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Abstract

In this paper, we look at the possibility to implement the algorithm to
construct a discrete line devised by the first author in cellular automata.
It turns out that such an implementation is feasible.

1 Introduction

In Section 2, we remind the basic features of discrete geometry and, in particular,
the construction of a line in this framework. In Section 3, we remind of the basic
principles of cellular automata. In Section 4, after reminding of the algorithm
to construct a discrete line devised by the first author, see [2], we explain the
guidelines which allow us to implement this algorithm into cellular automata in
the plane. In Section 5, we explain how to transform the scenario of Section 4
into rules which are exhaustively given in the Appendix. Also, in Section 5 we
give a sketchy account of the computer programme devised to construct the
rules and to check their correctness. In section 8, we briefly mention how to go
on in the line open by the paper.

2 Discrete Geometry

In this section, we briefly recall some results of [8] and [2] that we shall need. A
discrete line[8], named D(a, b, µ, ω), is the set of integer points (x, y) verifying
the inequalities µ ≤ ax− by < µ+ ω where a, b, µ, ω are integers. a

b
with b 6= 0

and gcd(a,b)= 1 is the slope of the discrete line, µ is named lower bound and ω

arithmetical thickness. Among the discrete lines we shall distinguish, according
to their topology [8] :

− the naive lines which are 8-connected and for which the thickness ω

verifies ω = max(|a|, |b|),
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− the ∗-connected lines for which the thickness ω verifies max(|a|, |b|) <
ω < |a|+ |b|,

− the discrete lines said standard where ω = |a|+ |b|, this thickness is the
smallest one for which the discrete line is 4-connected,

− the thick lines where ω > |a|+ |b|, they are 4-connected.

y

xx

y

Figure 1 On the left hand side a representation by pixels (each integer point is repre-
sented by a square centered at the point) of a segment of the thick line D(7,−10, 0, 34)
whose equation is 0 ≤ 7x+ 10y < 34, for x ∈ [0, 10], on the right hand side the points
of this line are represented by disks to get a better visualisation of the leaning lines.

Algorithm 1 The algorithm for constructing the discrete line 0 ≤ ax− by < b with
0 ≤ a ≤ b and b > 0.

Input: a, b, characteristics of the discrete line,
n number of points

r := 0; x := 0; y := 0; k := 1;
Plotpoint (x, y);
while k ≤ n do

r := r + a;
x := x + 1;
if r ≥ b
then

y := y + 1;
r := r − b;

endif;
Plotpoint (x, y);
k := k + 1;

endwhile;

Real straight lines ax−by = µ et ax−by = µ+ω−1 are named the leaning
lines of the discrete line D(a, b, µ, ω). An integer point of these lines is named
a leaning point.

The leaning line located above (resp. under) D in the first quadrant (0 ≤ a

and 0 ≤ b) respects the following equation ax−by = µ (resp. ax−by = µ+ω−1),
it is named upper leaning line (resp. lower leaning line) of D, noted dU
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(resp. dL). Let M(xM , yM ) be an integer point, the remainder at the point

M as a function of D(a, b, µ, ω), noted r(M), is defined by:

r(M) = axM − byM

To simplify the writing, we shall suppose hereafter that the slope coeffi-

cients verify 0 ≤ a ≤ b which corresponds to the first octant.

3 Cellular Automata

Devised by Ulam and von Neumann in the late forties, see [10], cellular au-
tomata were studied from various theoretical point of view and were applied in
many different fields as physics, chemistry, biology, economics and psychology.
Cellular automata are shared by several scientific communities, mainly physi-
cists, mathematicians and computer scientists. We shall consider them from
the computer science point of view: for us, they are an algorithmic tool to
solve problems. Theoretical computer science proved the Turing completeness
of cellular automata, which means that they are able to simulate the compu-
tation of any Turing machine or, which is an equivalent formulation, of any
partial recursive function see, for instance [3, 6, 7]. They are also considered
in various abstract settings, see [9, 4, 5]. Accordingly, cellular automata have a
great power of simulation, see [12]. What theoretical computer science tells us
is that cellular automata are more efficient than Turing machines. If the class
of traditional cellular automata working in polynomial time capture the same
algorithms as the corresponding class of Turing machines and no more, things
are different if we consider specific problems and this matters for us. As an
example, the best algorithms to compute the product of two natural numbers
written in binary has a complexity in |n| log |n|, where |n| is the number of digits
in the binary representation of the biggest factor n in the considered product.
With cellular automata, there is a linear algorithm in |n|, see [1]. While the
|n| log |n| result involves non trivial results on Fourier series, the linear algo-
rithm for cellular automata makes use of a very elementary algorithm: the one
which is alike what children learn at school for multiplying numbers with several
digits. Many interesting aspects of the complexity of cellular automata can be
found in [3, 11].

3.1 The computation of a cellular automaton

Cellular automata consists of a set of cells, which is usually called the space of
the automaton. The space must be uniform in the sense that each cell has the
same number of neighbours and that the shape of the neighbourhood around
the cell is the same for all the cells. Each cell is equipped with a copy of the
same finite automaton whose alphabet is called the set of states of the cellular
automaton. The transition table of this automaton defines what we call the
local transition function of the cellular automaton. To each neighbourhood
of a cell, including the sate of the cell itself called the current state of the cell,
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the function associates a state, called the next state of the cell. These names
come from the computation defined for cellular automata as follows. We have
a clock defining a discrete time starting from the initial time usually called 0.
At each top of the clock, each cell changes its current state by taking the new
state defined by the local transition function applied to its neighbourhood.

What we have just described is a deterministic cellular automaton as for
each neighbourhood, the local transition function defines a single new state.

3.2 Neighbourhoods

The space of the automaton is important. Traditionally, the most studied cases
are the line, identified with ZZ, as an integer can be given to each cell which
is called its coordinate, and the Euclidean plane, identified with ZZ2. The
neighbourhood of the cell can be defined in very different ways. For the line, we
shall take what is called the symmetric neighbourhood of radius 1. This means
that the neighbours of the cell with coordinate x, we shall later say the cell x,
are the cells x−1 and x+1. As mentioned above, the neighbourhood of x thus
consists of x−1, x and x+1.

In the Euclidean plane, there are traditionally two kinds of neighbourhoods.
If the coordinate of a cell is (x, y), its von Neumann neighbourhood consists
of the cells (x, y), (x, y+1), (x−1, y), (x, y−1) and (x+1, y). This neighbour-
hood is illustrated by the left-hand side picture of Figure 2. There is another
neighbourhood which is also much used, for instance in the Game of Life, which
is called Moore neighbourhood. Together with the previous neighbours, the
Moore neighbourhood of (x, y) also contains the cells (x−1, y+1), (x−1, y−1),
(x+1, y−1) and (x+1, y+1). In Figure 2, the neighbourhood is illustrated by
the right-hand side picture.

Traditionally, alternative names are also given to the neighbours of a cell (x, y)
in its von-Neumann neighbourhood: (x, y+1) is the northern neighbour, (x−1, y)
is the western one, (x, y−1) is the southern one and (x+1, y) is the eastern

one. These names allow us to not mention the coordinates and we shall use
them. We shall also say that the cell (x, y) sees (x, y+1) through its northern
side, (x−1, y) through its western side, (x, y−1) through its southern side

and (x+1, y) through its eastern side. Note that these notions are the same as
those of 4- and 8-connectedness, see Section 2. More precisely, 4-connectedness
corresponds to von Neumann neighbourhood and 8-connectedness corresponds
to Moore neighbourhood.
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Figure 2 The neighbourhood of a cell in the von Neumann definition.

We can write the transition function by taking the list of the state of the
neighbours, say the cell, north, west, south and east, which means that we
counter-clockwise turn around the cell, and to such a sequence in this order,
define a state. Such a list of these six states is called a rule. Accordingly, the
local transition function can also be represented as a table of rules. We shall
adopt this point of view in the rest of the paper.

A last but not least notion have to be introduced: the notion of configu-
ration which is essential in cellular automata. Formally, it is an application of
the space into the set of states of the automaton. If we apply the local transi-
tion function, we define a new configuration. Going from one configuration to
a new one by applying the rules defines a new function, this time from the set
of configurations into itself which is called the global function of the cellular
automaton.

However, we shall not look at the succession of the configurations in this
way, which is the way mathematicians look at them. We shall devise them one
by one, which is a very different point of view.

3.3 Programming with cellular automata

Contrarily to what might suggest the formal definition of cellular automata,
programming a concrete cellular automata never starts by writing the table of
the rules. Programming with cellular automata is a programming through the
data. We have to initially distribute them in an appropriate way and then look
at how we can change this initial configuration to the final one which represents
the solution of our problem for the instance defined by the initial configuration.

This transformation of the initial configuration into the final one usually
involves many steps and except for very small configurations and for short in-
terval of times, we cannot see all of them in a single glance. We have to split
this path from the initial configuration to the final one into stages, sometimes
into sub-stages and then for these sub-stages, we can imagine the evolution step
by step from the starting point of the sub-stage to its conclusion.

We have to see the states of the cellular automaton as colours, and the
changes on the configurations as a kind of painting. But this painting is mov-

5



ing, it can change parts already painted in one colour into another one. And
in the painting, some part of it can be interpreted as a signal sent from a part
of the data to another one in order to trigger some action. A typical example
is the occurrence of a state somewhere in the data, and we can see that, after
a certain time, a part of the data completely changed their initial colour to
another one. The writing of the table arrives as almost the last point: when
we arrive to these sub-stages where it is possible to see step by step the trans-
formation form a configuration to the next one. Usually, in this step by step
transformation, not all cells change their state at the next step but only a few
of them: this allows us to isolate the rules we need for our table by looking at
the neighbourhood of a cell before it changed and the new state of the state
when it changed. In such an approach, if the problem is not very complex,
and for tiny configurations, this can be done by hand. But when it is the case
to check the validity of the rules by applying them to larger configurations, a
computer program is absolutely needed. There are two reasons for that. First,
as our cellular automaton is deterministic, we have to be sure that the set of
rules does not contain contradictory rules. This means that if two rules give
different next states, they must also be different at least in one of the members
of the neighbourhood, the cell itself belonging to the neighbourhood. Second,
when starting from an initial configuration which correctly implements an in-
stance of our problem, the computation using our table of rules must lead to a
correct implementation of the implementation of the solution. It is important
to indicate here that we assume the initial configuration to be a correct one:
the cellular automaton is devised for them and it does not check whether the
initial configuration is correct or not.

In the next section, we give a simplified version of the scenario. We call it
naive as it clearly separates the various operations which are performed by the
automaton.

4 The scenario of the implementation: a naive

version

From our previous section, we know that our present task is to imagine a se-
quence of configurations, from the very initial one to the final one which, in an
informal sense are key configurations.

