
HAL Id: hal-01503968
https://hal.science/hal-01503968

Submitted on 15 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Massively parallel implementation of sparse message
retrieval algorithms in Clustered Clique Networks

Philippe Tigréat, Pierre-Henri Horrein, Vincent Gripon

To cite this version:
Philippe Tigréat, Pierre-Henri Horrein, Vincent Gripon. Massively parallel implementation of sparse
message retrieval algorithms in Clustered Clique Networks. The 2016 International Conference on
High Performance Computing & Simulation (HPCS2016), Jul 2016, Innsbrück, Austria. pp.935 - 939,
�10.1109/HPCSim.2016.7568434�. �hal-01503968�

https://hal.science/hal-01503968
https://hal.archives-ouvertes.fr


Massively Parallel Implementation of Sparse Message Retrieval
Algorithms in Clustered Clique Networks

Philippe Tigréat, Pierre-Henri Horrein, Vincent Gripon
Electronics Department, Telecom Bretagne

Brest, France
Email: {philippe.tigreat, ph.horrein, vincent.gripon}@telecom-bretagne.eu

Abstract—Auto-associative memories are a family of algo-
rithms designed for pattern completion. Many of them are
based on neural networks, as is the case for Clustered Clique
Networks which display competitive pattern retrieval abilities.
A sparse variant of these networks was formerly introduced
which enables further improved performances. Specific pattern
retrieval algorithms have been proposed for this model, such
as the Global-Winners-Take-All and the Global-Losers-Kicked-
Out. We hereby present accelerated implementations of these
strategies on graphical processing units (GPU). These schemes
reach interesting factors of acceleration while preserving the
retrieval performance.

Keywords—Clustered Clique Networks, Parallel processing,
CUDA, GPGPU.

I. INTRODUCTION

Associative memories are a type of computer memories that
are accessed by content instead of address. Hetero-associative
memory link different patterns together by pairs, and when
requested with one pattern they return the associated one.
Auto-associative memories link together the subparts of a
pattern, and perform pattern completion when submitted a
subset of a stored memory element.

Among the latter category are models such as Hopfield [1]
and Willshaw [2]. Both models are based on neural networks.
Hopfield neural networks come with a fully-interconnected
set of neurons, and the connection weights are adapted to
the set of stored messsages so that each message becomes
a local minimum of the network’s energy function. Willshaw
networks differ from this scheme in that their connectivity is
very sparse, and only when two neurons are part of a same
message do they get connected. This characteristic grants Will-
shaw networks with a greater storage capacity than Hopfield,
meaning they allow a better message retrieval success rate on
average for given numbers of neurons and stored messages.

Clustered Clique Networks are another model of associative
memories originally developed by Gripon and Berrou [3]–[6].
They leverage further benefits from sparseness than Willshaw,
as a result of a clustering of the neurons set. Neurons are
parted in equal sized clusters and intra-cluster connections
are prohibited. In the first published version of these net-
works, a stored message is supported by a set of neurons
with one picked in each cluster of the network. This fully-
interconnected pattern is called a clique. Aliabadi et al [7] has
investigated the storage of sparse messages in these networks,
meaning messages composed by neurons located in a subset
of the network’s clusters. This specific case can benefit from
an adaptation of the retrieval procedure used in classic CCNs.

Aboudib et al [8] introduces two such variants of the Winner-
Take-All algorithm. These are the Global Winners-Take-All
(GWsTA) and the Global Losers-Kicked-Out (GLsKO), and
come with a significant improvement in retrieval success rate.

The present work focuses on the acceleration of these
algorithm variants by means of Graphical Processing Units
(GPUs). These chipsets allow the massively parallel compu-
tation of operations on data, and are currently widely used to
accelerate neural network implementations. To achieve this,
one must ensure a sufficient amount of operations to execute
can actually be performed in parallel without altering the
accuracy of the whole computation. The main requirement for
this is the independence of the parallelly processed data. We
aim at making clear here how we adapt the former serial imple-
mentation under this constraint. We use the Compute Unified
Device Architecture (CUDA) which is a coding framework
specifically designed to program GPUs, supported by C/C++.
Yao [9], [10] formerly achieved acceleration of the classic
CCN algorithm using CUDA.

