

Algorithmic Strategies for Optimizing the Parallel
Reduction Primitive in CUDA

Pedro J. Martín, Luis F. Ayuso, Roberto Torres, Antonio Gavilanes
Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid
Madrid, Spain

{pjmartin@sip, lf.ayuso@fdi, r.torres@fdi, agav@sip}.ucm.es

Abstract—Many general-purpose applications exploit Graphics
Processing Units (GPUs) by executing a set of well-known data-
parallel primitives. Those primitives are usually invoked from the
host many times, so their throughput has a great impact on the
performance of the overall system. Thus, the study of novel
algorithmic strategies to optimize their implementation on
current devices is an interesting topic to the GPU community. In
this paper we focus on optimizing the reduction primitive, which
merely reduces a data sequence into a single value using a binary
associative operator. Although tree-based and sequential-based
algorithms have been already implemented on GPUs, a
comparison of both algorithm performance had not been carried
out yet. Thus, our first contribution is to present an experimental
study of state-of-the-art reduction algorithms on CUDA. Next we
introduce two algorithmic optimizations that are integrated into
the fastest solution (a sequential-based algorithm), improving its
throughput even more. Finally, we replicate this methodology to
the segmented version of the primitive, which applies when the
input is composed of several independent segments. In this case,
it is not clear which algorithm exhibits the best performance,
since throughput deeply depends on the distribution of segments
along the input. According to our results, tree-based algorithms
run faster for small segments, while sequential methods are
better for medium and large ones.

Keywords- parallel reduction; segmented parallel reduction;
data-parallel algorithms; GPGPU; CUDA.

I. INTRODUCTION

Nowadays Graphics Processing Units (GPUs) are used to
accelerate a wide range of general-purpose applications by
exploiting their high-performance many-core processors. GPUs
usually contribute to the overall computation in two different
ways: carrying out some specific tasks through user-designed
kernels or executing some data-parallel primitives provided by
a growing number of libraries (e.g. CUDPP, CLPP, GPULib,
Thrust…). While programmers assume control of the
throughput of their kernels, primitives are integrated as black
boxes whose performance relies on the library. On the other
hand, hardware improvements incorporate more functional
units in each release, along with larger shared memories and
sophisticated cache hierarchies. For those reasons, the study of
algorithmic strategies to optimize the implementation of these
primitives, and the adjustment to the features of the upcoming
GPU architectures, are ever-interesting topics to the General-
Purpose GPU community [8].

In this paper, we focus on optimizing the classic reduction
primitive, paying attention to its two versions. Its unsegmented
form takes a binary associative operator  (e.g. ൅, ൈ, ݉݅݊
and ݉ܽݔ) and an array of ܰ data [a0, a1, ..., aN-1] as inputs, and
it returns as output one value (a0  a1  ...  aN-1). In its
segmented version, the input array is divided into segments of
consecutive data, and the output is the individual reduction of
each segment. Thus, the output size is the number of segments
included in the given input. Observe that the segmented
primitive could be easily implemented in terms of the
unsegmented primitive, by extracting each segment and
reducing it, isolated from the global input, with the
unsegmented primitive. Nevertheless, this should be done
many times (one for each segment), and some of the segments
may be too small to justify further kernel executions. In
consequence, this approach would not take the most of GPUs.
On the contrary, the segmented solutions we illustrate will
simultaneously perform separate parallel reductions on the
segments of the input. For this reason unsegmented and
segmented reductions are introduced as independent primitives
along the paper.

The two reduction versions are useful building blocks for
solving a wide variety of problems on GPU. For example and
using CUDA, the unsegmented version has been successfully
applied to solve the Single-Source Shortest-Path problem [12]
and to build the Minimum Spanning Tree [16], while the
segmented version to construct kd-trees on GPU for ray tracing
[17] and to accelerate sparse-matrix multiplication [3].

Concerning the properties the operator  must fulfill, only
associativity is essential. Actually, the correctness of all the
algorithms described along this paper deeply relies on it. Most
of the presented algorithms also make use of identity; so, 1
will denote an identity element for  from now on. Although
the operator could be commutative as well, as it happens to the
examples above, we will not suppose it in this paper, i.e. they
are considered to be “non-commutative”. The advantage of
using commutativity, along with associativity, is that any pair
of elements could be reduced regardless of their location on the
input. However, these pairs must belong to the same segment in
segmented reduction, which makes it difficult to exploit
commutativity in this case. Hence, the exploitation of
commutativity seems to come into conflict with the segment
arrangement.