They are illustrated by Figures 3 and 25 for the computation of the line
µ ≤ ax− by < µ+b. Figure 3 illustrates the case when µ ≥ 0 and Figure 25
illustrates the case when µ < 0. The corresponding situations are in Sub-
section 4.1 and Sub-section 4.2 respectively.

In each sub-section, we consider a cycle of the computation which consists
in appending a new pixel to the part of the line which is already drawn by
the automaton. Accordingly, the whole work of the automaton is a loop in
which each turn consists in performing such a cycle. In these sub-section, the
first configuration of a cycle is called the starting configuration of the cycle.
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It is characterized by the position of the data with respect to the part of the
line already present. In both Sub-section, the data consists in three segments
which we call rows, the U -row, the V -row and the R-row. Each row consists
of cells in the same state: U , V and R for the U -, V - and R-row respectively.
The number of U ’s and V ’s is the value of a and b respectively in the equation
µ ≤ ax− by < µ+b. The number of R’s is the the value of the parameter which
controls the drawing. At the beginning of the cycle, this value is the result r

yielded by the previous cycle. At a certain point of the current cycle, the number
of R’s will be r + a. The rest of the cycle will be determined by the comparison
of this value with µ+ b. At last, there is a cell in the state W which is the first
element of a structure used by the computation. This cell is placed as both the
eastern neighbour of the last written X and the northern neighbour of the first
element of the U -row.

The three rows are placed one above another in the following order: first,
the U -row, below the V -row and below again, the R-row. The V -row is shifted
with respect to the U -row by a number of cells which is the value of µ: to the
right if µ > 0, to the left if µ < 0. When µ = 0, the V -row is aligned with the
others. Also, the position of the R-row depends on the sign of µ, as well as the
number of R’s of which it consists. We shall see that these dispositions of the
data induces a different working of the automaton at some point of the cycle.

4.1 The case when µ is non-negative

The starting configuration is given by the first picture of Figure 3.
We notice that the R-row is aligned with the U -row, but the number of R’s

in the starting configuration is always at least the value of µ. We also notice
the presence of a W to the east of the last X of the line and to the north of the
first U of the U -row. It is the first element of the future W -column.

In this naive representation, the first step of the cycle consists in moving the
data by one step to the east. To this purpose, the automaton creates the W -
column, see the second picture of Figure 3, which erases the first cell of the U -
and the R-rows and, when µ = 0, the first cell of the V -column. This triggers a
process which we shall later describe which pushes the data by one step to the
east. The colours of the rows are changed: U to U1, V to V 1 and R to R1. In
this process, the last cell of the V -row, at its new place, is marked as V 2. In
the U - and R-rows, the new last element is not marked.

The next step consists in computing r + a. This is obtained by moving a
copy of each cell of the U -row and to append this copy to the eastern end of
the R-row. This copy is a new R. We shall later describe precisely how this is
performed. When the computation is completed, the comparison with µ+ b is
given by the position of the last copied U with respect to V 2. This last R of
the R-row can see V 1 through its northern side, in which case a+r < µ+b, or it
can see V 2, in which case a+r = µ+b or it can see a blank, which means that
a+r > µ+b. In both latter cases, we have to subtract a bloc of b R’s from the
R-row. This is illustrated by Figures 13 to 16. Then, in all situations, we have
to transform the configuration into the starting one of the next cycle. This is
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illustrated by the last pictures of Figures 3 and Figures 17 to 20.

W

U

R

V

X

XX

U1

VBV

U0 UX X

X W

R

Figure 3 Two key configurations: the starting one and the configuration when the
W -column is completed.Note that the second configuration shows a typical phenomenon
of computation with cellular automata: the possibility to simultaneously perform trans-
formations which are independent.

In the following paragraphs, we give the outline of each specific operation
we defined in the above description. A few of them are also used in the case
when µ < 0, so that in Sub-section 4.2, we shall not repeat them.

4.1.1 Shifting the data by one step to the east

As suggested by the second picture of Figure 3, the first action performed by
the automaton is to construct the W -column. As in the case of the U -, V -
and R-rows, it consists of a vertical block of cells in the state after which the
column is called. Note that even when the content of the cell is not W we shall
still say that it is a cell of the W -column.

This structure deletes the first cell of the U - and R-rows, also of the V -row
when µ = 0. This is to materialize a part of the path that has to be followed by
the copies of the cells of the U -row. Each time W erases U , V or B, R or B, it
triggers the process of shifting the corresponding row by one step to the east.

When the process is completed, we obtain the configuration illustrated by
Figure 4. Later, we look how the process goes on each row in a detailed way.
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U1

BV V1 V2

X X

W

R1

X

Figure 4 When all the data have been shifted by one step to the east.

First, consider the case of the V -row in which the process is slightly different.
If W sees B through its eastern side, then it transforms B into BV . This state
goes from one B to the next one until BV can see V through its western side.
Then, BV transforms the first V into CV which afterwards becomes BV : it
will be again B when turn to the next starting configuration will be in process.
Now, as one V was removed, it must be created at the other end of the V -row.
To this purpose, the V which sees CV through its western side becomes V 1
and this state propagates step by step to all the elements of the V -row. When
the last V has changed to V 1, its eastern neighbour B can see V 1 through its
western side. As a consequence, this B becomes V 2. Now, the set of V 1’s
and V 2 has the same length as the initial V -row.

Now, let us look at the U - and R-rows. The shift by one step to the east is
performed in the same way in both cases. The elements of the U - and R-rows
are changed to U1 and to R1 respectively. But this change is not performed in
the same way as with the V -row. The reason is that in this case, we do not mark
the last element because the row must be uniform after the change. We proceed
as follows, considering the U -row. Each U is transformed into U0, which, at the
next time, becomes U1. The propagation is triggered by U0: when U sees U0
through its western side, it becomes U0. The process starts with W : when
the second U sees W through its western side, it becomes U0. The process is
stopped by B: when B sees U0 through its western side, it becomes U0, which
restores the U which was erased by the W -column. When the next B sees U1
through its western side, it remains B, which stops the process.

We can represent these transformations by simple 1D-rules as they happen
on a line. The format of the rules is η0ηgηrη

1

0
, where η0 is the current state of

the cell, η10 is its new state, ηg and ηr are the states of the left- right-hand side
neighbours respectively. In the case of the V -row, we obtain the following rules:

V CV V V1, V V1 V V1, V V1 B V1, B V1 B V2,
V1 V V V1, V1 V B V1, BV V1 V V1, V1 V1 V V1,

V1 V1 V1 V1, V1 V2 B V1, B V2 B B.
The rules of the first row are called transformation rules: the state of

the current cell is changed. These rules perform the transformation. The rules
of the next two rows are called conservative rules as the current state is not
changed by the application of the rule.

For the U -row, the rules are:
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U U0 U U0, U0 U1 U U1, U W U U0, U0 W U U1,
U U0 B U0, U0 U1 B U1

U1 W U0 U1, U1 U1 U0 U1, U1 W U1 U1, U1 U1 U1 U1

U1 U1 B U1, B U0 B U1, B U1 B B

Here, we can see that the first two lines consist of transformation rules and
that the next two lines consist of conservation rules. For the T -row, we have
the same rules as above, replacing U , U0 and U1 by R, R0 and R1 respectively.

Before turning to the next stage of the computation, let us remark that these
transformations performed on the U -, V - and R-rows are performed simulta-
neously. However, they do not start at the same time and, also, they do not
complete at the same time. It is not difficult to see that as long as b > a and
µ ≥ 0, when V 2 appears, the elements of the U -row are all U1 and those of
the R-row are all R1.

4.1.2 Appending a to r

The appearance of V 2 is the end of the shift of the data by one step to the east.
It also triggers the start of the next stage: appending a to r. As indicated at
the beginning of section 4.

The addition is obtained as a sequence of incrementations of the R-row as
many times as the length of the U -row. A copy of each element of the U row is
transported from this elements to the current end of the R-row. We presently
describe this process.

When V 2 appeared, its northern neighbour changes its state from B to C.
This C is a signal sent on the line of the U -row to the eastmost U1 in order to
start the copying process. As C starts its travel step by step to west, V 2 changes
to V 3 in order to produce a signal C. This V 3 allows the whole V -row to wait
the next step raised by the comparison of a+r with µ+b.

When traveling to the U -row, C obeys very simple rules: B B C C, C B B B,
B C B B until U1 is met. Figure 5 illustrates two important configurations:
when C and V 3 are first present and then when C reaches the U -row with the
effect on the U -row.

When U1 is meet by C, it is changed to U2, see Figure 5, and this U2 crosses
the U1’s in the same way as C crossed the blanks. Now, the first U2 turns to U3,
which means that the copy is in process. This U3 does not affect its western
U2 neighbour and is changed to U4 at the next time. Now, when this U2 turns
back to U1, this U1 sees U4 through its eastern side, which means that U1 has
to be copied: it becomes U2, see Figure 6. This new U2 moves again to the west
as the previous one. And so, when it sees U4 through its eastern side, each U1
is changed to U4 in a cycle of three steps: U1 → U2 → U3 → U4. When U4 is
reached, the cell remains in that state until the next stage and the occurrence
of U4 triggers the same cycle for the western neighbour of the cell. Note that
U3 introduces a delay between the copies of the elements. This delay is needed
in order to create new copies of U1’s. Without it, U1’s would make travel a
single U2.
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U1

BV V1 V3

XX

X

C

W

R1

U1

BV V1 V3

XX

X

C

W

R1

U1 U2

BV V1 V3

X X

X W

R1

Figure 5 The appearance of C together with V 3 and the situation when C

reaches the U -row: marking of the rightmost U1 as U2.

When the traveling U2 reaches the W -column, it is transformed into R2:
the corresponding W of the W -column becomes R2 when it sees U2 through its
eastern side. Next, R2 goes down in theW -column in the same way as U2 moved
across the block of U1’s. And so, this R2 arrives as the western neighbour of
the first R1 of the R-row. Now, R2 moves to the east across the R1’s until it
reaches the B’s: when the most western B on the east of the R-row sees R2
through its western side, it changes to R1: the corresponding element of U has
been copied.

This process goes on as long as the most western U4 triggers the transfor-
mation of its western neighbour U1 into U2. When the block of U4 reaches
the last U1, this U1 is directly transformed into U3 in order to signalize the
W -column that it now receives a copy of the last element of the U -row. indeed,
when the corresponding element of the W -column sees U3 through its eastern
side, it becomes R3, see Figure 7. From this time, R3 travels exactly as R2, so
that after a certain time it arrives at a position where it can sees B through the
eastern side. And now, this B-cell knows in which situation we are. We study
this point in the next sub-subsection.
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U1 U1

BV V1 V3

U4U2X X

R1

X W

Figure 6 The marking of the elements of the U -row for copying them.