The paper is organized as follows. Section II summarizes
the Clustered Clique Network model and algorithm, and
its adaptation to sparse messages. Section III describes the
strategies we use to adapt the specific retrieval algorithms for
sparse messages on a massively parallel architecture. Section
IV presents the results we achieve in terms of acceleration
and message retrieval performance depending on different
parameters of the network.

II. CCNS

A. Structure

Clustered Clique Networks (CCN) are composed of a set of
N neurons, divided in clusters all containing the same number
of neurons. A connection can be drawn between two of these
neurons only if they belong to different clusters. A memory
element is then supported by a choice of neurons all located
in different clusters. The storage of such a message in the
network consists in connecting all of its neurons together. The
pattern of connections so created is called a clique.

By the separation of the network into clusters, it makes
use of sparseness to a higher extent than former states-of-
the-art like Willshaw networks, thus lessening the amount of
overlapping between stored messages and easing the search of
the unknown elements of patterns to complete. Hence, CCN
display a high storage capacity and the number of messages
they are able to store and retrieve successfully grows quadrat-
ically as a function of the number of neurons in the network.



Figure 1. Example of a sparse Clustered Clique Network with 12 clusters
and messages of order 4.

During retrieval, the commonly used procedure consists in
propagating activation from the neurons of a request through
all their existing connections to other neurons, followed by
a selection of neurons based on the resulting activity scores.
A local Winner-Takes-All rule is generally used to perform
the selection. It consists in keeping active only the neurons
possessing the highest activity score in each cluster. This is
an iterative process, and it is repeated as long as the stopping
criterion is not reached. Activation is computed again with the
selected neurons, and the rule is applied once again.

B. Sparse Messages

Sparse Clustered Clique Networks as introduced by Ali-
abadi et al [7] have the same principle as classic CCNs. The
main difference is that stored messages no longer need to
possess a neuron in every cluster of the network, but only
in a selected subset of the clusters. This characteristic raises
the diversity of messages, that is the total number of different
messages one can store in the network. However, it brings
the added difficulty of not knowing which clusters support the
searched message. The high level of sparsity usually makes
up for this, and the retrieval error rates are much lower in
general as compared to full messages CCNs. Figure 1 shows
an example of such a network.

C. Specific Retrieval Algorithms for Sparse Messages

The retrieval of sparse messages can be performed more
efficiently by using strategies specifically tailored for this case.
These will typically make use of the set of activity scores
observed after stimulation instead of solely focusing on local
winners. Two such strategies can be found in [8] namely the
Global Winners-Take-All and the Global Losers-Kicked-Out.

In Global Winners-Take-All, one wants to retain a number
of neurons equal or superior to a predefined minimum. The
minimal threshold score for a fanal to be retained is adapted
in order to fulfill this requirement. After the first activity
computation step, we iteratively select a number of fanals

which are then used to compute activity for next iteration.
For instance, if after a stimulation of the network, there are
7 activated fanals with scores {2,3,1,4,3,4,4} and we know at
least 4 neurons must be retained, a lower threshold of 3 will
be applied on the scores of neurons to remain active. This way
the 5 neurons with an activity of 3 or more are kept as output
for the ongoing iteration, while the 2 neurons with scores 1
and 2 are discarded.

In Global Losers-Kicked-Out, focus is put on active neurons
with relatively low scores. After the initial activity computa-
tion, the aim is to discard a number of fanals iteratively, instead
of selecting them. Among the non-zero scores observed after
stimulation, a fixed number of lower score values is set so
that neurons with these activity levels are put to zero. In the
previous example, if we know 3 lower score values must be
discarded, this will designate the 4 neurons in the list with
scores {2,1,3,3} and only the 3 neurons with an activity of
4 will remain active. Nonetheless, it has been shown that
banning only the one minimal score in the list gives the best
results.

III. ACCELERATIONS

A. GPU usage

Graphics Processing Units (GPU) are highly parallel pro-
cessors. They are based on a high number of processing units,
which can be used to process data using a Single Instruction
Multiple Data (SIMD) paradigm. In this paradigm, the same
instruction can be applied simultaneously on all elements of a
vector. As a result, GPU can be very efficient when processing
algorithm without data dependency. For example, loops in
which each iteration can be performed regardless of previous
iterations can be very efficiently accelerated. In order to fully
benefit from the GPU, the selection algorithms have been
adapted to follow this paradigm.

