
HAL Id: hal-01098579
https://inria.hal.science/hal-01098579

Submitted on 26 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

How to Correctly Deal With Pseudorandom Numbers in
Manycore Environments - Application to GPU

programming with Shoverand
Jonathan Passerat-Palmbach, David R.C. Hill

To cite this version:
Jonathan Passerat-Palmbach, David R.C. Hill. How to Correctly Deal With Pseudorandom Num-
bers in Manycore Environments - Application to GPU programming with Shoverand. IEEE High
Performance Computing and Simulation conference 2012, Jul 2012, Madrid, Spain. pp.25 - 31,
�10.1109/HPCSim.2012.6266887�. �hal-01098579�

https://inria.hal.science/hal-01098579
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH CENTRE

LIMOS - UMR CNRS 6158

Campus des Cézeaux

Bâtiment ISIMA

BP 10125 - 63173 Aubière Cedex

France

How to Correctly Deal With Pseudorandom

Numbers in Manycore Environments -

Application to GPU programming with

Shoverand

Jonathan Passerat-Palmbach
∗ † ‡ § ¶ ,

David R.C. Hill
† ‡ § ¶

Originally published in: Proceedings of the IEEE High Performance
Computing and Simulation conference 2012 — July 2012 — pp 25-31

http://dx.doi.org/10.1109/HPCSim.2012.6266887
(tutorial paper)

©2012 IEEE

Abstract: Stochastic simulations are often sensitive to the source of randomness that character-
izes the statistical quality of their results. Consequently, we need highly reliable Random Number
Generators (RNGs) to feed such applications. Recent developments try to shrink the computa-
tion time by relying more and more General Purpose Graphics Processing Units (GP-GPUs) to
speed-up stochastic simulations. Such devices bring new parallelization possibilities, but they also
introduce new programming difficulties. Since RNGs are at the base of any stochastic simulation,
they also need to be ported to GP-GPU. There is still a lack of well-designed implementations of
quality-proven RNGs on GP-GPU platforms. In this paper, we introduce ShoveRand, a frame-
work defining common rules to generate random numbers uniformly on GP-GPU. Our framework
is designed to cope with any GPU-enabled development platform and to expose a straightfor-
ward interface to users. We also provide an existing RNG implementation with this framework to
demonstrate its efficiency in both development and ease of use.
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1 Introduction

More than 50% of High Performance Computing (HPC) applications now require the use of Ran-
dom Number Generators (RNGs). We have had RNGs adapted to intensive parallel computing
at our disposal for more than a decade . But even though the subject is well mastered by spe-
cialists like Pierre L’Ecuyer or Makoto Matsumoto, this is not the case for many colleagues who
are acknowledged as specialists in other domains but are not aware of the recent parallelization
techniques than can be used with modern generators. Even if we now also have access to true
random numbers with quantum devices, they are still clumsy to produce in parallel with satisfy-
ing rates and costs. In addition, such devices are still subject to partial breakdowns and even the
latest ones do have some very little biases that have to be corrected (such processing is sometimes
included inside the device). In addition, stochastic experiments have to be reproducible, not only
for debugging purposes but also for variance reduction techniques, for sensitivity analysis and
for many other statistical techniques [12]. This implies storing the sequences (in order to be able
to reproduce exactly the same sequence several times). This last point leads to the fact that we
cannot provide enough "true" numbers for many High Performance Computing applications such
as parallel Monte Carlo for nuclear medicine [13, 6]. Consequently, software random number
generation remains the prevailing method for HPC, and specialists have been warning us for
years to be particularly careful when dealing with parallel stochastic simulations [5, 8, 26].

Recent developments try to shrink computation time by relying more and more on Gen-
eral Purpose Graphics Processing Units (GP-GPUs) to speed-up stochastic simulations. Such
devices bring new parallelization possibilities, but they also introduce new programming difficul-
ties. Since the introduction of Tesla boards, Nvidia, ATI and other manufacturers of GP-GPUs
have changed the way we use our high computing performance resources. Since 2010, we have
seen that the top supercomputers are now often hybrid. Since RNGs are at the base of any
stochastic simulation, they also need to be ported to GP-GPU. There is still a lack of well-
designed implementations of quality-proven RNGs on GP-GPU platforms. Consequently, we
also need a survey of the current Pseudo Random Numbers Generators (PRNG) available on
GPU. We will discuss the recent Mersenne Twister for Graphics Processors (MTGP) that was
initially released in 2010, but also more recent generators with cryptographic inspiration that
have been presented lately at the annual supercomputing conference.