Consider a copy of U1 which moves to the west through the remaining U1’s
of the U -row. The first one which meets the W -column transforms it into R1’s.
In order to keep track of the copy, W is first transformed into R2 which then
turns to R1. Now, R2 travels through W ’s and R1’s as C through the blanks.
Simply, it goes to the south or to the east. The next U2’s which meet the W -
column first fall across R1 which is thus transformed into R2 in order to convey
the copy further, this very cell becoming R1 back at the next time.

BV V1 V3

U4X X

R1

R3

R2 R2

X

R1

W

Figure 7 When all U ’s has been transformed into U4, R3 starts its travel to

the end of the R1’s.

When U3 meets the W -column, R1 is then transformed into R3 which be-
haves on the path of R1’s as R2.

When R3 arrives as a western neighbour of a B, this means that a+r is
materialized and the comparison with µ+b can take place.

4.1.3 Comparison with µ+b and subsequent actions

Indeed, when B sees R3 through its western side, the state of its northern
neighbour indicates him whether a+r < µ+b, a+r = µ+b or a+r > µ+b. In
the first case, the northern neighbour is V 1, in the second case it is V 3 and, in
the third one, it is B. Then the blank cell becomes RR, Z or R respectively.
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U4

BV V1 V3

X X

X

R3R1

W

U4

V1 V3BV

X X

WX

R1 R3

U4

BV V1 V3

X X

WX

R1 R3

Figure 8 Here, R3 arrives at the blank. The figure represents all the possible

cases, depending on what is seen by the eastern neighbour B of R3 through its

northern side. First row: B sees V 1, hence a+r < µ+b. Second row: B sees the

blank, hence a+r > µ+b. Third row: B sees V 3, hence a+r = µ+b. Of course,

this concerns different cycles.

Figures 8 illustrates the three cases. We successively consider in each case
what is the transformation from this situation to the next starting configuration.

First, we consider the case when a+r < µ+b as, in this case, it is not needed
to subtract b from the result of the computation of a+r.

4.1.4 The case a+r < µ+b

And so in this case, the new data is correct. We have simply to erase the
marks in order to get true U -, V - and R-rows. The first idea would be that
RR dispatches the transformation of V 1 back to V and the of U4 to U by
contamination. And then the signal sent from RR would reach the bottom of
the former W -column, a signal would go up in order to place the new X at
the right place and a new cycle could start. But this propagation process could
be long if b is very big, so that a new cycle could start before the complete
restoration of all U ’s and V ’s. In order to avoid such a situation, RR triggers a
signal to the right which will circumscribe the configuration by looking at the
end of the V -row, then go back to the U -row and inspect it from the just above
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row, so that the switch to the next cycle will be obtained when the initial U4 of
the U -row sees the signal coming from this circumscribing motion through its
northern side.

BV V3VV1

U4X X

WX

R1 RF FRR

Figure 9 The signal RF arrives to the cell before V 3: this creates F in the

south of V 3 and V in its west.

In full details, RR propagates to the left, transforming each R1 into RR.
It also propagates to the right, transforming each blank into RF until V 3 is
seen through the northern side. When this happens, the blank cell becomes F .
Now, the cell V 1 which can see V 3 also sees RF through its southern side:
this triggers the transformation of V 1 back to V , see Figure 9. And this sit-
uation is now repeated for each cell V 1 which sees V trough its eastern side
and either RF or RR through its southern side. This also transforms BV back
to B. Note that when V was transformed into V 1 and B to BV , their possible
southern neighbours were R and B. But this transformation of V 1 back to V

also transforms RF back to the blank and RR back to R: it is enough that the
considered RF - or R-cell sees V through its northern side. At the same time,
V also triggers the transformation of U4 into U . when U4 sees V through its
southern side and U4 through its western side, it becomes U . Accordingly, the
first cell of the U -row of the new data is still in state U4.

Indeed, when the blank cell which is the southern neighbours of V 3 sees RF

through its western side, it becomes F which is the signal of the termination
of the computation for this cycle. Now the automaton enters the last stage
of the cycle: it removes all marks. We have seen how the turn to a starting
configuration is triggered in the V -, R- and U -rows. As the length of these rows
may be very different, it is important to create a synchronization point so that
when the new cycle starts there is no part of the data in the letters of another
stage: this would ruin the computation. The synchronization is obtained by a
signal which will be issued from V 3 which circumscribe the data and by the
first U of the U -row: this latter cell which is in U4 at the moment we consider
remains in this state as long as it does not see the signal as FF through its
northern side.

In details this happens as follows: when V 3 sees F through its southern side,
it becomes V F . At the next time, its northern blank neighbour becomes UF

and at the following time, the northern blank neighbour of UF becomes FF ,
see Figure 10. We can see that FF is on a line which is just above the U -row.
After its creation, FF moves on this line to the west, by one step at each time.
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U4

BV V1

FF

X X

X

RRR

W

R1

V

Figure 10 The signal FF is created. It will travel to the W which stands on

the line above the U -row. Note that the transformation of V 1 back to V already

started and that the transformation of R1 into RR is almost completed.

During this time, the transformation of RF to B and then of RR to R

arrives at the W -column. Note that before, RR has transformed the R1-states
of the R-row into RR. When this propagation of RR to the west reaches the
W -column, the W on the line of the R-row sees RR through its eastern side.
At this time, it becomes W1. Now, when W1 sees R through its eastern side,
it remains W1. But, the propagation of V ’s and then of possible B’s on the
V -row is ahead the propagation of R’s by just one step. And so, when the W on
the V -row sees B through its eastern side, it becomes W1. At this moment we
have two W1’s one as the northern neighbour of the other. At the next time,
the southern W1 vanishes, turning to B. But the northern W1 contaminates
its northern neighbour which turns from W to W1. So that we have again this
configuration of two consecutive cells in W1 on the W -column. And so, the
southern W1 again vanishes, turning to B. However, the northern W1 which
is on the U -row is now the western neighbour of U4. This presence of U4, still
waiting for FF , keeps the western neighbour in the state W1, see Figure 11.

FF

U4 UX X

W

W1

R

X

V

Figure 11 Now, the signal FF arrives on the north of U4. This is the signal of
the very last steps of the current cycle. The second next step will be the starting

configuration of the new cycle, see Figure 12.

At last, when U4 sees FF through its northern side, it becomes U . Now,
from the starting configuration, the northern neighbour of W1 is in the state W
and its eastern neighbour is FF : from this situation, this W knows that the
restoration of the data is completed and so it turns to X , appending the new
pixel to those which are already constructed. But the next time, we have the
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first W of the new W -column triggered by the new configuration and W1 van-
ishes, turning to B, as it sees X through its northern side.

Note that this evolution of the computation explains why we take as starting
configuration the configuration where there is aW seeing both the last writtenX

and the first U of the U -row, see Figure 12.

UX X

WX

R

X

V

Figure 12 The starting configuration of the new cycle. Note that it is very

similar to the starting configuration of Figure 3.

4.1.5 The case a+r ≥ µ+b

When a+r ≥ µ+b, the automaton works in the same way in the case when
a+r = µ+b as well as in the case when a+r > µ+b. The starting is different as
different cells are involved in the detection of the situation.

The case when a+r > µ+b.

We know that in this case, the blank which sees R3 for the first time through
its western side becomes R. Now, this R propagates to the left, until V 3 is seen.
As the R-row consists of cells in R1 except the last one which is R, each R1
which sees R through is eastern side and, at the same time, the blank through its
northern side becomes R. Now, the cell R1 which seesR through the eastern side
but, at the same time, sees V 3 through the northern one, this cell becomes Z.
It is now plain that the number of R’s on the right hand side is a+r−b which
is less than b.
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BV V1 V3

U4X X

X

R1

W

R

BV V1 V3

U4X X

X

R1

W

RZ

Figure 13 Case a+ r > µ+ b. Above: the first R after R3 is written. Below,

here, two steps later, the southern neighbour of V3 has seen R through its eastern

side, so it became Z.

BV V1

U4

G

X X

X

R1

W

RZR0Z

BV V1

U4

G0V

X X

ZR0Z R0

X

R1

W

Figure 14 Case a+ r > µ+ b. Above: V3 was just changed to G. Below: next

step, G is changed to G0 while the R’s to the right-hand side of Z are changed

to ZR0.

Now, we have to erase the R1’s which are on the left-hand side of the left-
most Z and to keep the number of those which are to its right-hand side. This
problem is solved as follows: Z moves to the left, erasing the R1’s as long as
the concerned R1’s see V 1 or V through their northern side: these R1’s are
one by one transformed into Z. But, at the same time, Z drags to the left the
block of R’s which stand on its right-hand side. To do this, Z sends a copy of
itself to the right: when R is met, it changes to R0. From the position of the
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leftmost Z to the first blank on its right-hand side, each cell has the follow-
ing cycle of transformations: Z → R0 → Z. The cycle starts with the change
R → Z, and it stops when a transformation R0 → B happens. In fact, when
R sees Z through its western side and, at the same time it sees R through the
eastern side, it becomes Z, and the just mentioned cycle starts. Now, when R

sees Z through the western side and the blank through the eastern side, then
R becomes blank, and the cycle stops. When all R’s have been turned to R0
by this transformation of Z, the end of the R-row is a word of the form (ZR0)ρ

where ρ is the new value of r. This word moves to the left by one step at each
time, see Figure 14.

During this process, G0 remains unchanged as long as it can see R0 or Z

through its southern side. Now, as soon as it sees B, this means that there is
no more copy of the pattern ZR0 on the right-hand side of the B seen by G0.
As a consequence, we can start the process which will allow to move the data
by one step upward.

BV V1

U4

G0V

X X

ZR0Z R0

X

R1

W

BV V1

U4

GGV

X X

ZR0Z R0

X

R1

W

Figure 15 Case a+r > µ+b. Above: the last step when G0 is present. Below:

next step, G0 is changed to GG; there are only blanks to the right-hand side of

the rightmost R0.

Note that during this process, V 1’s are turned to V . This is made possible
by the fact that V 1 seeing V through its eastern and Z through its southern
side becomes V . Now, as V sees Z, R or R0 when it is to the right-hand side
of the leftmost V , these V ’s are stable.

18



G1

BV V1

U4

V

X X

ZR0Z R0

X

R1

W

BV

U4

V

U

1

X X

R0ZR0Z0

X

R1

W

Figure 16 Case a + r > µ + b. Above: GG disappeared, leaving V on its

place and triggering the transformation of its northern neighbour from B to G1.
Below: the first appearance of 1 which is one of the signals used for lifting the

data by one step upward.