978-1-4673-2362-8/12/$31.00 ©2012 IEEE 511

One of the main aims of this paper is to compare two kinds
of reduction approaches: recursive (tree-based) versus
sequential algorithms. In fact, our first contribution is to
experimentally confront the state-of-the-art algorithms of both
types. Obviously, we have replicated the experimental study for
the two versions of the primitive. As a second contribution, we
propose two algorithmic optimizations that can be integrated
into any of the previous algorithms, regardless their nature. We
have tested them into the fastest solution, resulting in
significant speed-up for unsegmented reduction. However, they
did not lead to succeed in the segmented case since the
resulting solutions are bounded by the shared memory size.

II. RELATED WORK

The kernels presented by Harris [10] are the most popular
CUDA implementations for the unsegmented reduction
primitive. They are actually included as project examples in
every CUDA SDK release. His document introduces seven
kernels from a didactic perspective, in such a way that each
kernel improves the performance of the previous one.
Nevertheless, many of them require the operator to be
commutative.

The two segmented reduction algorithms we have found are
located at the previous references [17, 3], where the primitive is
also applied to solve a specific problem. In both cases, those
proposals are based on the works of Blelloch for the scan
primitive below mentioned.

The reduction primitive is actually a part of the (inclusive)
scan primitive, which has been studied more widely because of
its great applicability [5]. Thus, we must describe in this
section some of the progress made on the scan primitive. Scan
also takes an array [a0, a1, ..., aN-1] and a binary associative
operator  as inputs, but it returns an array containing the
reduction of all the prefixes [a0, (a0  a1), ..., (a0  a1  ... 
aN-1)]. Scan also accepts a segmented version. In this case, the
output is the unsegmented scan of each segment.

The classic parallel algorithms for scan were studied by
Blelloch [4, 5]. His formulations were based on recursive
equations whose application described a full binary tree. For
this reason, they are called tree-based algorithms. Later on,
with the advent of GPUs, these formulations were adapted to
the novel programming model. Thus, tabulation techniques
were applied to replace the recursive nature of tree-based
algorithms with an iterative processing. Horn [11] was the first
developing GPU-based implementations of the scan primitive.
The complexity O(NlogN) of its formulation was improved by

Gress et al. [9] and Sengupta et al. [13] to a linear algorithm.
The latter presents a work-efficient step-efficient
implementation on CUDA that was adapted to the segmented
case a year later [14]. In order to improve performance of
previous algorithm, the authors exploit shared memory usage.
However, the implementations involve bank conflicts, and the
kernels may not scale well with shared memory size.

Subsequently, Dotsenko et al. [7] presented work-efficient
sequential algorithms for the unsegmented and segmented scan.
They decompose the input into blocks that are arranged as
matrices in shared memory. Each matrix is sequentially
reduced by rows and partial results are stored in a smaller
array, which is processed later on. The overhead of previous
tree-based formulations concerning synchronization barriers is
reduced since each thread reduces a row. Immediately,
Sengupta et al. [15] improved their tree-based algorithms
incorporating an intra-warp operation: each warp individually
performs a scan over 32 elements. Next, one warp carries out
another intra-warp execution over the previous results to
generate the reduction of the whole block. The advantages of
this operation are that many synchronization barriers become
unnecessary. However that paper does not include a
comparison with the work by Dotsenko et al, thus, the most
recent and fastest implementations of both trends –the intra-
warp scan [15] for the tree-based trend and the sequential scan
[7] for the sequential family– have not been experimentally
compared yet.

III. UNSEGMENTED REDUCTION

Along the paper, we use the term block to denote two
different concepts. A CUDA-block is a block of threads, while
a data-block is a chunk of consecutive data that is individually
reduced by a CUDA-block. As we will see later, a CUDA-
block can reduce one or several data-blocks. We use ܤ and ܦ
to denote the sizes of a CUDA-block and a data-block,
respectively (see Glossary).

A data-block is loaded from global memory to shared
memory by the corresponding CUDA-block, before being
reduced. This is done exploiting coalesced readings. When the
input size N is not a multiple of D, we append a virtual padding
to the last data-block, which is filled with values 1. This is
done through an if-statement during the loading stage. Thus, all
the algorithms of this paper work on ஽ܰ ൌ ݈ܿ݁݅ሺܰ/ܦሻ data-
blocks.

In order to reveal the main differences among the
algorithms, we focus on how a data-block is reduced into a
single result, and on how this value is handled afterwards.
Thus, we will suppose that the array s_data holds a data-block
in shared memory for subsequent reduction.

A. State-of-the-art Reductions

A common characteristic of these algorithms is that each
CUDA-block exactly reduces a data-block. The result is then
written back into global memory by a thread of the CUDA-
block. Hence, the grid size is ܩ ൌ ஽ܰ, which also corresponds
to the output size. In consequence, the output must be reduced
again with another kernel launch, and so on, until a single result
is left. This is usually known as a multi-pass approach.