In this paper we intend to present the good practices when dealing with pseudorandom
streams in parallel. After explaining the kind of problems we may encounter, the state of the
art in terms of RNGs, testing suite and parallelization techniques is presented. Then, GPU
considerations and hybrid computing constraints are exposed. Next, the Shoverand framework
that facilitates a safe usage of pseudorandom streams for modern GPU hardware is presented,
and we also show how to integrate your preferred PRNG in Shoverand if your RNG of choice is
not already included in the framework.

2 Using Parallel Random Streams

2.1 Parallel stochastic simulation

Parallel and Distributed Simulation (PDS) is an extensive research domain where effective solu-
tions have been developed. Deterministic communications protocols for synchronous simulation
and asynchronous simulation have been studied to avoid deadlocks and to preserve the causality
and determinism principles. When dealing with stochastic simulations, random numbers should
be generated in parallel in order for each Processing Element (PE) to be able to autonomously get
its own independent random number stream. If such autonomy is not guaranteed, the parallelism
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is affected [2].

2.2 State of the art in terms of sequential generators

The most famous sequential generator currently available is Mersenne Twister (MT hereafter)
[19]. Since the initial proposition at the end of the nineties, a whole family of MT generators
has been proposed. SFMT, a member of this family, is an SIMD-oriented version of the original
MT generator [32]. SFMT proposed the following improvements: speed (twice as fast as MT), a
better equidistribution, a quicker recovery from bad initialization (zero-excess in the initial state)
and even an increased period length (ranging from 2607

− 1 to 2216091
− 1). A GP-GPU version

of MT (named MTGP) was also proposed by Saito and Matsumoto; it comes with companion
software for parallelization (MTGPDC) [33]. Based on similar principles (Generalized Feedback
Shift Register), Panneton, in collaboration with L’Ecuyer and Matsumoto, proposed the WELL
generators with even better statistical properties [22].

Pierre L’Ecuyer suggests that multiple recurrence generators (MRGs) with much smaller
periods (above 2100 but under 2200) like MRG32k3a [16] can suffice for modern applications. This
generator comes with very interesting statistical properties and is easy to parallelize. Smaller
periods also authorize fast mathematical parallelization techniques. The MT family now proposes
TinyMT which can benefit of this point. In 2011, Salmon et al recently introduced statistically
sound counter based pseudorandom generators with relatively small periods [34]. These proposals
led to very interesting implementations on GP-GPUs.

With this large set of ‘good’ sequential RNGs, the main question is: how can we make a safe
RNG repartition in order to keep, on the one hand, efficiency, and on the other hand a sound
statistical quality of the simulation in order to obtain reliable results.

2.3 Partitionning techniques

Assigning random sequences to parallel processing elements (PEs) can be done with one of the
two following approaches. The first one proposes to partition a unique random stream, whereas
the second approach deals with multiple independent streams. In this case, independent streams
are obtained by parameterizing a family of generators.

When dealing with the partitioning of a unique random source we find the following variants
in literature. The Central Server approach runs a single PRNG and provides on demand pseu-
dorandom numbers to different PEs. We can also cite Boolean cellular automata since they have
been considered to generate parallel pseudorandom numbers, but we are not aware of any recent
high performance stochastic simulations using this technique. Another technique is known as
the Sequence Splitting method, sometimes named Blocking or Regular Spacing. The principle
behind those names is simple: the main sequence is split into ‘N’ non-overlapping contiguous
blocks. Until recently, the computing of a jump in the sequence was unavailable for modern
generators with linear recurrences modulo 2 and huge periods (such as the families of MT &
WELL generators). This problem was solved in [7], but despite its relative efficiency, it is still
considered as slow by specialists (compared to what can be obtained for MRG32k3a with a
smaller period). The Indexed Sequence, or Random Spacing Technique, is another technique
that consists in initializing the same generator with different random statuses. The last known
technique to partition a unique stream is known as the Leap Frog Technique. With this method,
random numbers are distributed to processing elements like a deck of cards dealt to card players.