When the southern neighbour of the rightmost BV can see Z through its
eastern side, it becomes Z0. This change to Z0 sends a signal to the right by
the successive transformation of R0 into R. By the constant shift to the west
of the R0’s and the transformation of the leftmost R0 into R by seeing the
rightmost R through its western side, all R0’s are transformed into R and, at
the same time, the new block of R’s moves by one step to the west at each
time. The result is that, at some point, Z0 can see the bottom of the W -column
through its western side. During this time, the occurrence of Z0 allows the
cellular automaton to transform the BV ’s back to B. These two processes are
a bit squeezed in Figure 17 but a careful comparison of the configurations in
Figures 16 and 17 shows that things happen as just described above. Now, when
the bottom of the W -column sees Z0 through its eastern side, it becomes W1.
This W1 goes up along the column, transforming the W ’s to B’s until W1
can see U4 through its eastern side. Then, W1 stops at this place until U4
disappears, a certain time later, see Figure 19.

In the meanwhile, at the other end of the data, things are turning to the
process which raises the data by one step upward.

Remember that G0 remained unchanged until it can see B through its south-
ern side. This happens when the migration of the block of (ZR0)ρ arrives to
such a situation. Then, G0 becomes GG, see Figure 15. At the next step, the
northern neighbour of GG turns from B to G1 and GG itself changes to V . The
transformation of the V 1’s and V 3 to V ’s is completed in this part of the V -row
while, at the other end, the progressive transformation of V 1 to V is still going
on, triggered by the leftmost Z, as already noticed.

Then, the northern neighbour of G1 turns from B to 1, see Figure 16.
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1

BV

U4

V

2UX X

Z0Z0Z0 R0

X W

R

2

1

2U4

V

U VX X

Z0Z0

X W

W1 R

Figure 17 Case a+ r > µ+ b. The mechanism of lifting the data by one step

upward.

Above: 1 already moved to the west to prepare the lifting of the next symbol;

to the south of the previous place of 1, 2 appears. Below: again 1 moved to the

west by one step; again, the southern neighbour of its previous position became 2;
the previous 2 performed the lifting of V looking now for a possible final lifting

of R or B.

This 1 triggers the mechanism of raising the whole set of data by one step
upward. Note that 1 is on the row which is just above the U -row. The mech-
anism is as follows: 1 moves by one step to the left and, on its former place,
it copies the state it sees through its southern side and, at the same time, it
transforms its southern neighbour into 2. Note that, by the construction itself,
2 necessarily sees V through its southern side. Now, 2 does the half what 1 does:
it does not move, neither to the left or to the right, but it copies what it sees
through its southern side and it transforms its southern neighbour to 2 if this
neighbour is neither B nor R or if its northern neighbour is U . This means that
the blank can be moved by one step upward once and that, afterwards, it stops
and erases state 2. This also means that when the southern neighbour of 2 is R,
2 raises this R but do not make it replaced by 2.

As 1 moves to the west, this means that step by step, the configuration is
raised by one step upward, with a delay of two steps for the R-row. Because of
this delay, when W sees 1 through its eastern side, W becomes WW which in
its turn becomes W3. After this delay, the last R has been raised, see Figure 19.
And so, W1 seeing 2 through its eastern side vanishes and W3 turns to B. Now,
the occurrence of W3 triggers the writing of the next pixel X at the right place,
i.e. the cell of its northern neighbour, see Figure 20. Consequently, the next
configuration is the starting configuration of the next cycle of computation, see
Figure 20 again.

20



2

1

2

U4 U V

V

X X

W1

X W

R

1

2

2

U4 V

U

R

X X W1

X W

R

Figure 18 Case a+ r > µ+ b. The mechanism of lifting the data by one step

upward.

Above: this time, the R- and V -rows are restored; in the U -row, except the

leftmost U4, all others have been turned to U . We can see the disposition of 1
and 2’s for moving the data by one step upward. Below: the signal 1 arrives at

its last point, it disappears at the next step, see Figure 19; the R-row is being to

be moved upward; this is performed for the V -row and for all cells of the U -row,

except the first element, still in U4.

2

2 V

U

R

X X W1

X

R

WW

2

V

U

R

X X

X

R

W3

Figure 19 Case a+ r > µ+ b. The end of the process.

Above: U4 has now been turned to U ; two ’s have still to be lifted. This will

be performed for the right-hand one at the next step and for the last one the

second step after the present one. Below: W1 disappeared and WW has been

changed to W3. The last R remains to be lifted.
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V

U

R

X

X

X

X

V

U

R

X

X

X

W

X

Figure 20 Case a+ r > µ+ b. The turn to the starting configuration of a new

cycle.

Above: this time, the new data is at the right place and the new pixel has

been written. Below: The next step: it is the first step of the new cycle.

The case when a+r = µ+b.

Remember that this situation is detected by the fact that the blank which
is the southern neighbour of V 3 sees R3 through its western side. Then this
blank cell becomes Z. The action to the left of Z is the same as previously: the
cells which are on the left-hand side of Z cannot see what is on the right-hand
side of Z. Similarly, this is the same for the cells which are exactly on a row
above Z. From the rules for the case when a+r > µ+b, we conclude that this Z
moves to the west by one step. Now, in the case when a+r > µ+b, at that time,
the southern neighbour of G is R1 or R. Here, it is B. This is why this B

becomes Z, providing us with the pattern of two consecutive Z, see Figure 21.
This patterns reduces the handling of the right-hand side of Z to nothing has
there are only blank cells. Now, on the left-hand side, the leftmost Z behaves
as previously, both for the R- and the V -rows. The second Z has simply to
follow the first one by a similar motion to the west by one step at each time.
In the meanwhile, as we had the change directly from G to GG, the evolution
on this side of the configuration is the same as in the case when a+r > µ+b. In
particular, signals 1 and 2 appear in order to lift the data by one step upward,
see Figure 22.

The block ZZ goes on to the west until it reaches the area where the BV ’s
are. When Z can see BV through its northern side, it becomes Z0 which triggers
the transformation of BV to B as in the case when a+r > µ+b, see Figures 22
and 23. In Figure 23, the leftmost Z0 can see the bottom of the W -column
through its western side. At this moment, almost all BV ’s are turned to B and
almost all needed R’s have been restored. Starting from the next configuration,
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see Figure 24, the rules of the case when a+r > µ+b allow the automaton to
complete the computation.

U4

BV V1 G

X X

WX

R1 Z

U4

BV V1 V GG

X X

Z

WX

R1

Figure 21 Case a+r = µ+b. Initialization of the ZZ pattern which clears the

remainder.

Above: this configuration is the one which occurs at the time just after the

one illustrated by Figure 8. Below: the next step: ZZ moved by one step to the

west; note that V 3 has changed to G and that G has directly changed to GG.

2

1

2

U4

BV

V

VV1

X X

Z

WX

R1

1

2

2

U4

BV V

U VX X

WX

R1 Z0 Z

Figure 22 Case a+r = µ+b. When the ZZ pattern arrives at its destination.

Above: the pattern reaches the BV area. Below: the next step: occurrence

of Z0.
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U4
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VUX X

WX

Z0 Z0

1

2

2

U4

V

U V

R

X X

WX

Z0W1

Figure 23 Case a+r = µ+b. The Z0Z0 pattern arrives at its destination.

Above: The first BV has just been just changed to B. The V - and the U -rows

are being to be lifted. Below: One Z0 disappears, corresponding to the change

of the bottommost W to W0. Note that the R-row below the blank is starting to

be restored.

1

2

2

U4

V

R

U V

U

X X

WX

W1

Figure 24 Case a+r = µ+b. Starting from this configuration, the rules of the

case a+r > µ+b allow the automaton to complete the computation.

4.2 The case when µ < 0

In the case when µ < 0, we try to keep to the previous scenario as much as
possible. In order to do this, we change the implementation of the data. This
new display is illustrated in Figure 25. In the new display, first, the vertical v
of the left-hand side border of the V -row coincide with the vertical line χ which
passes through the right-hand side of the rightmost X , which is the most recent
written pixel of the discrete line. Second, the vertical u of the left-hand side
border of the U -row is obtained by shifting v to the east by |µ| squares, see
Figure 25.

In this situation, the construction of the W -column is a bit different than in
the case when µ >= 0. Indeed, when µ < 0, the W which is still created as the
eastern neighbour of the ultimate X has the blank as its southern neighbour.
This makes it possible that there is no R-row in the case when r = 0. In this
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situation, the erasing of the leftmost R by W makes no difference with the
writing of W on a blank cell. And so we decide to mark the situation when
r = 1 by the writing of WR instead of W . Indeed, the southern neighbour
of the W which is just written on the V -row knows whether r = 0, r = 1 or
r ≥ 2. If its blank or of its has an R as its eastern neighbour, it may be replaced
by W , as W will distinguish between the case r = 0 and r ≥ 2. If the southern
neighbour of W is an R, this R knows whether it is alone or not: this is why it
can select WR or W respectively.

U

V

W

R

X

X

X

Figure 25 Case µ < 0, the initial data in a starting configuration. Here, a = 4,
b = 7, r = 1 and µ =−2.

Another difference consists in the making of the U - and the V -rows respec-
tively. Here, the situation is somehow symmetric to the one we had in the study
of the case when µ ≥ 0. In particular, the marking of the zones of U ’s and V ’s is
the same, but as the blank occurs on the U -row, we have that BV and CV are
replaced by BU and CU respectively. We also have that the copies of elements
of the U -row crosses a blank zone, which raises no problem. The new situation
is illustrated by Figure 26. We can see that when the elements to be copied
reaches the BU -area, it crosses it as R2. When it reaches the W -column, the
rules for the case when µ ≥ 0 apply and allow to perform what is needed in the
R-row.

With this point, we can see that afterwards, the motion is like the case
when µ ≥ 0. In particular, the comparison of a+r with µ+b makes use of the
same rules as previously. From the display of the data, we compare a+r with b

directly, as the R-row is aligned with the V -row. And so the three possible cases
are exactly determined in the same way as previously as from the level of the
R-row, any cell can see what happens on the level of the V -row only.

Note that in the case when the right-hand side limit of the U -row would be
to the east of the eastmost element of the V -row, this induces a small change in
the scenario. Instead of going upwards along of the column of V 3, the various
signals which are triggered by V 3 would go to the east on the V -row, until they
can see the eastmost element of the U -row and there, they would again behave
as in the case when µ ≥ 0. However, there are two points where some tuning
is needed. In the case when the eastmost U lies further to the east than the
eastmost V , the final signal, FF or 1 would trigger the transformation of U4
to U . Some care has to be observed when this signal arrives at the column
of V 3 in order that going further to the west, things happen as they do in the
case when µ ≥ 0. This can be performed by additional rules and the situation
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is clearly determined by the fact that the northern neighbour of V 3 is U4.

W

BU U1 U2 U4U2

R1

V1 V3

X

X

X

W

BU U2 U4U1

R1

V1

U3R2

V3

X

X

X

W

R1

V1

R2 BU U2 U1 U4

V3

X

X

X

W

R1

V1

U4R2 BU R2 U1 U2

V3

X

X

X

Figure 26 Case µ < 0: copying the elements of the U-row. Here, the copies through
the BU-area.

