
Parallelisation Strategies for Large Scale Cellular Automata Frameworks in
Pharmaceutical Modelling

Marija Bezbradica, Martin Crane and Heather J. Ruskin
Centre for Scientific Computing and Complex Systems Modelling, School of Computing

Dublin City University, Dublin 9, Ireland
{mbezbradica, martin.crane, hruskin}@computing.dcu.ie

ABSTRACT

Cellular Automata (CA) properties facilitate the detail re-
quired for the bottom-up approach to modelling and simu-
lation of a broad range of physico-chemical reactions. In
pharmaceutical applications, CA models use a combina-
tion of discrete-event rules based on probabilistic distri-
butions and fundamental physical laws to predict the be-
haviour of active substances (drug molecules) and struc-
tural changes in Drug Dissolution Systems (DDS) over
time. Several models of this type have been described so
far in the scientific literature. Yet, practical applications
are lacking in the context of large-scale, high-precision,
high-fidelity simulations. The key obstacle to parallelisa-
tion of such models is not only the amount of data involved,
but also the fact that many of these models incorporate
agent-like behaviour within the CA framework in order to
describe pharmaceutical components. This makes commu-
nication across process boundaries expensive. In this pa-
per, we apply different parallelisation strategies to a large
scale CA framework, used to model coated drug spheres.
We use two parallel-computing application programming
interfaces (APIs), namely OpenMP and MPI, to partition
the simulation space. We analyse the applicability of each
API to the problem individually, as well as in the hybrid
solution. We examine speedup potential and overhead for
local and global communication for simulation speed and
solution scalability. For these types of problems, our results
show that performance is much improved for appropriate
combinations of parallelisation solutions.

KEYWORDS: Cellular Automata, Modelling, Hybrid
models, HPC, Spatio-temporal model

1. INTRODUCTION

As modern drug formulations become more advanced,
pharmaceutical companies face the need for adequate tools
to help them to satisfy complex requirements, such as re-
duction of unnecessary adsorption rates, by allowing them
to model release kinetics of controlled and targeted drug re-
lease [6]. The design needs to consider a plethora of chem-
ical interactions, for which information is partial with de-
tails often inferred only through observing superposition of
underlying phenomena. This is particularly the case when
knowledge of the DDS is incomplete. Thus, probabilistic
computational modelling is crucial to the design of such
experiments, both in terms of reducing high experimental
costs and in predicting system-dependent changes.

Following initial use of CA in probabilistic models in the
pharmaceutical context [12], models developed to date are
numerous [1], [4], [7], [11], [13] and provide several pos-
sible perspectives on pharmaco-kinetic system representa-
tion in CA space. Most are limited to 2D geometries, with
only occasional consideration of the complexities of 3D
space. The CA approach itself is applicable to a wide range
of pharmaceutical systems, without requiring detailed ini-
tial knowledge of dissolution mechanisms. For this model
type to make high fidelity predictions, (based on underly-
ing structural behaviour), while dealing with a broad range
of simulation parameter values, such as drug diffusion co-
efficients, (which significantly affect times needed for sim-
ulation), their complexity and size must increase. In the
present high performance computing era, the resources to
process such models efficiently are readily available, but
algorithmic solutions in this field tend to lag behind. The
key problem to solve is the expense in terms of time and
data load of cross-process communication present in par-
allelisation of such models, a consequence of the fact that
many of them incorporate agent-like behaviour within the

978-1-4673-2362-8/12/$31.00 ©2012 IEEE 223

CA framework [2].

In this paper, we apply different parallelisation strategies
to an existing CA framework, used to model novel, con-
trolled drug formulations such as coated drug spheres [3].
In controlled drug design, one of the main factors influenc-
ing drug dissolution is sensitivity to the physical thickness
of spherical coatings. This is usually orders of magnitude
smaller than the core sphere radius, so that large 3D models
are needed to investigate different scales.