When a single stream is partitioned into many different substreams, we talk about Parame-
terization. This technique issues many instances from the same family of generators. Indepen-
dent generators, with different parameters, are used for each processing element (PE). For the
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Mersenne Twister family this technique is named Dynamic Creator (DC) and generates by pa-
rameterization highly independent Mersenne Twister generators. Our best mathematicians state
that PNRGs based on linear recurrences defined by matrices with characteristic polynomials
relatively prime to each other are supposed to be highly independent. In addition to the original
MT generator, TinyMT and MTGP for GP-GPUs benefit from the same approach. Even though
it is considered safe according to the scientific community, we recommend testing the resulting
generators. In case of failure we can give feedback to authors and this was recently done for
MTGP [25].

The interested reader can find the details of the different approaches in the following surveys
[9, 10], the latter being the most complete reference (a full journal paper with the latest updates),
with discussions around advantages and drawbacks of each technique.

2.4 Testing sequential and paralell RNGs

The previous ‘fine’ generators were found reliable thanks to thorough statistical and empirical
testing. Testing techniques were initially proposed by Knuth and the first testing software that
became famous in the nineties was the DieHard testing suite proposed by Marsaglia. Another
famous Statistical Testing Suite is proposed by the National Institute for Standards and Technol-
ogy (NIST STS) and is particularly appreciated when cryptographic qualities are required. [1]
developed the DieHarder suite as an update of Marsaglia’s work. Rütti and Troyer also presented
a testing suite with Petersen [30]. But currently, the most complete collection of utilities for the
empirical and statistical testing of uniform random number generators is in our opinion TestU01.
This software library proposed by [17] is now the reference for most scientists of the domain.

For parallel testing, Srinivasan and Mascagni gave interesting advice [36] based on the tests
proposed by Mascagni in the Scalable library for Pseudorandom Number Generation (SPRNG)
in 1997. Approximately at the same time, [2] proposed a set of techniques for empirical testing
of parallel random number generators. We have to be aware that we do not have at our disposal
mathematical theorems or techniques to explicitly give a proof of independence between gener-
ators or between generated parallel random streams. To avoid long-range correlations we can
have a look at interesting propositions made by [4, 5].

2.5 Software aid for the distribution of random streams

The reference software library dealing with parallelization of pseudorandom numbers is SPRNG
(Scalable library for Pseudorandom Number Generation) [18]. As stated before, SPRNG also
proposes a small test suite. The Dynamic Creator discussed above and proposed initially by
Matsumoto and Nishimura is a software aid to provide mutually independent Mersenne twister
generators for parallel computing, which was published two years later [20]. L’Ecuyer and his
team proposed a package able to produce many long streams and substreams in C, C++, Java,
and FORTRAN [16] and also in R in a later version. Coddington and Newell proposed the
JaPara library (a Java Parallel Random Number Library) for High-Performance Computing [3].
If we consider Java, our advice would be to use the SSJ package, still from L’Ecuyer’s team.
It provides the basic structures for handling multiple streams, with efficient methods to move
streams around [14].

We also proposed higher level software tools to help in the distribution of stochastic sim-
ulations on local clusters and institutional computing Grids. The DistMe toolkit [28, 29] and
the OpenMole software based on declarative task delegation [27] helps removing the burden of
random streams distribution.

In the first part of this paper, we have given a shallow survey of distribution techniques,
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libraries and tools. The second part focuses on Shoverand: our library proposal integrating the
guidelines introduced in the previous lines.

3 Purpose of Shoverand

As we have seen in the previous parts of this article, it is very important to deal carefully with
pseudorandom numbers distribution when working in parallel environments such as GPUs. Still
we cannot ask any user that wants to leverage GPUs’ computational power in his stochastic simu-
lations to be aware of every theoretical consideration that will prevent his simulation results from
being biased. Thus, we introduced Shoverand [23], a framework that provides Pseudorandom
Number Generation (PRNG) facilities to CUDA-enabled GPU applications.