The second point we have to look at is the case when a+r < b, regardless of
the respective position of the eastmost U and the eastmost V . Due to the fact
that we have BU ’s between the W -column and the westmost U , the step when
the cycle of computation has to turn to a new cycle must be somehow different.

As illustrated by Figure 27, the scenario is the following. In the final part
of the cycle of computations when a+r < b, the westmost element of the U -row
is still in the state U4, waiting for the signal FF in order to be changed to U .
When FF arrives as the northern neighbour of U4, FF goes on to the west, but
U4 becomes U2: this is to prevent a transformation of the new U into CV as BU

has not yet been changed. Then, when FF is the northern neighbour of BU ,
this BU is changed to B0 and U2 turns to U as V is a southern neighbour of U2.
Later, FF and B0 go by one step to the west, the column of FF begin ahead
of that of B0 by one step: B0 leaves a blank in the cell it previously occupied.
This motion goes on until FF can see W through its western side. Then, B0
still advances by one step and FF becomes B0 and as W can see FF through
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its eastern side, it becomes X . Thus, we have a small column of B0 against
what remains of the W -column. At the next step, both B0 vanish, leaving a
blank in their places: this configuration is the last one of the cycle: at the next
step, we have the starting configuration of the new cycle.

W

BU

V

R

W1 UU4

FF

X

X

X

W

BU

V

R

W1 UU2

FF

X

X

X

W

BU

V

R

W1

FF

UB0X

X

X

V

R

W1

B0

UB0X

X X

X

V

R

UX

X X

X

Figure 27 Case µ < 0: the end of the cycle of computations when a+r < b. The
next step after the lower picture is the first step of a new cycle of computations.

We conclude this study of the case when µ < 0 by the following important
remark. All illustrations of this section,from Figure 25 to Figure 27 are per-
formed under the assumption that the eastmost element of the U -row is in the
column which is not to the east of the column of the eastmost element of the
V -row. This is the case in the situation when µ ≥ 0 as we assume that a ≤ b.

27



Now, here, if we number by 0 the column of the W -column, the place of the
eastmost element of U after the shift by one step to the east is |µ|+a which
may be bigger than b, the number of the column of the eastmost element of the
V -row. However, as we may assume that |µ| < b, the westmost element of the
U -row sees a V through its southern neighbour. In this case, we have to change
a bit the strategy. If the automaton realizes that |µ|+a > b, it will change the
mark of the eastmost element of the V -row which will be V 4 instead of V 2.
The end of the configuration will be determined by the eastmost element of the
U -row.

The changes are the following. First, the copying of the U -row is triggered
later: V 2 cannot issue C on the line of the U -row, so that it issues it on the V -
row. The signal C moves on this line to the east, as long as it sees U through its
northern side. When its blank eastern neighbour sees also a blank through its
northern neighbour, it becomes C and, at the next time, this northern neighbour
also becomes C leaving a mark H0 on the line of the V -row. Now, as C is now
on the U -row and as it sees the eastmost element of the U -row, the standard
scenario can take place.

During the second and the third stage, V 4 allows to perform the comparison
of a+r with b. If a+r < b, the coloration with RF will go until H0 is seen, so
that what happened before with G0 will happen with H0. If a+r ≥ b, again the
colorations described in the present sub-section can take place with H0 playing
the role of G0. Also, the lifting of the data can be performed by signals 1 and 2
as described previously.

4.3 For all the cases

It is not very difficult to adapt the above scenario when a and b do not satisfy
the condition 0 < a ≤ b, with b > 0.

First, let us assume that both a and b are non-negative integers. We have
just to see what to do when a > b. In this condition, we are in the other
half of the quarter of the plane defined by the condition x ≥ 0 and y ≥ 0.
Now, it is not difficult to see that if we exchange x and y, a discrete line below
the first diagonal line is transformed into a discrete line above the diagonal.
However, it is not enough to perform a reflection in the first diagonal line which
means exchanging the role of a and b. We have to also change the value of µ.
We have to remember that in full generality, the equation of a näıve discrete
line is of the form µ ≤ ax − by < µ + max{|a|, |b|}. If we exchange x and y

we get µ ≤ ay − bx < µ + max{|a|, |b|}, which means, changing the signs:
−µ−max{|a|, |b|} < bx − ay ≤ −µ. In order to get the same form, using that
the inequalities apply to integers: −µ−max{|a|, |b|}+ 1 ≤ bx− ay < −µ+ 1.
Accordingly, if we exchange the role of x and y, we have also to replace µ by
−µ+ 1.

This means that we apply the reflection in the first diagonal to the data too
and that we take into account the change for µ. And so, the data are placed in
columns along the y-axis and the construction of the line is still performed by
advancing northwards or eastwards as previously, but the meaning is opposite:
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we go upwards when bx− ay < r and we go to the east in the other cases. Note
that the data are now to west of the line instead of being to their eastern side.

From this, it is easy to perform the construction in the other quarters. As
the linear form occurring in the inequation is always ax − by, the sign of the
coefficients defines the quarter of the plane where the line has to be constructed.
Next, in the appropriate quarter, the comparison between |a| and |b| defines
which is the place of the line with respect to the bisector of the angle defined by
the quarter. More details about this implementation will be given in Section 5.

Now we have all the information needed for the construction of the rules.

5 The rules

Remember that the form of the rules is defined by the diagram illustrated by the
left-hand side picture of Figure 2. We shall represent the rules of the automaton
in the following format:

η0η1η2η3η4η
1

0

where η0 is the current state of the cell, ηi, i ∈ {1..4} the states of the cells
and η10 the new state of the cell. Remember that this numbering of the neigh-
bours is given to the cells in increasing numbers while counter-clockwise turning
around the cell, 1 being the number of the northern neighbour. Accordingly,
the correspondence can be given by the following diagram:

η1 η2 η3 η4

north west south east

5.1 General conditions

In order to define the rules, we start from the configurations indicated in Sec-
tion 4. Our first observation is that we have two kinds of rules: the conserva-

tive ones and the active ones. A conservative rule is a rule in which the new
state of the cell is the same as the current one. An active rule is the opposite:
the new state is different from the current one. This remark is important: the
active rules are derived from the propagation of the various signals described
in the scenario and the conservative ones are needed for keeping a part of the
configuration unchanged as long as it is needed.

Another point which we have to take into account is that the scenario in-
volves situations which induces a lot of rules due to the discrete nature of the
cellular automaton. It is not possible to describe here all the rules induced by
these particular cases. In fact, the particular cases can be described by a few
parameters. We have four parameters which determine the initial configuration:
a,b, r and µ. What we shall call the general case and for which we shall see
the rules in this section, are the initial configurations in which a, b, r, µ, as
well as |a−b|, |a−r|, |a−|µ||, |b−r|, |b−|µ|| and |r−|µ|| are large. In practice,
this means that the particular cases are defined by the configurations when at
least one of these parameters are less than 4. When the other parameters are
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at least 4, the rules are the same for all cases defined by a fixed value of the
considered parameter. As will be clear from the figures of Section 4, the rules
needed for the particular cases introduce shortcuts leading from one phase of
the cycle to the next one. An example is given by the figures of Section 4 where,
for instance, |µ| = 2, a particular case. As an example, the situation concerning
the BV - or BU -areas at the beginning of the area and the situation concerning
the end of the area address consecutive steps in the computation: any rule re-
garding a cell of the area implies a neighbouring cell which does not belong to
the area. And so, there are specific rules accordingly.

Now, during the construction of the rules, as our automaton is deterministic,
we have to always check the following condition: if two rules η0η1η2η3η4η

1

0
and

ω0ω1ω2ω3ω4ω
1

0
satisfy ηi = ωi when i ∈ {0..4}, then η1

0
= ω1

0
. If this condition

is satisfied for all pairs of rules, we say that the rules are compatible. If the
condition is not satisfied by a pair of rules ρ1 and ρ2, we say that ρ1 and ρ2 are
incompatible or that ρi is in contradiction with ρj , where {i, j} = {1, 2}.

According to the scenario, we first derive the rules for moving the data by
one state to the right.

5.1.1 Conservative rules

We start with the conservative rules, as most of the configuration remains un-
changed during the first steps of the computation.

Remember that the rule for the blank, namely B B B B B B is a conservative
rule. We have another group of conservative rules linked to the state X : once
it is written, it is never replaced by another state. We say that X is a non-

erasing state. For such a state we write a meta-rule which allows to gather
several rules under the same pattern: X η1 η2 η3 η4 X.

We can distinguish several groups of conservative rules: the blank cells which
are a neighbour of the data. Here too, we can devise meta-rules for two groups
of blank cells: those which are to the west of the configuration and those which
are to its south. Indeed, from the scenario, assuming 0 < a ≤ b, we know
that the configuration moves to the east or to the north, never in the other
directions. The corresponding meta-rules are: B B B B η B, B η B B B B and
B ηa B B ηb B. However, the other neighbours of the data are also unchanged,
except the cell which sees X through its western side. Accordingly, we also have
the following meta-rules: B B η B B B, when η ∈ {U, V,R} and B B B η B B

when η ∈ {U, V,R,X}. Now, due to the relative positions of the U -, V -
and R-rows and the position of the U -row with respect to X , we have other
conservative-rules. We have B B B X X B and B X X B B B, as the neighbours of
the discrete line are unchanged, except the already mentioned situation. Be-
sides almost blank neighbours of the data, the cells of the data are also applied
conservative rules, as long as the signals of the computation did not reach them.
Consequently, we have the following conservative rules with U -, V - and R-cells:
U B U V U U as a ≤ b when µ ≥ 0. Note that when a = 1, we have U B B V B U,
an example of a conservative rule in a particular case.
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5.1.2 Active rules: general principles

If we look at the scenario, many motions are linear: a few symbols are moving
on a row or a column, always in the same direction as long as this motion is
needed during the stage of the cycle in which it occurs. For such a motion,
remember what we did in Sub-subsection 4.1.1, were we have written the cor-
responding 1D-rules. As an example, consider a motion on a row. Then, if
the motion goes to the east, for instance, we can write η0η2η4η

1

0
. As an ex-

ample, consider R2 moving on a row of R1’s. We have two motion 1D-rules:
R1R2R1R2, R2R1R1R1 and the conservative 1D-rule: R1R1R2R1 which
says that the R1 which sees R2 going away remains R1. These rules are written
R1 η1R2 η3R1R2 R2 η1 R1 η3R1R1 and R1 η1R1 η3 R2R1. From the initial
configuration, we know that η3 is always B. Now, η1, which is the state seen
by the cell through its northern side, may take a priori a lot of values: B, BV ,
CV , V , V 1, V 2 or V 3. In fact, if we carefully the scenario, when R2 crosses a
row of R1’s, the U is progressively transformed in a row of U4’s and all V ’s of
the V -row are transformed into V 1 and there is an additional V 3 at the eastern
end of the V -row. Accordingly, η1 = BV , η1 = V 1, η1 = V 3 and η1 = B are
possible and only them.