N	 Number of elements in the input array
D	 Size of a data-block

஽ܰ	 Number of data-blocks inside the input ሺൌ ݈ܿ݁݅ሺܰ/ܦሻሻ
B	 Number of threads in a CUDA-block
G	 Number of CUDA-blocks in a grid
R	 #Elements a thread loads in tree-based reductions ሺൌ ሻܤ/ܦ
W	 Width of the matrix in sequential matrix-reductions
H	 Height of the matrix in sequential matrix-reductions

MBPM	 Maximum number of resident blocks per multiprocessor
P	 Number of producer warps in the producer-consumer scheme
C	 Number of consumer warps in the producer-consumer scheme

nBanks	 Number of banks in the shared memory of the device
Glossary. Parameters used in the paper.

512

1) Tree-based reductions: Supposing that s_data lays on
the leaves of a full binary tree, tree-based algorithms reduce
each pair of siblings using , in a bottom-up manner. Hence,
they require ܦ to be a power of two. The underlying recursive
equations are:

redሺ݊ሻ ൌ ቊ
red൫݈݂݁ݐሺ݊ሻ൯⊕ red൫ݐ݄݃݅ݎሺ݊ሻ൯ ݎ݁݊݊݅	ݏ݅	݊	݂݅

݊ ݂݈ܽ݁	ݏ݅	݊	݂݅
									ሺ1ሻ

Algorithm 1 is similar to the kernel#2 by Harris [10]. At
each iteration, a thread reduces two elements at line 14 (with
indices ai and bi), and stores the result in ai, which
corresponds to a left-storing approach. Storing into bi would
be also possible (right-storing). The first iteration requires a
thread for each pair of elements, thus ܦ ൌ must be a ܤ and ܤ2
power of two as well. So the algorithm executes the loop
ሻܤଶሺ2݃݋݈ times. Also observe that in each iteration, the
number of active threads is halved (line 7), reaching a single
active thread in the last iteration.

In order to avoid bank conflicts in shared memory, Harris
replaces this interleaved addressing access with a sequential
addressing pattern in his kernel#3. This new approach requires
 to be commutative, so this technique has not been considered
in this paper. On the contrary, we overcome bank conflicts by
including the usual padding of one element every nBanks
elements, where nBanks is the number of banks in the shared
memory of the device. Thus, the total padding is 2B/nBanks
elements. This is why we update the indices at lines 11 and 12.
Incorporating this offset does not penalize occupancy on
current devices, and the overhead due to the index arithmetic is
negligible.

Tree-based algorithms are quite fast, but they suffer from
too much synchronization. Notice that a barrier must be located
between iterations (line 6). However, the number ܴ of elements
that a thread loads from global memory can be tuned to achieve
a certain speed-up. Notice that ܦ ൌ ܴ ∗ then holds. We do ܤ
not consider such improvements as algorithmic optimizations,
but code optimizations, so we have not paid attention to them
in this paper. Observe that ܴ =2 in Algorithm 1. On the
contrary, ܴ=8 in the scan implementation of CUDPP 1.1.1 [6].

2) Intra-warp tree-based reductions: Sengupta et al. [15]
improve the previous tree-based algorithm by working at the
warp level. In order to explain this techique, let us extend the
notation of CUDA-block and data-block to the case of warps.
Briefly, a CUDA-warp is composed of 32 adjacent threads
inside a CUDA-block, which run implicitely synchronized in
SIMD fashion, while a data-warp is a chunk of 32 consecutive
data inside a data-block. Sengupta et al. avoid bank conflicts
and many synchronization barriers, using an intra-warp routine
in which each data-warp is scanned by a CUDA-warp. The
device function tb_reduceWarp of Algorithm 2 adapts this
tecnique to the reduction primitive. During its execution, each
CUDA-warp is responsible for reducing one data-warp, and
sending the result to parameter target. The five iterations that
are enough to reduce a data-warp have been unrolled, as the
authors do. Notice that no explicit synchronization barriers are
requiered due to the way CUDA-warps run in CUDA.

