 3, 8
J2 M2,M1,M3 8, 2, 7
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Figure 1. Alternative graph for BJSSP instance of table 1.

Figure 1 represents an alternative graph of the BJSS
instance in Table 1. This graph has three alternative pairs,
two between blocking operations and one between ideal
operations. Both operations 2 and 4 need the same machine
M2 and since M2 can not process both operations at
the same time, we associate them with an alternative pair.
Since operations 2 and 4 are blocking operations the first
alternative arc (3, 4) represents the choice where operation
2 must be finished before the beginning of operation 4. His
mate, arc (2, 5) represents the choice whereby operation 4
must be finished before the beginning of operation 2. We use
the same process to generate the alternative pair ((2,5), (6,1))
between operations 1 and 5. The alternative pair between
operations 3 and 6 is ((3, 6), (6, 3) ) because both operations
3 and 6 are ideal.
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Figure 2. Schedule for BJSP in table 1 whit Cmax=26.

Figure 2 represents a feasible schedule (solution) for the
BJSS instance in Table 1, obtained by choosing one arc



from each pair in the alternative graph of Figure 1. The
Makespan (Cmax = 26) of this schedule is the longest path
in the obtained graph.

The Gantt chart in Figure 3 represents both the processing
and blocking times of the solution of Figure 2.
For example, after the end of its processing time the job
J1 blocks the machine M1 until machine M2 becomes
available for processing J1.
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Figure 3. Gantt chart of the schedule in figure 2.

1) Alternative pairs generation:
Let us consider two blocking operations oi, oj and one ideal
operation or, where M(i) =M(j) =M(r). Since the three
operations cannot be executed at the same time, we associate
them with pairs of alternative arcs.

Case 1: the alternative pair between operations oi and
oj (Fig. 4): The first alternative arc (σ(i), j) having length
0 represents the situation where oi is processed before
oj . Since oi is a blocking operation, M(i) can begin the
processing of oj only after the starting time of σ(i)(when
oi leaves M(i)). The same method is followed for the other
alternative arc(σ(j), i) since oj is a blocking operation.

i

σ(j)

σ(i)

j

0

0

Pi

Pj

i σ(i)

r

0

Pi

Pr

Case 1. Case 2.

Figure 4. Alternative pairs between blocking and ideal operations.

Case2: the alternative pair between operations oi and or
(Fig. 4): It is the same process as in the first case for the
alternative arc (σ(i), r) since oi is a blocking operation. The
other alternative arc depends on the fact that or is an ideal
operation therefore, we add the alternative arc(r, i) with
length pr.

B. Related works

Most of B&B methods, for the job shop problem, are
based on the resolution of single machine problems proposed

by Carlier. For solving optimally the BJSS we find the
B&B method proposed by Mascis et al. [15]. The authors
formulate the problem by means of an alternative graph
model which is a generalization of the disjunctive graph
of Roy and Sussman [19]. Based on this model, they solve
optimally the 10 × 10 benchmark instances of this problem.
Ait Zai et al. [1], proposed an original B&B method
based on graph theory to solve the BJSS. The idea of his
branching scheme relies on the implicit enumeration of all
possible combinations on a given machine. The authors gave
solutions for local instances only.

The B&B algorithms are not efficient when dealing with
large problem instances, therefore computing accelerators
like GPUs are required. Several authors have proposed to
accelerate the B&B method using GPUs. In [6] and [13].
Chakroun et al. take the classical approach of sending nodes
to be evaluated on GPU to solve the FSP problem since
this step takes more than 98% of the global execution
time. Therefore, each GPU thread supports the evaluation
of a single node of the search tree. In [2], [7] the authors
extend the approach below and propose a multi-core/GPU
scheme to exploit both multi-core CPU processors and GPU
accelerator to solve the same problem. In [5], Alami et al.
proposed a CPU-GPU based B&B applied to the knapsack
problem. In the proposed parallelization scheme the branch-
ing and bounding can be done either on the CPU or the
GPU according to the size of the search tree. This approach
uses less CPU-GPU communication and better management
of data-structures in GPU memory. In [4], Carneiro et al.
apply the B&B to the traveling salesman problem where a
pool of nodes is sent to the GPU for evaluation. Each GPU-
thread applies the branching and bounding operators to a
single node and builds its own local tree. The resulting nodes
are moved back to the CPU where the promising nodes are
inserted into the tree.

Most of the previously cited works focus on exploiting
the GPU part and ignoring the available CPU-cores. For
this reason, we propose an original hybrid CPU-core/GPU
approach based on concurrent kernels execution to exploit
both CPU and GPU parts of our workstation.