Another situation is the coloration of an interval on a row or a column.
This coloration consists in replacing one colour by another, step by step, from
one end of the interval to the other. As an example, take the coloration of the
V ’s of the V -row into V 1’s. Once the coloring started, it works on the basis of
two 1D-rules: V V 1V V 1 and V 1V 1V V 1, contamination and persistence re-
spectively. The full rules are V η1V 1 η3 V V 1 and V 1 η1 V 1 η3 V V 1 respectively.
Now, later in the cycle, we have the opposite transformation,with the 1D-rules
V 1V 1V V and V V 1V V . Here, the contamination rule is in contradiction with
the persistence rule of the previous case. Now, the full rules are V 1 η1 V 1 η3 V V

and V η1 V 1 η3 V V respectively. Accordingly, if the couple η1, η3 used in one
direction is different from the couple η1, η3 used in the opposite direction,then
the rules are compatible. We shall intensively use this principle.

5.2 The rules for the general case of the scenario

With the help of the above guidelines, we turn to the description of the active
rules needed by the execution of the scenario we described in Section 4. This
means that we assume that a < b. We also consider the case when µ < 0 but,
in this latter case, the rules which we indicate here do not cover the case when
|µ|+a > b. In most cases, the rules implied for an action are active. We mention
conservative rules when they are needed for the understanding of a coloration
process. We shall not mention the conservative rules generated by a passive
part of the configuration during a given stage.
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5.2.1 Rules for the W -column and motion of the data by one step

to the east

When µ ≥ 0, the first active rule is given by B B X U B W, which opens the
starting configuration. Now, the presence of W as an eastern neighbour of the
anchor triggers the construction of the W -column which first replaces the first
element of the U -, V - and R-rows by W . In the case when µ ≥ 0, W replaces
the first elements of the row. If the W -column erases the single R, then R is
replaces by WR for one step and then W replaces WR. This happens when
r = 0 and µ = 1 or when r = 1 and µ = 0. The construction of the W -column
induces the following rules: U W B V U W, V W B R V W, V W B B V W2 when r = 0,
and R W B B R W. The already mentioned case when r+m = 1 entails the rule
R W B B B WR.

Now, W also triggers the marking of the U -, V - and R-rows. In Sub-
subsection 4.1.1, we mentioned the 1D-rules used in this case. Applying the
principles of Sub-subsection 5.1.2, we get the following active rules:

U U0 U U0 ⇒ U B U0 V U U0, U B U0 B U U0

U W U U0 ⇒ U B W B U U0, U B W V U U0

U U0 B U0 ⇒ U B U0 V B U0

The first line shows the general rule which has two basic variants: η3 = B

and η3 = V . The second line indicates the rules at the ends of the interval
of transformation. There the two variants for η3 when η2 = W and there is a
single case when η4 = B, the end of the U -row.

U0 U1 U U1 ⇒ U0 B U1 V U U1, U0 B U1 B U U1

U0 W U U1 ⇒ U0 B W V U U1

U0 U1 B U1 ⇒ U0 B U1 V B U1

U0 W U U1 ⇒ U0 B W B U U1

Now, we have the transformations of the basic 1D-rule U0U1U U1 and its
variants U0W U U1 with U0U1BU1 and for the ends of the interval.

In Sub-subsection 4.1.1, we also mentioned conservative 1D-rules associated
with the transformation of the U -row. We leave as an exercise for the reader
to develop these 1D-rules into rules for our automaton. Similarly, we leave the
writing of the rules needed for the R-row as their 1D-analogs are obtained from
the 1D-rules for the U -row by changing U to R, keeping the same additional
digits.

As mentioned in Section 4, the construction of the U - and the V -rows do
not follow the same lines. Indeed, in the V -row, the last element is identified
as the last one, which is not the case, neither for the U -row nor for the R-one.
Now, this makes things easier as pure coloration rules are involved, those which
we indicated in Sub-subsection 5.1.2.
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5.2.2 Rules for adding a to r and for deciding whether to subtract b

or not

As known from Section 4, adding a to r consists in copying one by one the
elements of the U -row in a parallel way.

We know that this process starts when the signal C emitted by the eastmost
element of the V -row when it is in the state V 2 reaches the eastmost U1 of the
U -row. This U1 becomes U2, whence the rule U1 B U1 V1 C U2. Each cell U1 of
the U -row evolves according to the cycle: U1 → U2 → U3 → U4. When the cell
reaches the state U4, it remains in this state until an appropriate signal appears.
The cell remains in the state U1 until its eastern neighbour becomes U4: at this
moment, the above cycle starts. In the period when the cell U1 remains in this
state, it simply passes each copy U2 of an already U changed to U4 according
to the mechanism which we indicated in Sub-subsection 5.1.2. In 1D-rules, this
can be written as:

U1 U1 U2 U2, U1 U2 U2 U2, U2 U1 U1 U1,

U1 U2 U4 U2, U2 U1 U4 U3, U3 U2 U4 U4, U4 U1 U4 U4

The first line corresponds to the transportation of U2 to the west across the
U1’s. The second line describes the cycle for U1. The first rule of the second
line shows that the cycle is triggered when U4 is the eastern neighbour of the
cell containing U1, and the other rules describe the whole cycle. Of course,
additional rules, essentially conservative ones are needed and we leave them to
the reader as an exercise. To facilitate it, we indicate how the 1D-rules become
rules of the automaton:

U1 U1 U2 U2 ⇒ U1 B U1 BV U2 U2, U1 B U1 V1 U2 U2,

U1 U2 U2 U2 ⇒ U1 B U2 BV U2 U2, U1 B U2 V1 U2 U2,

U2 U1 U1 U1 ⇒ U2 B U1 BV U1 U1, U2 B U1 V1 U1 U1,

U1 U2 U4 U2 ⇒ U1 B U2 BV U4 U2, U1 B U2 V1 U4 U2,

U2 U1 U4 U3 ⇒ U2 B U1 BV U4 U3, U2 B U1 V1 U4 U3,

U3 U2 U4 U4 ⇒ U3 B U2 BV U4 U4, U3 B U2 V1 U4 U4,

U4 U1 U4 U4 ⇒ U4 B U1 BV U4 U4, U4 B U1 V1 U4 U4,

The transportation of the copy of a U -element in the W -column follows
similar principles. This time, the copy travels as R2 and the 1D-rules are this
time of the form η0η1η3η

1

0
as the northern and western neighbours are primarily

concerned:

W R2 W R2, R2 W W W

giving rise to the rules:

W R2 W R2 ⇒ W R2 B W BV R2

R2 W W W ⇒ R2 W B W U1 W, R2 W B W BV W

The rules for the ends of the W -column are:

W W B W U2 R2, R2 W B W U1 W

W R2 B B R1 R2, W R2 B B R2 R2, R2 W B B R1 W

where the first line deals with the corner of the trajectory of the copy on the
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level of the U -row; the second line deals with the other corner on the level of
the V -row.

We have seen that the transformation of the R-row is analogous to that of
the U -row and we know that the transportation of R2 along the R1’s of the
R-row has be seen as an example in Sub-subsection 5.1.2. The travel of R3
which represents the copy of the last U -element is similar to that of R2: it is
enough to replace R2 by R3 in the corresponding rules.

Now, we arrive to the rules corresponding to the comparison of a+r with
µ+b, illustrated by Figure 8. These instructions are:

B V1 R3 B B RR, B V3 R3 B B Z, B B R3 B B R

with, from the left to the right: the case when a+r < µ+b, a+r = µ+b and
a+r > µ+b respectively.

5.2.3 Rules for the case when a+r < µ+b

From the scenario, we know that in this case, there are two parallel coloration
processes on the level of the R-row: one to the left, transforming all R1’s to RR

and one to the right, transforming all blanks to RF . For the coloration with
RR, the rules are of the form R1 η1 R1 B RR RR and RR η1 R1 B RR RR, with
η1 = V 1 or η1 = BV . For the coloration with RF the rules are: B V1 RF B B RF,
RF V1 RF B B RF and RF V1 RF B RF RF.

Now, we are interested by two phenomena: what are the rules when the
RR-coloration reaches the W -column and what are the rules when RF arrives
to the column of the V 1 which is the western neighbour of V 3.

When the RR-coloration arrives to the W -column, the rule W W B B RR W1

places W1 at the bottom of the column and this state waits there until a true
R appears through the eastern side. So that we have time to see what are the
rules at the other end.

In this case, we know that the end of the RF -coloration is achieved when the
blank which is the southern neighbour of V 3 can see RF through its western
side. This is detected by the rule: B V3 RF B B F. This F -signal triggers a
sequence of transformations along this column given by the following rules:

V3 B V F B VF, B B B VF B UF, B B B UF B FF,
VF B V B B V, UF B B V B B.

The rules of the first line indicate that V 3 triggers UF in the column and
on the upper row which itself triggers FF in the column and on the upper row,
which means that FF is on the level of the last X written by the automaton.
The second line tells us that V F leaves V on its place when it vanishes and that
UF leaves a blank.

Now, we may wonder why the rule on V 3 has η2 = V and not η2 = V 1?
In fact, when the V 1 which sees V 3 through its eastern side sees RF through
its southern side, it also knows that at the next step V 3 will see F through its
southern side. And so, it may start the process of the back coloration of the
V -row to V . This is why the instruction has η2 = V . This coloration of V 1’s
back to V is possible as the V 1 seeing V through its eastern side sees RF , and
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later RR through its southern side. And the V which can see V 1 through its
western side can see the same states through its southern side. These contexts
are different from what was seen by V and by V 1 in the reverse process: the V

and V 1 which could see each other had both R as the southern neighbour. This
is why the corresponding rules are compatible. This remark explains us why
η2 = V in the rule changing V F to V .

Now, the occurrence of F triggers the back coloration of the level of the R-
row to its initial configuration: the RF ’s are transformed to blanks and the RR’s
are replaced byR’s. We leave the writing of the corresponding rules to the reader
as an exercise. We have just to notice that the front of the transformation to
the initial look on the R-row is by one column late with respect to the front
of the transformation back to V ’s on the V -row. Accordingly, the front on the
V -row reaches the W -column one step before the front on the R-row. On the
level of the V -row we have the rule W W B W1 B W1 so that when the front on the
R-row reaches the w-column, we have the rule W1 W1 B B R B which erases the
W1 which stands on the R-row. We also know that the front of transformation
back to V on the V -row triggers the transformation of U4 back to U on the
U -row. This is also possible because of the advance of the V -transformation by
one step on this new one. So that in the corresponding rules, both for U and U4
we have V as the southern neighbour and not V 1 or we have B as the southern
neighbour and not BV : the rules are U4 B U4 V U U and U4 B U4 V B U.