The following sections deal with: an overview of the model
dynamics with a short introduction to dissolution phenom-
ena (Section 2); Section 3 discusses implementation of dif-
ferent parallelisation algorithms on the model space, while
Section 4 provides results of the performance tests. Sec-
tion 5 summarises conclusions and outlines possible future
directions.

2. MODEL DYNAMICS

The essence of probabilistic models in pharmaceutical
modelling is the representation of different dissolution
phenomena, such as erosion (polymer chain disentangle-
ment), swelling (polymer chain expansion) or drug diffu-
sion (polymer movement between regions of different con-
centration), through assignment of probability values to
possible outcomes. Assigned probabilities are tied to the
description of the relative speed of the modelled phenom-
ena and are usually derived from information on diffusion
coefficients of different materials.

The basis of our model can be briefly described in terms of
the following criteria:

• Three-dimensional discrete space allows for models
of various geometries and device compositions

• Internal state variations are set randomly according
to the desired probability distribution using Direct
Monte Carlo methods: this, since local distributions
of device features, e.g. drug density or polymer com-
position at a given site, are unknown

• Different dissolution phenomena are modelled inde-
pendently: we can separately investigate the influence
of polymer swelling while ignoring coating erosion
and vice-versa

• Efficient large scale simulation: this, in order to ex-
plore molecular and/or small-scale level effects

• This specific model implementation simulates the dis-
solution of a single bead represented in a three-
dimensional space. The space itself is represented as a

lattice, divided into discrete cells, with each being de-
scribed by a compound state Ψ(i,j,k,t) depending on
the aggregate condition of the bead structure at dis-
crete space coordinates (i, j, k) and at a discrete point
in time (t). Cellular Automata rules of the type:

Φ(σ) : Ψ(i,j,k,t) → Ψ(i∗,j∗,k∗,t+∆t) (1)

are defined for each cell and are applied to the com-
pound state (Ψ) of either the current cell - (i*, j*, k*)≡
(i, j, k) - or any eligible cell within the Moore neigh-
bourhood - (i*, j*, k*) ≡ (i±1, j±1, k±1) - in order
to re-evaluate it after each time increment (∆t) of the
simulation. When a particular rule is applied to the
cell state, it considers the state of all neighbouring
cells (σ) in the 3D space (26 in all, corresponding to a
3D Moore neighbourhood), before defining its effect
on that particular cell or on its neighbour. The rules
applied can model any distinct process that causes
change in the bead state, or its transfer to the neigh-
bouring cell, including drug diffusion, chain-scission
of polymers, erosion or swelling of device core.

The bead itself is represented as an idealised sphere, con-
structed of two layers - a coating layer which consists of
entangled polymer chains and a core layer, which contains
the drug molecules dispersed within the polymeric carrier.
The possible states of each cell represent different struc-
tural forms of the bead that affect the behaviour of those
molecules as they diffuse out of the sphere (Figure 1).

Figure 1: Visualisation of Different Dissolution Stages in
the CA Framework. (Left) Initial Coating and

Undegraded Core; (Right) Coating Polymer Chain
Disentanglement and Expansion due to Water Influx.

3. PARALLELISATION SCHEMES

In order to develop an efficient parallelisation algorithm for
the CA model presented, we need to understand first the
fundamental types of cell communications and cell trans-
fers occurring within it. Traditional synchronous CA mod-
els usually follow a standard pattern where a cell state is

224

passively dependent on its neighbours and, based on their
state values, is updated itself in the following iteration.
These kinds of models should fit into the category of so
called ”embarrassingly parallel” problems, where paralleli-
sation of the problem space is straightforward [8]. How-
ever, differences in the rule types in our case mean that
certain types of shared state and synchronisation between
different parallel processes is necessary.

3.1. Rule Types

In the presented model, each cell has a state describing the
current process of several different physico-chemical phe-
nomena:

• Amount of degradation of polymer chains

• Amount of expansion potential of polymer chains

• Amount of drug particles present in the cell

These sub-states are mutually independent and can be up-
dated separately from each other. Thus, we cannot treat
whole cell state updates as ”atomic”, only sub-state ones.
Therefore, every single cell has potential to be updated sev-
eral times during a single simulation iteration.