III. THE BRANCH AND BOUND ALGORITHM FOR BJSS

The B&B algorithms make an intelligent enumeration
of all feasible solutions. They are characterized by two
operators: branching and bounding. The branching is a
recursive process, which consists in replacing the search
space of a given problem by a set of smaller sub-problems.
The lower bounding operator is used to compute the lower
bound for the evaluation of all feasible solutions in the
considered sub-problem. The elimination operator uses the
bounds to eliminate the sub-problems that cannot improve
the current best solution found for the problem. Algorithm
1 describes the used B&B algorithm.



Algorithm 1 Pseudo-code of the sequential B&B algorithm

LIST ← {original problem};
UB ←∞;
while LIST != ∅ do

R← LIST (Choose a Node R from LIST );
Generate successors Ri from R | (i = 1, ..., n);
for Each successour Ri do

if LB(Ri) < UB then
if Ri represents one solution then

UB = LB(Ri);
s∗ = solution in Ri;

else
LIST = LIST ∪Ri;

end if
end if

end for
end while
return s∗

The most effective B&B algorithms, for the JSSP, are
based on the disjunctive graph model [3]. Our B&B is based
on the adaptation of this approach to the blocking case
(alternative graph) [15]. Our method consists in fixing an
order (precedence) between every two concurrent operations,
which leads to fix the corresponding alternative pair (from
A).

A. Branching

The B&B algorithm can be represented by a search
tree. The tree is rooted by the original problem; no alter-
native pairs are fixed (|S0|=0). A search tree node R is
characterized by (SR, AR) and represented by the graph
G(SR)=(N,F ∪SR). SR denotes the set of fixed alternative
arcs and AR represents a set of unselected alternative
pairs in this node. The branching creates two immediate
successors (R1, R2) of R by fixing an alternative pair
((i, j), (h, k)) ∈ AR that has a direct impact on the longest
path in the graph. The node R1 (resp. R2) is characterized
by SR1 = SR ∪ (i, j) (resp. SR2 = SR ∪ (h, k)) and ARi

= AR − {((i, j), (h, k))}. The corresponding successors
represent the sub-search space related to the fixed alternative
arc. After this, each successor is handled recursively in the
same way until we find a complete selection or eliminate
sub-problems and prune the tree if the lower bound value
of the current sub-problem is bigger than the upper bound.
Finally, our exploration strategy after a branching process is
to choose the node which has the bigger Makespan, which
allows to reach rapidly feasible solutions and also leads to
improve the UB and eliminate a large number of branches.

B. Evaluation (Bounding)

Any solution of the problem can be considered as an
initial value for an upper bound (in our case UB=+∞) which
is updated as soon as a new better solution is found. The
lower bound (Evaluation) used in our case is the one used
by Carlier et al. [8] to solve optimally the JSSP. It is based
on the one machine scheduling problem. To do a link with
alternative graph model, each search tree node represents

an alternative graph. The lower bound used is similar to
the Makespan of the sub-problem obtained by adjusting the
head and tail structures (Hi = l(0, i), Ti = l(i, n ∗m)) for
each operation oi (i = 1, ..., n∗m); in the graph representa-
tion. This process is very expensive and consumes 70% of
global execution time of the method. This process is done
sequentially for all operations affected by the change made
and can be repeated several times for the same operation if
there are multiple paths that lead to this operation.

The complexity of the evaluation process depends on
the number of operations (n × m) in the treated instance,
therefore, the evaluation time increases by increasing the
size of the instances. The implementation of the evaluation
process, as illustrated below, requires six data structures. The
matrix MP (n ∗ m) × (n ∗ m) represents the length of all
alternative arcs, MP[i][j]=aij if the arc exists and -1 if not.
The matrix Succ ((n ∗m) × n) contains the successors of
each operation, therefore, row i represents the successors
of operation oi. Similarly, the matrix Pred ((n ∗ m) × n)
contains the predecessors of each operation.

C. Immediate selection

The immediate selection represents several techniques
which allows to accelerate the B&B algorithm by reducing
the number of branching necessary to obtain the optimal
solution. This process is done sequentially and costs 18%
of the global processing time since there is a large number
of alternative pairs (99000) for big instances. This process
uses the head and tail values computed in the bounding
process. Given a sub-problem R with a feasible selection
SR and a set of unselected pairs AR. For each unselected
pair ((i, j), (h, k)) ∈ AR: if l(0, h) + ahk + l(k, n) ≥ UB
then SR=SR∪(i, j). This rule expresses the fact that adding
the arc (k, h) (resp. (i, j)) to SR will produce a sub-
problem with a lower bound greater than the upper bound.
Consequently the arc (i, j) (resp. (h, k)) is added to SR.