Now, we can see that the front on the U -row arrives to the W -column one
step after the arrival of the front on the V -row and so, at the same time when
the front on the R-row arrives to the W -column. This means that W1 is present
in the W -column, on the level of the V -row. We have the rule W W B W1 U4 W1

so that at the newt time, we have again two consecutive W1 in the W -column
and so, the lowest one disappears: W1 W1 B B B W and W1 W1 B B V W if µ = 0.
Now, at the time t just after the execution of one of the above rules, FF is at
one step from the W -column. Indeed, FF moves to this W thanks to the rules:

B B B B FF FF, B B B U FF FF, FF B B B B B, FF B B U B B.

Note, that above the U ’s of the U -row, FF does not see U4, but U as the
front on the U -row is ahead the position of FF by three steps. And so, at
time t, the rule B B W U4 FF FF applies, leading to the configuration illustrated
by Figure 11. On the next step, FF disappeared, U4 has been changed to U

and the topmost W has turned to X thanks to the rules:

FF B W U4 B B, U4 FF W1 B B U, W B X W1 FF X

This allows the remaining W1 to also vanish, rule W1 X B B U B, which is the
last step of the cycle. At this moment, the rule B B X B B W applies, producing
the starting configuration of a new cycle.

We have to mention the specific rules for the case µ < 0. For the place
of the U -row with respect to the V -row, we have symbols BU and CU during
the copying process in between the W -column and the U -row. Now,we know
that the rules for these symbols are very similar to those for BV and CV . We
have simply to remember that η1 is most often B but, at the last stage of the
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computation it is FF . The very last part of this stage involves a new state,
B0, which appears only at this moment as we have seen in Section 4. This
symbol appears when FF leaves the column of U4 and enters the eastmost
column of BU . We know that U4 becomes U2 before turning to U and then,
BU becomes B0 before turning to B. Indeed, the main rules are:

U4 FF BU V U U2, FF B B U4 B B, U2 B BU V U U,

BU FF BU V U2 B0, B0 B BU V B B,

as we do not mention the rules needed at the ends of the interval of BU ’s.
Now, when FF can see W through its western side, its southern neigh-

bour BU becomes B0, continuation of the above rule on BU , and FF itself
becomes B0, while W becomes X :

BU FF W1 V B0 B0, FF B W BU B B0, W B X W1 FF X

At the next step, both B0’s disappear and W1 also disappear:

B0 B0 W1 V B B, B0 B X B0 B B, W1 X B B U B,

which is the last step of the cycle as already noticed.

5.2.4 Rules for the case when a+r ≥ µ+b

As in Section 4, Sub-subsection 4.1.5, we first consider the case when a+r > µ+b

and then the case when a+r = µ+b as the latter will appear as a simplified
version of the former.

When we have the configurations illustrated by Figure 8, we know that the
rules which are applied are

B B R3 B B R, B V3 R3 B B Z,

the left-hand side instruction corresponding to the case when a+r > µ+b, the
right-hand side one corresponding to a+r = µ+b.

In the case when a+ r > µ+b, we know that the R written by the transfor-
mation of B into R triggers a coloration of R1’s back to R until the R1 which is
the southern neighbour of V 3 sees R through its eastern side. At this moment,
this R1 is replaced by Z, rule R1 V3 R1 B R Z, which triggers the subtraction
of b from the R-row. From Section 4, we know that we have two actions starting
from the appearance of Z. On the left-hand side, Z moves to the west, erasing
the R1’s and dragging the block of R’s which are on its right-hand side. On the
right-hand side, the dragging of the block is performed by transforming Rα into
(ZR0)α. The rules for this latter transformation are:

R B Z B R Z, R B Z B B B, Z B R0 B R R0, Z B R0 B R0 R0.

Together with the two rules about Z, there are also rules about R0 which
is also transformed into Z. The min rule, in this part of the configuration is
R0 B Z B Z Z. Due to the second rule on R,above, there is a coloration to the
west by ZR0. This requires additional instructions taking into account that a
greater part of the ZR0-interval is now below the V -row. The rules are now:

Z V1 R1 B R0 R0, Z G0 R0 B R0 R0, Z V R0 B R0 R0,
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R0 G Z B Z Z, R0 G0 Z B Z Z, R0 V Z B Z Z.

Notice that three rules involve G and G0. This corresponds to the suc-
cessive transformations of the cell containing V 3. First, V 3 turns to G, rule
V3 B V1 Z B G, and then turns to G0, rule G B V1 R0 B G0, remaining in the
state G0 until G0 can see B through its southern side. This will indicate
that the shift of (ZR0)α is now below the V -row. Then, the second part of
the process can take place and G0 becomes GG, rule G0 B V B B GG. Then,
GG turns to V and, at the same time, its northern neighbour turns from B

to G1, rules GG B V B B V and B B B GG B G1. At the next step, G1 becomes B,
but the northern neighbour of G1 changes from B to 1, rule G1 B B V B B and
B B B G1 B 1. We know that this 1 triggers the process of lifting the data by
one step upwards. Before describing the corresponding rules, we look at what
happens at the other end of the R-row.

First, we note that here, the front of transformation on the R-row is in
advance by one step with respect to the front on the V -row. Indeed, this
front is materialized by the pattern R1Z. Now, the transformation of V 1 to V

on the V -row is triggered by the occurrence of G, rule V1 B V1 Z G V. Note
that at this moment, Z is the southern neighbour of this V 1. Next, the rules
for the coloration back to V are similar to those which we have seen in Sub-
subsection 5.2.3. However, for these rules η3 is different: it is always Z for the
southern neighbour of the V 1 changing to V and it is R0 for the just restored V .
But for this V , its northern neighbour is U4 as the coloration back to U on the
U -row is triggered by the front on the V -row: accordingly, the front on the
U -row is delayed by one step with respect to that on the V -row. This allows
to have rules which are compatible with those of the opposite coloration on the
V -row at the beginning of the cycle.

And so, ZR0 is moving to the west. Now, we have two different situations,
depending on whether µ ≥ 0 or µ < 0.

In the first case, when R1 sees BV through its northern side and Z through
its eastern one, then it becomes Z0. This Z0 moves to the west and it al-
lows the transformation of BV to B, see Section 4, using basically the rule
BV U4 BV Z0 B B until it sees W through its western side. Then W is re-
placed by W1, rule W W B B Z0 W1 and at the next step, Z0 is replaced by R:
Z0 B W1 B R R. The reason of the last rule is that, as explained in Section 4,
when Z0 occurs, it starts a coloration process to the east which replaces R0
by R and cancels Z. Just after the occurrence of Z0, a second one occurs by
the application of the rules on ZR0. The rules are:

Z0 B Z0 B R R, R0 V Z0 B Z R, R0 V R B Z R

When W1 occurs, it moves upwards in the W -column, leaving B on its place,
until it sees U4 through its eastern side: it remains there until the penultimate
step of the cycle. The rules are: W W B W1 V W1 and W W B W1 U4 W1.

When µ < 0, the leftmost Z can continuously see V 1 through its northern
side while moving to the west until it sees W through its western side. So, the
process is a bit simpler in this case. When the leftmost Z can see W through
its western side, it is replaced by R0 and this W is replaced by W1, rules
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Z V1 W B R0 R0 and W W B B Z W1. Now, the pattern W1R0 changes to BR,
rules W1 W B B R0 B and R0 V W1 B Z R. From the previous rules, we know that
the W of the V -row changes to W1 when it sees V through its eastern side
which happens at the next step, due to the delay by one step of the front on the
R-row with respect to that of Z on the R-row. As the southern neighbour of
this new W1 is B, it disappears, rule W1 W B B V B, and its northern neighbour
turns from W to W1, due to the presence of BU through the northern side and
of W1 through the southern one, rule W W B W1 BU W1. This last W1 remains
there until the penultimate step of the cycle.

During this time, the signal 1 travels to the west by one step at each time, rule
1 B B B B B and B B B B 1 1. A rule on 1 satisfies the pattern 1 B B η3 B η3:
this means that 1 copies what it sees through its southern side. Now, this
southern neighbour is replaced by 2, pattern η0 1 η2 η3 η4 2. Examples of such
rules are given by U 1 U V 2 2 and, when µ < 0 also by BU 1 BU V 2 2, as the
eastern neighbour is already a lifted symbol. We know that 2 behaves like 1,
lifting its southern neighbour but replacing it by 2. This southern neighbour also
becomes 2 unless both its own northern and southern neighbours are B. In rules,
this means that we have B 2 B B B B. This process also restores B in the place
of BU when µ < 0. Indeed, in this case, the restoration is performed by 1 thanks
to the rule 1 B B BU U B. Remember that when µ > 0, the transformation from
U4 to U and from BV to B is triggered by the transformation from V 1 to V .

The shifting of the data by one step upwards is conducted by signal 1. When
1 can see W through its western side, we have two configurations, depending on
the sign of µ, which are slightly different.

We have that W becomes WW , rule W B X W1 1 WW, and that 1 lifts up a
symbol. When µ ≥ 0, 1 lifts up U4, changing it to U , rule 1 B W U4 B U and
U4 is replaced by 2, rule U4 1 W1 B 2 2. When µ < 0, 1 lifts up BU , changing
it to B, rule 1 B W BU B B. At the next step, there are no more differences for
the active instructions: WW is replaced by W3, rule WW B X W1 U W3 and W1 is
replaced by B, rule W1 WW B B 2 B. The rules involving 2 have still been in
action and, when W3 is present, the last remaining 2 is the northern neighbour
of the leftmost R. Accordingly, at the next step, 2 will be replaced by R using
a pattern we have already seen and no 2 will be produced, rule R 2 B B B B.
At the same time, W3 vanishes, rule W3 B X B U B, and its northern neighbour
turns from B to X , writing the new pixel, rule B B B W3 B X. The obtained
configuration is the last one of the cycle.

6 The remaining cases

As indicated in Section 4, we cannot give all the details about the particular
cases defined by the conditions on small parameters or small differences between
the parameters. These situations are not difficult and they are left to the reader.
As already mentioned, they can be attached to the general cases by rules which
constitute shortcuts to a situation already controlled by a general rule.

However, we have to go back to what we have depicted, as we had an im-

38



portant constraint: a ≤ b. We have dealt with the case a < b, but the scenario
fully applies when a = b. If we start with r = 0, as we append b, the com-
parison with b will always detect a situation where b has to be subtracted from
the computed remainder and so we again have r = 0. Now, the new pixel is
written at the correct position. As this situation is repeated at each cycle, the
pixels are written on the first diagonal as required, so that there is nothing to
do. Note, that in the execution of the automaton, we never use the fact that a
and b should be coprime numbers, so that we can remove this assumption.

Here, we shall look at the way we can extend the automaton to the cases
when we do not have 0 < a ≤ b. First, we shall successively consider the
situations when a = 0, when 0 < b < a and then the situation when a and b

have arbitrary signs.