Shoverand combines several aspects to ease developments of stochastic-enabled applications
on GPU. First, its API is quite similar to what can be encountered when using high-level CPU
languages like C++ or Java. Second, Shoverand’s main goal is to handle the distribution of
stochastic streams automatically without any intervention from the user. Finally, our framework
also targets PRNG developers: indeed, Shoverand only integrates third-party PRNGs and focuses
on unifying their interface. To do so, we integrate compile-time constraints that check whether
the algorithm meets our guidelines.

4 PRNGs embedded in Shoverand

At the time of writing, Shoverand embeds several PRNGs. All these algorithms have been
selected according to their intrinsic properties. We first consider their statistical properties
in a sequential environment, because a PRNG could not cope with the requirements of par-
allel environments if its sequential version was poor. Consequently, every PRNG wrapped in
Shoverand must satisfy the most stringent testing battery currently available, namely BigCrush
from TestU01 [17]. PRNGs that pass all those tests are referred to as "Crush-resistant" in [34].
While being Crush-resistant cannot ensure a perfect randomness of the considered pseudorandom
stream, it is a satisfying property that few PRNGs can be proud of.

Additionally, the retained algorithms must support a reliable technique to distribute numbers
in a parallel environment. We have previously surveyed such techniques in [10], but only some
of them can be applied on a GPU platform [24]. The chosen ones are then ideal candidates to
be ported to GPU, if not available yet, and moreover to be integrated in Shoverand. We detail
hereafter the PRNGs that are currently, or will soon be, embedded in Shoverand.

4.1 MRG32k3a

Introduced by Pierre L’Ecuyer in [15], MRG32k3a is particularly suited to parallelization among
small computational elements such as threads thanks to its intrinsic properties. This PRNG’s
lightweight data structure only stores 6 integers to handle its state. The algorithm itself is quite
short, and relies on simple operations to issue new random numbers. The parameters chosen for
MRG32k3a are such that it has a full period of 2191 numbers. This period is fairly enough since
L’Ecuyer suggests that periods between 2100 and 2200 are highly sufficient even for large-scale
simulations. MRG32k3a has been designed to produce independent streams and sub-streams
from its original random sequence thanks to its parameters that enable safe Sequence Splitting
[10]. The internal parameters split the initial sequence into 264 adjacent streams of 2127 random
numbers, themselves divided into sub-streams containing 276 elements.
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Now considering the distribution aspect, we can assign a stream or a sub-stream to each com-
putational element according to the Sequence Splitting technique. As long as we are focusing on
parallel applications that are CUDA-enabled, we are dealing with fine-grained Single Instruction,
Multiple Threads (SIMT) applications. It means that the computational elements are, in our
case, the logical threads of a CUDA kernel and the principle of SIMT is to load the device with
as much threads as possible. Still, we do not expect having to deal with more than 264 parallel
threads, which is the total number of independent streams bearing 2127 random numbers each
that MRG32k3a can provide.

4.2 TinyMT

TinyMT is the latest offspring from the Mersenne Twister family. TinyMT is not described in
any scientific article yet, but information about it can be found on its dedicated webpage [31].
This PRNG matches the requirements we have formulated for a PRNG to be integrated into
Shoverand: it is described as producing a good quality output, according to TestU01 statistical
tests, and displays a long-enough period of 2127 numbers. TinyMT leverages parameterization to
provide highly independent streams, each stream being represented by a unique parameterized
status.

The theoretical aspect of this approach is very satisfying, but TinyMT parameterized sta-
tuses need to be precomputed by a piece of software called Dynamic Creator (DC), which is
shipped with the PRNG as an open-source binary. The idea here is to initialize each comput-
ing elements with a different status, since DC can create over 232

× 216 independent statuses.
However, memory footprint considerations forced us to propose a hybrid implementation where
the same independent parameterized status is shared among all the threads of a CUDA block.
Independence between random sources is achieved by feeding each thread with a sub-stream of
the original stream, following the Sequence Splitting technique. To do so, the original stream is
sliced in equal chunks whose starting point, the seed status, is indicated to threads depending on
their identifier. As a consequence, each thread will always consume the same random sequence
in different replications of the same execution, thus ensuring reproducibility of the experience.