IV. THE PROPOSED PARALLELIZATION APPROACH FOR
THE B&B ALGORITHM

The fact that each node of the B&B search-tree can be
explored independently amplifies the parallelization of these
algorithms. The only global information in the algorithm is
the value of the upper bound.

The algorithm parallelization may depend on the architec-
ture of the processing machine, synchronization, granularity
of tasks and communication between different processes.
There are several classes of parallelization strategies, ac-
cording to the degree of parallelization. For more details the
reader may refer to [12].

A. Multi-core parallel B&B

In this section, we describe the proposed parallel B&B
algorithm, exploiting the CPU-core available in our work-
station. The proposed approach (see Fig. 5) is based on
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Figure 5. Global architecture of the proposed parallel B&B algorithm.

the master/worker paradigm. The exploration of the search-
tree is done simultaneously by the master and workers, the
results given by a worker can influence others. Therefore,
our approach can be seen as a multi-search parallelization.

A work pool represents a set of active sub-problems.
There are two types of work pools: a unique global work
pool managed by the master and several local work pools
owned by the different workers. Each worker has its own
local work pool (see Fig. 5). Therefore, a collegial strategy is
considered. The master initializes the search tree by creating
the root, launches his own B&B algorithm which generates
a set of active sub-problems stored in the global (master)
work pool and wakes up the blocked workers by sending
a sub-problem from the global work pool. After that, each
worker launches his own B&B algorithm. During the search,
the local pools evolve continuously and when they become
empty, the corresponding workers send a request to the
master and wait for sub-problems. The workers perform
a worst-first strategy in order to reach feasible solutions
more quickly or eliminate the branches if the lower bound
is greater than the upper bound. A worker which finds a
better solution than the current best one broadcasts it to all
workers via the master to ensure efficient branching process.

An extended version of this approach that exploits the
computing power provided by cluster architectures will be
presented in [5].

B. The Proposed GPU-based B&B algorithm

We have seen in section 3 that the evaluation process and
the immediate selection consume together more than 85% of
the global execution time, therefore, it is crucial to accelerate
this phase in order to reduce the B&B execution time.

The GPU architectures are based on SIMT (Single In-
struction, Multiple Threads) paradigm. According to this
paradigm, the same program called kernel is executed si-
multaneously by a set of parallel threads with different

data. The threads are organized according to a grid of
thread-blocks hierarchy specified in the kernel call. The
grid represents a set of thread-blocks. Threads of the same
block can cooperate by using a private shared memory
and barrier of synchronization. Threads can access multiple
memory spaces: constant memory and texture memory
are read-only cached memory accessible by all threads. The
global memory is a read-write memory, also accessible by
all threads. Unlike the global memory the shared memory
is a cached memory accessible only by threads in the same
block [22];

In the following, we present our proposed node-based
parallelization scheme for the B&B algorithm, exploiting
GPU-based architectures. The proposed scheme exploits the
idea that the evaluation and immediate-selection steps can
be done in parallel for each node.
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Figure 6. First level PEB scheme.

This approach uses the same design as the sequential B&B
algorithm except that the evaluation (bounding) is done in
parallel on GPU for each node as shown in Figure 6. As
already presented, each node of the search tree represents a
graph of n×m operations. The evaluation process consists
in updating the head and tail values for each operation in the
graph. At the PEB level, we propose a parallel evaluation
scheme based on the idea that each GPU-thread supports
updating head and tail values for a single operation in the
graph, exploiting the fact that the updating can be done
independently for each operation. Therefore, the GPU block
size equals n×m, the number of operations in the graph. As
shown in Figure 7, at each iteration, only one node is sent to
the GPU for evaluation and immediate selection using one
thread-block. Each thread updates the head and tail values
for one operation. The new values are sent back to the CPU
to be used in the branching and elimination process. As can
be seen in Figure 7, a single block is used on the GPU
to evaluate one node while the others block are idle. The
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weakness of this solution resides in the under-utilization
of the GPU capacity and thus a waste of a significant
computing power. To overcome this drawback, we propose
a hybridization of the first two approaches (Master/Worker
and the GPU based) to increase the GPU occupation.