B. GWsTA

Global Winners-Take-All aims at retaining a number of
active fanals superior or equal to a predefined minimum. In
order to do this, we compute for each possible score value the
number of fanals that reach it. In practice, scores counts are
first computed in parallel for the different clusters, with one
thread computing the counts for the different scores inside of
one cluster, as shown on Figure 2. In a second step, the scores
counts are accumulated by reduction to get their totals over
the whole network. A number of threads is launched, equal to
half the number of clusters. Each thread sums the vectors of
scores counts of two clusters located in different halves of the
network. The operation is repeated on the new set of counts
lists and so forth, each time halving the number of computed
values until one single list remains with the global sums. A
final thread then runs a loop over the possible score values
in descending order, accumulating scores counts until the sum
equals or exceeds the minimum expected number of active
neurons. As soon as this criterion is met, looping stops and
the last considered score value is kept as the minimum score
for nodes to remain active. A thresholding with binarization
is then applied on nodes activities, with scores above the



Figure 2. Example of the parallel computation of local scores counts in the
different clusters. Each thread computes a vector of the numbers of fanals
possessing the different possible score values in one cluster.

Figure 3. Example of the threshold-binarize operation as performed on GPU.
Non-zero scores below the threshold are put to 0 while those above it are set to
1. Input and output values are in one-to-one relationships, hence computation
can be performed in parallel.

threshold being put to one while other neurons are all at zero.
This operation is performed in parallel, where each thread
computes the output values for one neuron as illustrated by
Figure 3. The resulting set of active fanals is then returned as
output for the current iteration.

C. GLsKO

For our implementation of the Global Losers-Kicked-Out
we set to 1 the number of low scores to be discarded. This is
known to give the best results, and it reduces the complexity
of the algorithm, since we only need to find the minimum
score and discard neurons with this score. Hence we focus on
finding the global minimum among all non-zero scores present
after stimulation. To this end the minimum positive scores
inside of the different clusters are first computed in parallel.

Figure 4. Illustration of the GWsTA procedure after the first iteration of
retrieval. All operations in rectangular boxes are performed on GPU.

A reduction strategy is employed on the resulting set of local
minimums to compute the global one. At every step of the
reduction, each thread compares the minimums obtained for
two clusters, keeping the lowest of the two values. The set of
values is thus halved iteratively to result in a single minimum.
Along with the strictly positive minimum, a global boolean
value is computed indicating the presence of several different
non-zero scores, as described in Figure 5. Here the fact that
several threads modify the output boolean does not alter its
accuracy, as it indicates whether two different non-zero scores
are seen at least once. If this boolean is true at the end of
the reduction procedure, the ThresholdBinarize operation is
applied to compute the iteration output, setting off all nodes
with the non-zero minimum score. Otherwise, only one strictly
positive score is present and all its representatives are kept
active. This case where all stimulated fanals have equal scores
is also a good stopping criterion for the GLsKO.

IV. EXPERIMENTS

Our GPU experiments were performed with an NVIDIA
GeForce 780 Ti, with a frequency of 900MHz and 3GB of
memory. The CPU used is a 3.3GHz Intel Core i7. Each
message is generated randomly by first picking a fixed size
subset of the available clusters, and then choosing one fanal
in each selected cluster. In the retrieval phase, requests are
formed from stored messages by dropping out a fix number
of their nodes.

Figure 7 shows the execution times in seconds for the
retrieval of 500 stored messages as a function of the number
of erasures per queries, in networks with 16 clusters and 32
fanals per cluster. Each message is made of 12 neurons and
the corresponding query is a subsample from the message with
a size going from 11 down to 1.

The execution times are very close at the beginning and
differ when the number of erasures exceeds about half the
message size, due to the different stopping criteria employed.
For higher number of erasures the GLsKO takes more and



Figure 5. Illustration of the operation SeveralScoresPresent performed in
the parallel implementation of GLsKO. This operation is performed in the
same threads as the search of the non-zero minimum by reduction among
local minimums. Each thread compares the minimum scores of two clusters
to assess whether they are different and strictly positive. Several threads may
access and modify the output boolean without affecting the result’s accuracy.

Figure 6. Illustration of the GLsKO procedure after the first iteration of
retrieval. The global minimum non-zero score is computed by reduction, along
with a boolean indicating if several non-zero scores are present. The output is
computed using the parallel ThresholdBinarize operation, excluding the lowest
non-zero score in the latter case.

more time, with a maximum when the request is made of a
single neuron. The stopping criterion used is the equality of
scores of all neurons active after stimulation. The GWsTA
scheme takes less time for higher numbers of erasures. Its
stopping criteria are convergence, i.e. equality between input
and output at a given iteration, and a maximum number of
iterations, hereby 8.