6.1 The case a = 0

In this case, the line is a row of X ’s. If we apply algorithm 1, we remark that
assuming a value of r, appending a to r does not change the result. Iterating
the cycle will thus lead us to a row of X ’s which is the correct solution.

The implementation of this solution with our automaton raises a problem.
Indeed, if a=0, there is no U on the U -row. This looks like a situation when
µ < 0. However, it may happen that µ ≤ 0. The difference occurs on the
V -row where there is at least one V , as we rule out the case when a = b = 0
which cannot define a line. If µ > 0, the W -column meets a B on the level
of the V -row. Otherwise, it necessarily meets a V . Consequently, if during
its construction the W -column meets a blank both on the U - and the V -rows,
necessarily a = 0. If it meets a blank on the U -row and a V on the V -row,
then the automaton has to explore the length of the blank area. This length
was tacitly assumed to be less than V in Section 4 and also in the previous
sub-sections of Section 5. Now, we may keep this assumption: indeed, µ is a
parameter which, together with b defines the point of the y-axis where the line
cuts the axis. By possibly changing the position of the x-axis, we may assume
that |µ| < b. Accordingly, if the automaton sees that the whole interval of V ’s
on the V -row is covered by blanks, this means that a = 0. In this case there
is nothing to append to the remainder and it is enough to write the new pixel.
Again, the iteration of such a cycle will produce the expected row of X ’s.

The situation when µ ≤ 0 and a = 0 is easily detected within the existing
scenario. However, the situation when µ > 0 and a = 0 entails that the start-
ing configuration remains unchanged, due to the rule B W B B B B used for the
stability of the bottom of the W -row when r = 0 and µ ≥ 0. As a = 0 is a
very special configuration, fixed at the initialization, we may require that, in
this case, µ ≤ 0.

6.2 The case 0 < b < a

In Sub-section 4.3, we have defined the general frame for the study of the case
when 0 < b < a. We have seen that the naive discrete line which is the reflec-
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tion of the naive discrete µ ≤ ax− by < µ+max{|a|, |b|} satisfies the equation
−µ−max{|a|, |b|}+ 1 ≤ bx− ay < −µ+ 1. We have noticed that this leads to
exchange the x- and the y-axes.

In Figure 28, we can see the change we have to perform. At first glance, it
should be enough to operate the similar change on the rules. The automaton
would then act as required.
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Figure 28 Left-hand side: numbering the neighbours according to our conventions.
Right-hand side: the positions of the information after the reflection in the fist diago-
nal.

In fact, it happens that a rule η0 η1 η2 η3 η4 η1

0 and a rule ω0 ω1 ω2 ω3 ω4 ω1

0

satisfy ωi = η5−i for i ∈ {1..4} and ω0 = η0 but that ω1
0 6= η1 = 0. In such a

case, introducing the new rule would lead to a contradiction. The solution is
to check, for each rule, whether the reflected one exists. If it has the required
sate, it is OK, if not, then the reflected one cannot be taken. However, the
contradiction can be avoided if a state is changed in the reflected rule. The
computer program allows us to detect the rules whose reflection would produce
a contradiction, if appended to the set of rules. A look at these rules allows us
to find which state to replace in the reflected rule by a new state. With this
process, it is not very difficult to enlarge the table of rules with the ones which
are needed for the case when 0 < b < a.

And so, we may now consider that our automaton works for any a, b ≥ 0,
a+b > 0.

6.3 In the other quarters of the plane

From this, it is not difficult to extend our automaton in order to construct any
naive discrete line with the condition |µ| < max{|a| |b|}.

We know how to initialize the automaton, depending on the signs of a and b

and on the comparison between |a| and |b|.
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7 Complexity issues

In this section, we give an estimate of the number of steps performed by the
automaton in a cycle.

We know that the initial data satisfy the following constraint:

|a|, |b|, |µ| ≤ max{|a|, |b|}

Let δ be the number of cells between the W -column and the eastmost non-
blank cell during the computation of a cycle. From the two possible displays
discussed in Section 4 and from Section 6, we get that δ < 3max{|a|, |b|} as the
above constraints are satisfied.

Also from these sections, we know that we can split a cycle into the following
stages:

- shifting the U -, V - and R-rows by one step to the east,

- appending the elements of U to the end of the R-row,

- possibly performing the subtraction of b,

- restoring the data in their initial encoding.

The first step is performed by a run from the W -column to the easmost non-
blank cell: this requires at most δ+4 steps, as the W -column has 4 elements.
For appending the elements of U , we have to consider the travel of C on the
blank until it meets the U -row. Then, a copy is delivered every second step and
each element, traveling at speed 1, advancing by one cell per time, we have at
most δ+b+4 steps. To estimate the time needed by the possible subtraction,
we have to decompose this stage into sub-stages. First, when the eastmost R is
written, a coloration goes back until it can see V 3 on the V -row: this takes at
most b steps. Then, a Z appears which moves at speed 1 towards the W -row.
At the same, time, a signal goes to the east, at speed 1 too, to the eastmost R,
which takes at most b steps and at the end of this time there is a moving zone of
(ZR0)’s. The second sub-stage is the shrinking of the (ZR0) zone which takes
at most a number of steps equal to its length: at most 2b. But the westmost Z
can then be at b steps at most from the W -column and so, this second sub-stage
requires at most 3b steps. Now, the restoration occurs during the subtraction
and it is estimated by the time needed for signal 1 to go from the cell it appeared
to the W -column: at most 3b. As we have seen, an additional delay of 3 steps is
required by signal 2. Accordingly, summing up all these times we have 10b+11
steps.

Now, thanks to the study of Sections 4 and 5, the correctness of the rules
boils down to checking that there are no contradictory rules. As the number of
rules is over than 1,000 rules, this was performed by a computer program written
for this purpose. In fact, the computer program helped us to devise the rules
at the different stages of the cycle. Also, checking a finite number of suitable
executions was enough to prove the correctness of the program: indeed, as the
working of the algorithm is linear in the size of the data, and as the structure
of a naive discrete line is periodic, if the execution works for a particular choice
of general parameters, it works for all of them. It is only needed to check the
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particular cases when at least one parameter is small, which we did for many
cases. We have seen that 300 steps of execution are enough to get convinced of
the correctness of the computation performed by the automaton.

Accordingly we have proved:

Theorem 1 There is a deterministic cellular automaton which simulates the

construction of a naive discrete line given by the equation

µ ≤ ax− by < µ+max{|a|, |b|},

where we may assume to satisfy, |µ| ≤ max{|a|, |b|}. Moreover, there is such an

automaton whose working is linear in the length of the data and of the segment

of the discrete line to be constructed.

This latter point raises an interesting question: in a concrete implementa-
tion, we could define the halting of the computation in a different way.

7.1 Finite executions

In fact, for concrete applications, we necessarily have a cellular automaton whose
space is finite. The simplest way is to define the space of the cellular automaton
as a rectangle of (H+2)× (L+2) cells. Putting (0, 0) as the coordinates of the
lower left-hand side corner, or the south-west one according to the terminology
of the paper, the coordinates of the north-east corner would be (H+1, L+1). Of
course, the cells have to know when they are at the boundary of the area. The
simplest way is to signalize the limit by a frame surrounding the cells devoted
to the computation of the line. The cells of the frame are an additional state,
say #, and the coordinates of these cells are of the form (x, 0) and (x,H+1) with
0 ≤ x ≤ L+1 for the horizontal limits of the rectangle and (0, y) with (L+1, y)
where 0 ≤ y ≤ H for the vertical limits. There is no rule for the cells of the
frame which, by definition are in a fixed state. For the blank cells which are
in contact of the frame, we have the following conservative rules: B # B B B B

for the northern limit, B B # B B B for the western limit, B B B # B B for the
southern limit and B B B B # B for the eastern limit.

During the execution, a problem may arise when we have to lift the data by
one step upward. In this case, state 1 should occur when instead of the blank, it
sees # through its northern neighbour. This means that the rules 1 B B U B U,
1 B B U U U and 1 B B B B B have to be replaced by the rules 1 # B U B U,
1 # B U U U and 1 # B B B B respectively. Also, when 1 just vanished, the rule
W B X W1 1 WW is replaced by the rule W # X W1 1 WW. We know that WW dis-
appears and should trigger the transformation of its northern neighbour by X .
Now, WW may be changed to W3, which means that the rule WW B X W1 B W3

is replaced by WW # X W1 B W3, but the northern neighbour, which is now #,
cannot be replaced by X . We have also to replace the rule W3 B X B B B by the
rule W3 # X B B B. At this point, all rules which can be applied are conservative
rules, so that the computation stops as, after the application of these rules, we
obtain the same configuration. Indeed, if two consecutive configurations are
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identical, this situation is repeated endlessly and so, we can imagine a mech-
anism which detects the situation, which is always possible, in principle, if we
start from a finite configuration.

8 Conclusion

We think that there are many possible continuations for this work. As an
example, what was done for the line could be viewed for curves, or for planes in
the 2D-grids or sub-spaces of k-dimensional grids. Now, for lines in the square
grid, there are also possible continuations. We can indicate the following ones.

First, we could try to improve the scenario described in Section 4. It has to
be completed for a few particular cases, especially for the rules covering them.
However, from a complexity point of view, there might be some improvement.
In the section, we indicated the scenario as a naive version where the different
stages are well delimited. We could lower a bit the complexity established in
Section 7. Indeed, the starting of the copy of the elements of the U -row could be
already placed when the first element of the U -row is erased by the W -column
in construction. Also later, other stages could be more intricate by starting as
early as possible. But is this worth the work? We could lower the upper bound
of 4δ down to to no more than 3δ and perhaps somehow below. But the price
to pay would be a more difficult proof. Here, as the stages are well delimited,
the starting configuration of a cycle is well characterized, so that it is enough
to check that the execution of a cycle leads from one starting configuration to
the next one. The overlapping of the stages would make it difficult to define
the notion of a cycle itself. It would be more difficult to check that there is no
interaction between a finishing cycle and the already started next one, as such
an interaction might ruin the computation.

For what are complexity issues, a more promising improvement could be
given by the following remark. Our simulation is based on a representation
of the integers in unary. What could be done for a binary representation?
Basically, the same scenario could be performed, with this important difference
that adding here would not be simply appending and that subtracting would not
be simply dragging back. However, an appropriate disposal of the data could
make it possible to perform addition and subtraction: each element represents a
bit in a certain position. Appropriate markings can be managed to do the job as
expected. Now, the number of states would most probably be more important
and this would also increase the number of rules. However, the automaton would
still be linear in time with respect to the size of the data but its programming in
cellular automata would be more difficult than for the automaton of this paper.
Now, this time, the complexity would be much lower.

Another continuation would be to devise a cellular automaton which would
recognize whether a given pattern in the 2D-grid is or not a discrete line.

We hope that this paper opens a new promising avenue giving a new con-
nection between discrete geometry and cellular automata.
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