Figure 2: Elementary Types of CA Rules Present in the
Model.

Model rules that affect those sub-states can generally be
classified into three fundamental types (Figure 2):

• Temporal rules which change the state of a single cell
without neighbour influence. This type of rule is al-
ways deterministic (e.g. polymer degradation over
time)

• Neighbourhood-dependent rules which change the
state of a single cell, based on the combination of
states from neighbouring cells. This type of rule can
either be deterministic (polymer erosion) or proba-
bilistic (polymer wetting)

• Neighbourhood-dependent rules which change both
the state of the cell and the state of one of its neigh-
bours. This type of rule is always probabilistic (e.g.
drug diffusion, polymer swelling).

The particular obstacle to overcome for parallelisation of
the model to be efficient is effective communication of the
third type of rule across parallelisation boundaries. These
rules were introduced to realistically simulate the physico-
chemical processes which have an active spatial span, as
opposed to being passively affected by the neighbour state.
However, the ability of the cell to affect the neighbour state
in a probabilistic manner leads to the possible occurrence
of multiple updates of a single cell from two or more of its
neighbours (Figure 2). To resolve possible conflicts several
approaches may be used:

• The neighbour cell can be marked as updated for all
sub-states and no further state changes permitted

• The neighbour cell can be marked as updated for a sin-
gle type of sub-state change (e.g. polymer swelling),
but other types of state changes (e.g. drug diffusion)
may be permitted

• The neighbour cell state can be updated multiple times
and all types of state changes may be permitted. In this
case, changes are considered to be additive.

In order to preserve physical process realism, the model
generally assumes the third approach; however there can
be cases where the neighbouring cell is precluded from a
certain type of update (e.g. due to change of state). To
illustrate the point let us consider two examples. In the
first example, the drug diffusion algorithm selects the same
target cell for drug packet movement from two different
neighbours. In order to correctly describe the resulting
movement, the destination cell will contain packets from
both sources. In the second example, polymer expansion
into the coating layer has caused a neighbour state change
which prevents any further updates to the destination cell.
In general, for the latter kind of updates, we assume a pri-
ority approach based on which cell caused the first change
to the destination cell state. Any subsequent attempts to
change the state are ignored. However, from the parallel
implementation perspective, this implies both the need for
cells to communicate their state across to that of the desti-
nation cell, as well as some kind of locking access to the
destination cell during the process, in order not to cause
partial or incorrect updates and thus loss of data.

3.2. Main Model Algorithm

The main model algorithm is implemented as multiple pass
visits of each cell in the 3D matrix. The cells are visited
in random order, using a shuffle approach, to avoid any
potential bias or rule cycle. In the first pass, when a cell
is visited, all possible behaviours defined for the particu-
lar cell type are evaluated, and applied based on calculated
probabilities. The resulting state is then updated in the sec-
ondary matrix. When the first pass is finished, matrices are

225

swapped, and a second pass is performed to calculate the
resulting global state of interest to the modellers, such as
new dissolution boundary radii, and overall amount of drug
dissolved. Since only one pass occurs at any one time, there
are no conflicts in cell updates. The algorithm pseudo-code
is described as Algorithm 1:

Algorithm 1 Update(Matrix M)
1: Secondary = M
2: shuffled cell vector = Shuffle(M)
3: for each c in shuffled cell vector do
4: for each rule in rule list do
5: Apply(c, rule)⇒ Secondary
6: M = Secondary
7: ComputeRelease(M)

3.3. Thread-level Parallelism

The first approach we consider, for solution of the effi-
ciency problem, involves thread-level parallelisation on a
shared multi-processing (SMP) architecture. The main ma-
trix is kept as is, and the secondary matrix is divided into
logical regions of equal height, where updates in each re-
gion are controlled from a separate execution thread (Fig-
ure 3). Since the matrix state is shared in memory and visi-
ble to all threads, we now have the potential for conflicts in
cell state updates. In order to minimise the negative effects
of explicit thread synchronisation, cell state locking is con-
sidered only at region boundaries. Namely, two boundary
layers on each side of the region, except in the case of the
first and last region, are considered to be ”shared” and lock-
ing is enforced for any state changes in that region during
the single update period.