Figure 8 shows the execution time of the two schemes for
networks of 64 clusters of 724 fanals each and 500 stored
messages. Here messages are made of 56 nodes and the
number of erasures applied to create the corresponding queries
varies from 2 to 54. The two schemes make no retrieval error

Figure 7. Execution time of the parallel versions of GWsTA and GLsKO for
the retrieval of 500 sparse messages as a function of the number of erasures
per query, in a network of 16 clusters and 32 fanals per cluster. Messages are
made of 12 nodes and the size of sub-sampled queries goes from 11 nodes
to 1.

Figure 8. Parallel execution times of the two schemes for the retrieval of
500 messages of 56 nodes in a network with 64 clusters and 724 fanals per
cluster. Queries size goes from 54 down to 2.

except for the GLsKO which fails to retrieve one pattern out
of 500 when provided with 2-nodes requests. The number of
iterations is impacted and alters the speed of retrieval.

With 2 erasures the GLsKO scheme takes 0.093573 seconds
to complete retrieval of the whole set of messages, when a
serial implementation of the same algorithm takes 4.74341
seconds running on CPU. This brings an acceleration factor
of 50.69. Parallel and serial versions of the GWsTA use respec-
tively 0.0246 seconds and 4.16881 seconds in the case with 2-
nodes requests, giving an acceleration of 169.319. To be fair, it
has to be stated that our serial and parallel implementations are
not tailored to leverage a high sparseness of the connectivity
graph, which could bring further improvements. To this end,
one would want to represent the set of connections as lists of
indexes instead of a boolean matrix.



V. SUMMARY

We present parallel implementations of two specific strate-
gies for the retrieval of sparse messages in Clustered Clique
Networks. The accelerations we obtain are interesting and
bring prospects for the use of these schemes in real-world
applications, such as machine learning. Future work may
indeed focus on parallel implementations for the retrieval of
sequences in Clustered Clique Networks, with practical trials
on high-scale datasets. Using Clustered Clique Networks in
conjunction with Deep Learning for image classification is
also one of our main directions of research.

ACKNOWLEDGEMENTS

This work was supported by the European Research Council
under Grant ERC-AdG2011 290901 NEUCOD.

The authors would like to thank NVIDIA for providing us
with a free graphics card allowing to speed up computations
for the experiments performed during this work.

REFERENCES

[1] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, 1982, pp. 2554–2558.

[2] D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Non-
holographic associative memory,” Nature, 1969, pp. 960–962.

[3] V. Gripon and C. Berrou, “Sparse neural networks with large learning
diversity,” Neural Networks, IEEE Transactions on, vol. 22, no. 7, 2011,
pp. 1087–1096.

[4] B. Larras, C.Lahuec, M. Arzel, and F. Seguin, “Analog implementation
of encoded neural networks,” In Circuits and Systems (ISCAS), 2013
IEEE International Symposium on, 2013, pp. 1612-1615.

[5] ——, “A simple and efficient way to store many messages using neural
cliques,” Computational Intelligence, Cognitive Algorithms, Mind, and
Brain (CCMB), 2011 IEEE Symposium on, 2011, pp. 1–5.

[6] ——, “Nearly-optimal associative memories based on distributed con-
stant weight codes,” Information Theory and Applications Workshop
(ITA), 2012, pp. 269–273.

[7] B. K. Aliabadi, C. Berrou, and V. Gripon, “Storing sparse messages
in networks of neural cliques,” Proceedings of the national academy of
sciences, vol. 25, no. 5, 2014, pp. 461–482.

[8] A. Aboudib, V. Gripon, and X. Jiang “A study of retrieval algorithms
of sparse messages in networks of neural cliques,” arXiv preprint
arXiv:1308.4506., 2013.

[9] Z. Yao, V. Gripon, and M. Rabbat, “A GPU-based associative memory
using sparse Neural Networks,” High Performance Computing and
Simulation (HPCS), 2014 International Conference on, 2014, pp. 688–
692.

[10] Z. Yao, V. Gripon, and M. Rabbat, “A massively parallel asso-
ciative memory based on sparse neural networks,” arXiv preprint
arXiv:1303.7032., 2013