C. Hybrid Multi-core CPU/GPU parallelization (H-PEB)

We propose in this section a hybridization of the first two
approaches (Multi-core CPU and GPU) to increase the GPU
occupation. This version generalizes the idea of the PEB ap-
proach to exploit the advantages of both CPU-core and GPU
at the same time. The hybrid approach is based on concurrent
kernels execution provided by Nvidia in devices of compute
capability 2.x and higher. The maximum number of kernels
that a device can execute concurrently varies between 16 and
32 according to device compute capability [22]. Therefore,
each CPU process (Master or workers) launches his own
kernel in the default stream to accelerate his bounding of
each node on the GPU. Furthermore, Figure 8 explains the
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hybrid approach. The advantage of our hybrid approach

based on concurrent kernel execution is the occupation of the
GPU over time. i.e. at each moment, our hybrid approach can
have simultaneously several workers executing instructions
on the GPU while others perform data-transfer from/to the
GPU and yet others apply the selection and elimination
operators on the CPU. This hybrid approach provides also a
way to reduce the overhead of the CPU/GPU data-transfer.

1) Nvidia Multi Processes Service (MPS) and concurrent
kernels execution:
MPS is a client-server runtime implementation of the CUDA
API used to increase the overall GPU utilization. Without
MPS, only one host process can use the GPU at a given
time, therefore, it potentially my underutilize the GPU
resources. To overcome this problem, Nvidia provides the
Multi Processes Service to enable multiple host processes
like MPI processes to use the Hyper-Q capability on the
Nvidia Kepler GPUs. Hyper-Q allows a single host process
to process multiple CUDA kernels concurrently on the same
GPU. As we can see in Figure 9 the MPS consists of several
components: the Control Daemon Process is responsible for
starting and stopping the MPS server, as well as coordinat-
ing connections between clients and the server [23]. The

  

Figure 9. MPS compnents.

Server Process provides the connection between clients and
the GPU which allows concurrency. Each process (server,
clients) has its own CUDA context for its GPU operations.
When the MPS client connects to the control daemon, the
later creates an MPS server if no server is active, then the
client proceed to connect with the server [23]. Note that
all communications between MPS clients/server and MPS
control daemon is done using a named Pipe. Furthermore,
figure 10. shows how to use the Multi Processes Service
(MPS) to run MPI applications.

V. EXPERIMENTATIONS

In this section computational results are given using
benchmarks obtained from the well known classical job shop
instances by dropping the infinite buffer capacity constraint,
and replacing it by a zero buffer capacity.
We tested our algorithms using the large size benchmarks
proposed by Taillard’s [20]. The different instances arede-
noted by n × m, where n and m represent respectively the
number of jobs and the number of machines.



  

mkdir /tmp/mps /tmp/mps-log

export CUDA_VISIBLE_DEVICES=0    # SELECT GPU 0.

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps            # NAMED PIPES

export CUDA_MPS_LOG_DIRECTORY=/tmp/mps-log            # LOGFILES

nvidia-cuda-mps-control -d                                                             # START THE DAEMON

unset CUDA_VISIBLE_DEVICES

mpirun -x CUDA_MPS_PIPE_DIRECTORY=/tmp/mps -np 35 ./BB

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps    # SELECT THE LOCATION OF MPS DAEMON

echo quit | nvidia-cuda-mps-control   # STOP MPS DAEMON

rm -rf /tmp/mps /tmp/mps-log

Figure 10. Running MPI application using MPS.

The experiments have been carried out using Intel Xeon
E5640 CPU with four CPU-cores, 2.67 GHz clock speed
each and Nvidia Tesla K40 with 2280 cuda cores and 12
GB GDDR5 of global memory. The approach has been
implemented using C-CUDA 7.0. and MPI [21] as a commu-
nication tool between processes. All reported times in this
paper represent the average time to explore 700,000 nodes
for each benchmark. For the 100× 20 benchmark instances
there are 2002 operations, since the GPU hardware limit
is 1024 threads par block, we adapt the PEB approach to
enable each thread to treat 2 operations instead of one which
enables us to treat such big instances.

To find the appropriate number of workers we tested our
proposed approaches (Multi-core CPU and H-PEB) using
different number of workers to explore 700,000 nodes. For
the Multi-core version, the best time is reached for 4 work-
ers. After that, we notice an increase in execution time when
increasing workers number. This can be explained by the
limited number of CPU-cores available in our workstation (4
cores). Therefore, the workers tasks are executed sequentialy
when the workers number is above 4. For the Hybrid H-PEB
version, the best time is reached for 35 workers which is the
maximum supported since the Nvidia MPS support up to 35
connection to the MPS server. This hybrid version supports
large number of workers compared to the Multi-core version
since each worker has less than 15% of his execution time
on the CPU.