4.3 Philox and Threefry

Philox and Threefry are counter-based PRNGs [34] also relying on parameterization to solve
random streams partition concerns. Like any other PRNG considered in this study, they are
Crush-resistant and display good performance in regards to their low memory footprint and high
numbers throughput. They appear to be better suited than TinyMT (or any other member of
the Mersenne Twister family) to a straightforward GPU implementation since their parameters
are formed by a single key that can be set at runtime according to each thread’s unique identifier.
Please note that the GPU implementation of these PRNGs is directly provided by their authors.
Both CUDA and OpenCL implementations are proposed for Philox and Threefry.

5 Case study: generating pseudorandom numbers in a

CUDA kernel with Shoverand

In this section, we describe a major aspect of Shoverand: its user-friendly interface. We will see
that on both host and device sides, our API is very expressive while remaining quite concise.
Shoverand competes with two major counterparts in the CUDA world, both coming from an
NVIDIA initiative, named Thrust [11] and cuRand [21]. These two libraries are also providing
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random number generation features but vary from Shoverand on several points that we will
compare in this section.

5.1 Host side: Initialization phase

From the end-user’s point of view, Shoverand requires an initialization phase in order to allocate
its internal data structures on the device and perform some initializations. As a matter of fact,
depending on the chosen PRNG, initialization might involve external data to be read from a
parameter file, as is the case with TinyMT for instance.

We previously saw that we needed to consider the distribution technique and the PRNG
algorithm as a pair. As a consequence, distribution techniques vary from one PRNG to another
in Shoverand, but their initialization phase require the same data, which is basically the number
of CUDA blocks that the kernel using the PRNG will spawn. This data being stored prior to
the kernel call, no superfluous parameter needs to be passed to the kernel. This feature allows
users not to have their hands tied when designing their kernels, since Shoverand does not impact
kernels’ prototypes like other libraries do.

As a result, the host side initialization phase boils down to a single call to a static method
named init, which must be provided by every PRNG implementation to satisfy Shoverand’s rules.

5.2 Device side: Computation phase

Using the device side of Shoverand is even simpler than the host side. You only have to create
an instance of the PRNG you want to use and let its class’ constructor do the rest. Device side
initializations are performed behind the scenes by the constructor so that users have nothing to
do. Then, you can pick random numbers by calling the next() method on the previously created
object. If you are used to random number generation facilities offered by high-level languages
such as Java, making use of Shoverand in your kernel is really intuitive.

5.3 Comparison with Thrust and cuRand

Thrust and cuRand are two projects developed by NVIDIA fellows. While cuRand is part of
the CUDA SDK, Thrust is an external open-source library that can be downloaded from an
Internet repository. In the paper originally introducing Shoverand [23], we had surveyed these
two libraries and identified their major drawbacks that led us to design Shoverand. The following
lines investigate the changes brought by the state-of-the-art versions of Thrust and cuRand.

cuRand is NVIDIA’s solution to random number generation on GPU. In [23], we mentioned
that cuRand suffered from the poor statistical quality of the PRNGs it embedded. The last
version of this library partially solves this problem by following the advice we made in our
previous paper. Now, cuRand embeds renowned high-quality PRNGs such as MRG32k3a [15]
and MTGP [33], whose pseudorandom streams are stated as “Crush-resistant”.

On the other hand, cuRand’s API remains poor and forces users to add extra parameters in
the prototypes of every kernel taking advantage of the library. The C API is not generic and loses
its consistency when non-default options are enabled: for instance, MTGP’s initialization step
is achieved through a dedicated call in cuRand that is totally irrelevant when used with another
PRNG. This approach is not convenient when you want to quickly swap PRNGs to study the
impact of various random sources on a given application.