Figure 3: Parallelisation Strategies - OpenMP.

However, other threads are permitted to make any updates
that are considered legal by the rule set, after the lock is
lifted. The pseudo-code for the algorithm modification is
given as Algorithm 2. The standard OpenMP API primi-
tives have been used as a means of implementing the paral-
lelisation of the ”for” loops in the main algorithm.

Although the approach provides a straightforward algorith-
mic solution to the problem, SMP architectures are gen-
erally limited by the number of available execution cores,
and performance gain from this type of parallelisation has
a ”hard ceiling” set by the underlying architecture. Hence,

in order to improve the execution times further, we have to
cross the process and machine boundaries.

Algorithm 2 UpdateByThreads(Matrix M)
1: Secondary = M
2: parallel for each region in M.Regions
3: shuffled cell vector = Shuffle(region)
4: for each c in shuffled cell vector do
5: if(IsShared(c) == true) then lock(Secondary(c))
6: for each rule in rule list do
7: Apply(c, rule)⇒ Secondary(region)
8: if (IsShared(c) == true) then unlock(Secondary(c))
9: #end parallel
10: M = Secondary
11: ComputeRelease(M)

3.4. Process-level Parallelism

In order to split the algorithm execution across the differ-
ent execution nodes, the focus shifts to solving the com-
munication problem instead of the synchronisation one. In
distributed computing platforms, such as MPI, a state has
to be explicitly shared by sending and receiving over the
communication network. This network now introduces an
additional variable in the model performance, and intro-
duces the need to define a communication pattern between
different model regions.

Algorithm 3 CrossProcessUpdate(Matrix M, int rank)
1: Secondary = M
2: n = Secondary.Regions.Count
3: Matrix region
4: if(rank == MASTER) then
5: Scatter(M.Regions)⇒ region
6: for each c in Shuffle(region) do
7: if(IsBoundary(c) == true) then skip
8: ApplyRules(c, rule list)⇒ Secondary(region)
9: ExchangeBoundary(rank, rank + 1)
10: for each c in Shuffle(region.boundary) do
11: ApplyRules(c, rule list)⇒
12: Secondary(region.boundary)
13: if(rank == MASTER) then begin
14: Gather(M.Regions)⇐ Secondary(region)
15: ComputeRelease(M)
16: end

Generally, CA model space can be efficiently sent to sep-
arate execution nodes using a ”scatter-gather” algorithm.
Regions of equal size are sent (scattered) from a ”master”
process, responsible for overall state management, to two
or more ”slave” processes, which are solely responsible for
the simulation of a single region. After the regions have
been simulated, their state is returned (gathered) back by

226

the master process, which has the responsibility of assem-
bling them back together and calculating the resulting out-
put. It is interesting to note that, due to the fact that the
master process is idle during the period between the scatter
and gather phases, it also assumes the role of the slave, by
assigning itself as owner of one of the regions to update.

Figure 4: Parallelisation Strategies - MPI.