Table 2
AVERAGE EXECUTION TIME IN SECOND OF THE PROPOSED

APPROACHES TO EXPLORE 700000 NODES.

Size B&BSeq. B&BMcore B&BPEB HybridPEB speedup

20×20 393 120 736 173 2.3
30×15 1076 375 795 180 6.0
30×20 1127 447 955 209 5.4
50×15 4246 1454 1162 270 15.7
50×20 10546 3728 1530 340 31.0

100×20 69300 19200 3760 741 93.5

Table 2 reports the average execution times of the se-
quential and proposed approaches. The first column (Size)
reports the size of the benchmark instances. Column Seq.
B&B reports the average execution time of an optimized
sequential B&B algorithm. Column B&B

M−core
gives the

execution time obtained by our Master/worker approach
exploiting only the CPU-cores of our workstation using 4
workers. Column HybridPEB reports the average execution
time for exploring 700,000 nodes by sending one node for
evaluation on GPU at each time. Column B&BH−PEB

reports the average execution time of our hybrid CPU-
core/GPU approach using Nvidia MPS i.e both master and
workers accelerate they bounding process on GPU using
PEB model. As mentioned before, 35 workers are used in
this hybrid approach and each one uses the default CUDA
Stream. Finally, column speedup reports the ratio between
the sequential and parallel execution time for the Hybrid
CPU-core/GPU B&B method.

We notice from Table 2 that the complexity and the exe-
cution time increase when increasing the size of instances.
Therefore, the need for parallelization is crucial.

The first result from table 2 is the positive impact of using
parallel architectures to reduce the execution time needed to
solve the BJSS problem.

The improvement obtained with the Multi-core version
is low which is expected since our workstation contains
only four CPU-cores. For the PEB version, we notice a
low performance for small instances against the Multi-core
and sequential approaches. This can be explained by the
high ratio of communication to computing time on the
GPU. By increasing the size of instances, we notice a
significant improvement in execution time as compared with
the sequential and multi-core cases. In addition to efficiency
in reducing the execution time, this approach (PEB) does
not depend on GPU capacity since we use less then 5% of
the GPU resources. Unlike the PEB approach, the hybrid
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Figure 11. the speedup of the proposed approaches.

approach (H − PEB) provides good acceleration even for
small instances. The results of this hybrid approach boost up



the speedup to reach more than 90x as compared with an
optimized sequential B&B method. Also the results confirm
the advantage of using both CPU-core and GPU at the
same time by using concurrent kernels execution provided
by Nvidia MPS.

Figure 11 reports the relative speedup of our proposed
three approaches for solving 100x20 problem instances.
The speedup of our Multi-core version (3 times faster) is
expected since it depends on the number of CPU-cores
available in our workstation. The idea used in the second
approach (node based) to accelerate the bounding on GPU
using several threads organized in one GPU block gave good
results (18 times faster) compared to the multi-core version.
The speedup obtained by our proposed hybridization (H-
PEB) is around 90 times faster. This result confirms the ef-
ficiency and the benefit of using both CPU-cores and GPU at
the same time. This approach is based on concurrent kernels
execution via Nvidia Multi Processes Service (MPS) which
is rarely exploited in scientific computing. The speedup of
the hybrid approach is the result of the occupation of the
GPU over time. i.e. several workers run instructions on the
GPU while others perform data-transfer from/to the GPU
and yet others apply elimination and branching operators on
the CPU.

VI. CONCLUSION

This paper investigates the acceleration of the B&B
method using Multi and Many-core systems in order to solve
the NP-hard Blocking Job Shop Scheduling problem. This
problem represents a version of the classical JSSP with no
intermediate buffer between machines. In this paper, three
approaches have been proposed. The first approach exploits
only the CPU-core of our machine. The second one is
a GPU node based parallelization. Finally, a third one to
increase the GPU occupation by combining the first two
approaches using concurrent Kernels execution provided by
Nvidia MPS. The obtained results confirm the efficiency of
the proposed approaches and the positive impact of using
computing accelerators like GPUs to solve this problem. The
performance of the Multi-core based approach is low since
it depends on the number of available CPU-core which is
limited. The second approach is 18 times faster and does not
depend on the GPU capacity but it underutilizes the GPU
resources. The third approach increases the GPU occupation
which allows us to reach a speedup over 90 times faster for
large instances as compared with an optimized sequential
B&B version. As a future perspective, we plan to explore
heterogeneous architectures like multi-core CPU, coupled
with GPUs and Intel Xeon Phi.
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