Thrust is an open source GP-GPU-enabled general purpose library developed by NVIDIA
fellows. This project aims at providing a GP-GPU-enabled library equivalent to some classic
general-purpose C++ libraries, like STL or Boost. Classes are split through several namespaces,
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such as Thrust::random. The latter contains all classes and methods related to random numbers
generation on GP-GPU. Thrust::random implements three PRNGs, each through a different
C++ class template. We find a Linear Congruential Generator (LCG), a Linear Feedback Shift
(LFS) and a Subtract With Carry (SWC), which are widely reckoned as not adapted to High
Performance Computing.

Still, Thrust offers a nice API that mirrors Boost’s. The random namespace provides user-
friendly features very close to Shoverand’s abilities. For instance, neither explicit initializations
nor parameters are required in order to benefit from random number generation facilities in a
kernel.

As a conclusion, we have on the one hand cuRand, a library that is improving after having
been criticized by the research community for the statistical characteristics of its embedded
PRNGs, and that exposes a restrictive API; and on the other hand, we have Thrust and its nice
“à la Boost” API, yet powered by poor quality PRNGs. Then, Shoverand is based upon the good
achievements from these two libraries: indeed, it exposes a user-friendly API while integrating
only Crush-resistant PRNGs.

Listing 1 shows off how to pick up pseudorandom numbers from Shoverand. In this code
snippet, we consider both the initialization on the host side and the random number generation
on the device side:

Listing 1: Example of use of Shoverand’s API

us ing shoverand : :RNG;
us ing shoverand : : MRG32k3a ;

// ke rne l us ing Shoverand
__global__ void fooKerne l ( f l o a t ∗ ddata ) {

RNG < f l o a t , MRG32k3a > rng ;

ddata [ blockDim . x ∗ blockIdx . x + threadIdx . x ] = rng . next ( ) ;
}

. . .

RNG< f l o a t , MRG32k3a >:: i n i t ( block_num ) ;

fooKerne l <<< block_num , thread_num >>>(d_data ) ;

RNG< f l o a t , MRG32k3a >:: r e l e a s e ( ) ;

6 Case study: embedding a new PRNG into Shoverand

Shoverand is not only a library but also a framework that allows PRNG developers to insert their
own proposals as long as they follow some rules. In order to help them in their task, Shoverand
employs a mechanism called concept checking that lets us express constraints in Shoverand’s code
that will be checked at compile-time for all the classes that inherit from ours. Concept checking
is a generic programming feature available through different implementations with C++. It
was introduced by [35] and implemented in the Boost Concept Check Library (BCCL). The
application scope of concept checking is quite wide and goes from interface checking (i.e., verifying
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the presence of a given method within a class), to assessing the presence of a particular member
from a given type in a class.

Such a mechanism forces developers to match our interface without having to introduce costly
runtime techniques like polymorphism and consequently virtual methods.

Thanks to the BCCL, we are able to design constraints that will make any compilation
attempt fail if they are not met. In Shoverand, we force every PRNG algorithm class to inherit
from our base RNG class. Then, each user-defined subclass must define at least 3 methods: init()
and release(), which deal with parameters allocation and initialization from the host side, and
next(), which picks up the next random number within a kernel, on the device side. In the same
way, BCCL also permits us to verify that developers have provided two members to their class:
the seed and parameterized statuses. These two members respectively represent the current state
of the PRNG and its initial parameters. Fig. 1 sketches a UML class diagram of the expected
content of a PRNG class to be embedded in Shoverand:

Figure 1: UML class diagram of the expected interface of a PRNG in Shoverand

7 Conclusion

In this paper, we demonstrate how parallel stochastic simulations can be seriously impacted
by the quality of the underlying Random Number Generators (RNGs), and the partitioning
techniques used to feed such applications [10]. Still, we have at our disposal a set of very
reliable sequential generators and a set of distribution techniques adapted to the different kinds
of generators.

From a practitioner’s point of view, we have described Shoverand: a CUDA library that
embeds the PRNGs displaying the best statistical quality. Moreover, its user-friendly interface
make it a very serious choice when faced to its counterparts.

Shoverand is freely available for download at the following URL: http://http://forge.

clermont-universite.fr/projects/shoverand.
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