In our particular case, scattering of the regions is not
enough because regions share logical space of the CA
framework, so that a mechanism to send boundary cell
states across this logical space needs to be present. Al-
though MPI allows for asynchronous data communication
that can be used on a per cell basis, i.e. a cell sends out
updated state information as soon as it is changed, this
places a prohibitive performance strain, both in terms of
the amount of micro-communications that need to be made
and in view of the fact that any boundary cell update would
need to wait on neighbour boundary state updates in order
to continue with the execution. To avoid this, we choose
to serialise boundary layer updates to the end of the region
update cycle. Similar to the concept of thread-level shared
layers, we introduce process-level shared layers. These are
constructed of boundary layers in each region. As illus-
trated in Figure 4, the update of the boundary layers is now
the sole ownership of just one of the neighbouring process
regions that share those layers. Upon completion of re-
gion updates, which can be done without the need for data
from neighbouring processes, boundary layer information
is sent to the ”owner” process which completes the region
update cycle, and returns the updated state back to the ini-
tial process. The main cycle then completes through the
slave processes sending back the resulting state to the mas-
ter. The resulting pseudo-code is presented in Algorithm
3: for brevity, the function ApplyRules replaces the be-
havioural ”for loop” from previous code examples, which
was responsible for rule applications.

Although this approach allows a much larger parallelisa-
tion ceiling, the fact that it involves cross-process commu-
nications, usually made across a physical network, means
the bandwidth speed is the main bottleneck that impacts
performance. Even when executing on the same node, us-
ing inter-process communication, the overhead can be par-

ticularly large, especially considering the amount of data
present in the model.

3.5. Hybrid Parallelism

The advantages and disadvantages of the proposed paral-
lelisation strategies naturally lead to the solution where
both are combined in order to minimise the negative im-
pacts of each [5]. On the one hand, we want to avoid
the ”hard ceiling” present in the SMP solution by leverag-
ing cross-process communication, while on the other, we
want to minimise the communication overhead present in
the message-passing paradigm. In order to achieve this, we
execute one process per node via MPI, but implement the
threading within each region by using OpenMP. As a re-
sult, the process-level communication is reduced to an ab-
solute minimum, while the limit to the amount of cores that
can be used is drastically increased. Of course, commu-
nication overhead and non-parallelisable elements of the
model will result in diminishing returns as the number of
cores increase. Also the model geometry will be an ulti-
mate limit, as the number of cores approaches the number
of layers present. The resulting hybrid pseudo-code algo-
rithm is shown as Algorithm 4 and its schematics in Figure
5.

Figure 5: Parallelisation Strategies - Hybrid.

4. RESULTS

This section presents the performance results obtained by
using the different parallelisation strategies. Model runs
were performed using the Irish Centre for High End Com-
puting (ICHEC) Stokes supercomputer. Stokes is an SGI
Altix ICE 8200EX cluster with 320 compute nodes. Each
compute node has two Intel (Westmere) Xeon E5650 pro-
cessors and 24GB of RAM. The nodes are interconnected
via two planes of ConntextC Infiniband. Our model was
implemented in C++ (using gcc 4.3.0 64bit compiler),
OpenMPI version 1.4.3 and GNU OpenMP (GOMP) ver-
sion 3.1. In all cases, 1440 iterations of the simulation were
run, with one iteration configured to represent one minute
of real time. This choice was based on the need to correlate
the data obtained to the in vitro experiments which usually

227

run for 24 hours. The bounding volume of the simulation
space was 300 x 300 x 300 cells, resulting in around 2.7
GB of model data.

Algorithm 4 HybridUpdate(Matrix M, int rank)
1: Secondary = M
2: n = Secondary.Regions.Count
3: Matrix region
4: if(rank == MASTER) then
5: Scatter(M.Regions)⇒ region
6: parallel for each slice in region.slices
7: for each c in Shuffle(slice) do
8: if(IsBoundary(c) == true) then skip
9: if(IsShared(c) == true) then lock(c)
10: ApplyRules(c, rule list)⇒ Secondary(region)
11: if(IsShared(c == true) then unlock(c)
12: #end parallel
13: ExchangeBoundary(rank, rank + 1)
14: for each c in Shuffle(region.boundary) do
15: ApplyRules(c, rule list)⇒
16: Secondary(region.boundary)
17: if(rank == MASTER) then begin
18: Gather(M.Regions)⇐ Secondary(region)
19: ComputeRelease(M)
20: end

4.1. Thread-level Parallelism

The focus of the first set of runs was on performance gain
achievable using OpenMP parallelisation only. Simula-
tions were run for 1-8 cores and as well as the execution
times, we observed speedup of different code segments
and their relative participation in overall program execu-
tion. Figure 6 (top) shows the improvement in execution
times, which is significant and near-linear. At the low end
of the tested spectrum, the initial execution time for non-
parallelised code is almost 11 hours, while at the opposite
end (8 cores) we gain a 6-fold wall-time improvement in
execution speeds. From the other two measurements, we
can see that the potential for speeding up parallel sections
of the code can bring further time reductions, as parallel
code still represents a larger portion of the total executed
code. However, we are bound by the limitation of the SMP
architecture, which prevents expanding the thread-parallel
approach further.

4.2. Process-level Parallelism

Further, dividing the algorithm across compute nodes al-
lows us to lift the restrictions imposed by the thread-level
paradigm, using the MPI framework. We investigated the
performance of pure-MPI, (i.e. no threading), solution over
2-32 cores, with the goals, both of comparing the perfor-
mance to OpenMP as well as examining speedup potential

and overhead for local and global communication on sim-
ulation speed and solution scalability. Results obtained in
Figure 6 (middle) show that, for this model size, commu-
nication overhead has a significant impact on simulation
times, although the potential of the MPI solution is ulti-
mately greater as it does not suffer from ”ceiling” limita-
tions.

Interestingly, due to expensive communication, the MPI
solution is not as efficient as a comparable OpenMP one.
Since the ”scatter and gather” operations incur a certain
overhead (from 1-2 seconds per iteration in our exper-
iments), the sequential portion of the simulation is in-
creased. For the case of 8 cores, relative performance is
almost 40% improved for thread-level parallelism. How-
ever, the real benefit occurs for a larger number of cores,
where the MPI solution benefits from practically unlimited
infrastructure.

4.3. Hybrid Parallelism

Combining the above two approaches was the ultimate ob-
jective of this experiment. By using the fine-grained paral-
lelism within a compute node, and thus avoiding the com-
munication price, we expected to gain some advantage over
the coarser-grained approach that MPI provides [9]. Figure
6 (bottom) presents the comparison of the two. From Fig-
ure 6 (middle), even with MPI for increasing number of
cores, there is an increase in the relative sequential execu-
tion time. This is in agreement with findings presented in
Figure 6 (bottom), where total improvement in execution
speeds reaches a plateau after a certain number of cores.
Above a certain point, at around 64 cores, the performance
of either MPI or hybrid approach reaches the limit for the
model.

Finally, we investigated the average time taken to simulate
each of the parallel slices and conclude that further optimi-
sation is possible by applying an appropriate load balancing
solution. For future work, some refinement of the approach
is indicated enabling current benchmarks to be re-evaluated
for different model-space division strategies.

5. CONCLUSION

We have presented several parallelisation strategies, aimed
at improving performance of the CA frameworks, used as
a modelling basis for pharmaceutical investigations. Each
strategy is viable, depending on speedup requirements and
available infrastructure. In general, parallelisation plat-
forms permit in-depth simulation of complex drug formu-
lations, as well as evaluation of a wide parameter range
through reduction of in silico experiment time.

228

(Left) Execution Times (OpenMP); (Centre) Parallel vs. Total Speedup (OpenMP); (Right) Sequential vs. Parallel Execution (OpenMP)

(Left) Execution Times (MPI vs. OpenMP); (Centre) Parallel vs. Total Speedup (MPI); (Right) Sequential vs. Parallel Execution (MPI)

(Left) Execution Times (Hybrid vs. MPI); (Centre) Parallel vs. Total Speedup (Hybrid); (Right) Per-Slice Simulation Times (1x8)

Figure 6: Performance Results: OpenMP (top), MPI (middle) and Hybrid (bottom)

229

The results show that the hybrid approach offers the best
performance, followed closely by the pure MPI based solu-
tion (i.e. no threading) over 8-32 cores. With the promised
advances in MPI implementation, this gap may reduce
further. Further improvements may be possible and can
be made by experimenting with different load balancing
methods, in order to close the gap observed in individual
thread/process execution times. Finally, it would be in-
teresting to see the applicability of the proposed solutions
when run as part of commodity cloud computing infrastruc-
tures, which already promise a flexible and cost-effective
solution platform [10] for the types of research questions
of core importance to the pharmaceutical industry.

ACKNOWLEDGEMENTS

This work is funded by the Irish Research Council for Sci-
ence, Engineering and Technology (IRCSET), through an
’Enterprise Partnership Scheme’ postgraduate scholarship.
The authors also wish to thank ICHEC for provided HPC
resources and Mr. Gilles Civario for valuable advice on
MPI during model development.

REFERENCES

[1] A. Barat, H. J. Ruskin, and M. Crane. ”Probabilistic mod-
els for drug dissolution. Part 1. Review of Monte Carlo and
stochastic cellular automata approaches”, Simulation Mod-
elling Practice and Theory, Vol.14, No.7, (2006), pp.843-856

[2] A. Barat, H. J. Ruskin, and M. Crane. ”3D Multi-agent
models for protein release from PLGA spherical particles
with complex inner morphologies”, Theory in Biosciences,
Vol.127, (2008), pp.95-105

[3] M. Bezbradica, H. J. Ruskin, and M. Crane. ”Modelling
drug coatings: A parallel cellular automata model of
ethylcellulose-coated microspheres”, Proceedings of ICBBB
2011, Vol.5, (2011), pp.419-424

[4] A. Göpferich and R. Langer. ”Modeling of polymer erosion”,
Macromolecules, Vol.26, (1993), pp.4105-4112

[5] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and
B. Chapman. ”High performance computing using MPI and
OpenMP on multi-core parallel systems”, Parallel Comput-
ing, Vol.37, No.9, (2011), pp.562-575

[6] J. A. Kimber and S. G. Kazarian, and F. Štěpánek.
”Microstructure-based mathematical modelling and spectro-
scopic imaging of tablet dissolution”, Computers & Chemi-
cal Engineering, Vol.35, No.7, (2011), pp.1328-1339

[7] T. J. Laaksonen, H. M. Laaksonen, J. T. Hirvonen, and L.
Murtomäki. ”Cellular automata model for drug release from
binary matrix and reservoir polymeric devices”, Biomateri-
als, Vol.30, No.10, (2009), pp.1978-1987

[8] F. Massaioli, F. Castiglione, and M. Bernaschi. ”OpenMP
parallelization of agent-based models”, Parallel Computing,
Vol.31, No.10-12, (2005), pp.1066-1081

[9] B. J. Pope, B. G. Fitch, M. C. Pitman, J. J. Rice, and M.
Reumann. ”Performance of hybrid programming models for
multiscale cardiac simulations: Preparing for petascale com-
putation”, IEEE Transactions on Biomedical Engineering,
Vol.58, No.10, (2011), pp.2965-9

[10] M. C. Schatz, B. Langmead, and S. L. Salzberg. ”Cloud
computing and the DNA data race”, Nature Biotechnology,
Vol.28, No.7, (2010), pp.691-693

[11] J. Siepmann, N. Faisant, and J.-P. Benoit. ”A new mathe-
matical model quantifying drug release from bioerodible mi-
croparticles using Monte Carlo simulations”, Pharmaceuti-
cal Research, Vol.19, No.12, (2002), pp.1885-1893

[12] K. Zygourakis. ”Development and temporal evolution
of erosion fronts in bioerodible controlled release de-
vices”, Chemical Engineering Science, Vol.45, No.8, (1990),
pp.2359-2366

[13] K. Zygourakis and P. A. Markenscoff. ”Computer-aided de-
sign of bioerodible devices with optimal release character-
istics: A cellular automata approach”, Biomaterials, Vol.17,
No.2, (1996), pp.125-135

230

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