The kernel TB4_Warp_reduction of Algorithm 2
repeatedly invokes the previous function to reduce the whole
data-block. It uses a shared array called s_result to hold the
intermediate result each data-warp produces. We have used
-thus ܴ=4, there are Nwarps=8 CUDA ,256=ܤ and 1024=ܦ
warps, which are responsible for reducing 4 data-warps, and
the number of intermediate results is 32. Each data-warp is
reduced at line 28, and the result is sent to
s_result[warpid+k*Nwarps]. Finally, intermediate results are
reduced again at line 33 by the first CUDA-warp. The final
result is sent to s_data[0] for the sake of clarity; in practice it
is sent straight to global memory.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

void TB2_reduction (float* s_data){
 unsigned int thid = threadIdx.x;
 unsigned int stride = 1;
 unsigned int i, ai, bi;
 for(unsigned int d=B; d>0; d>>=1){
 __syncthreads();
 if(thid < d){
 i = 2*stride*thid;
 ai = i;
 bi = ai + stride;
 ai += (ai >> 5); //log2(nBanks)=5
 bi += (bi >> 5); //log2(nBanks)=5
 //Reduction
 s_data[ai] = op(s_data[ai], s_data[bi]);
 }//if
 stride <<=1;
 }//for
 //The result is in s_data[0]
}

Algorithm 1. Tree-based reduction. Rൌ2.

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

void tb_reduceWarp(float* s_data,
 unsigned int thid,
 unsigned int lane,
 float& target){
 //REDUCTION INTRA‐WARP (Left‐Storing)
 if(!(lane & 1)) s_data[thid]=
 op(s_data[thid], s_data[thid+1]); //%2=0
 if(!(lane & 3)) s_data[thid]=
 op(s_data[thid], s_data[thid+2]); //%4=0
 if(!(lane & 7)) s_data[thid]=
 op(s_data[thid], s_data[thid+4]); //%8=0
 if(!(lane & 15)) s_data[thid]=
 op(s_data[thid], s_data[thid+8]); //%16=0
 if(!(lane & 31)) target=
 op(s_data[thid], s_data[thid+16]);//%32=0
}
// ***************************************
//D=1024, B=256 => Nwarps=8, 32 intermediate results
void TB4_Warp_reduction (float* s_data){
 __shared__ float s_result[32];//32 results
 unsigned int thid = threadIdx.x;
 unsigned int warpid = thid >> 5; //thid/32
 unsigned int lane = thid & 31; //thid%32

 //Reduce s_data[kB+warpid*32, kB+(warpid+1)*32)
 //and store the result into s_result[k*Nwarps+warpid]
 for(unsigned int k = 0; k<4; k++)
 tb_reduceWarp(s_data, thid+k*blockDim.x, lane,
 s_result[warpid+k*Nwarps]);
 __syncthreads();

 if(warpid==0)
 tb_reduceWarp(s_data, thid, lane, s_data[0]);
 //The final result is in s_data[0]
}

Algorithm 2. Intra-warp tree-based reduction. Bൌ28,	Dൌ210.

513

3) Sequential reductions: Dotsenko et al. [7] propose an
algorithm for the scan primitive that is based on a matrix
representation of s_data, as Fig. 1 shows. ܪ 	and ܹ
respectively denote the height and width of this matrix, so
ܦ ൌ ܪ ൈܹ . Algorithm 3 adapts their MatrixScan to the
reduction primitive. Observe that one thread is responsible for
sequentially reducing one row of ܹ elements, thus only ܪ
threads are required to reduce the whole data-block (line 5).
Nevertheless, all the threads inside the CUDA-block
cooperated at the beginning to load the data, including these ܪ
threads.

Since reducing a row involves no synchronizations, the
performance of the algorithm could be improved by
maximizing ܹ. Nevertheless, ܦ must be small enough to fit in
shared memory, thus ܹ and ܪ are forced to be rather small as
well. In addition, ܪ should be a multiple of the CUDA-warp
size in order to avoid divergent warps. To sum up, Dotsenko et
al. finally assign ܹ and ܪ to be the warp size (ܹ ൌ ܪ ൌ 32).
A padding of one element is then added at the end of each row
to avoid bank conflicts. Moreover, the ܪ values that are
obtained after reducing the ܪ rows can be reduced using one
intra-warp tree-based reduction (line 16). Also notice that only
one warp continues beyond line 5 since ܪ ൌ 32, so no explicit
synchronization is needed at line 15.

B. Algorithmic Optimizations

We present two algorithmic optimizations that can be
integrated into any of the solutions described above.

1) Persistent blocks: We can force each CUDA-block to
reduce multiple consecutive data-blocks, instead of a single
one. Thus, the output size decreases since the number of
CUDA-blocks ሺܩሻ is smaller than the number of data-blocks.
Moreover, the number of multipasses falls as ܩ decreases. The

reductions of the data-blocks assigned to a CUDA-block are
accumulated using a shared variable. Specifically, one of its
threads accumulates the result of a data-block into the
reduction of the previous data-blocks.

In order to distribute all the data-blocks among all the
CUDA-blocks, we simply incorporate two new parameters into
the kernel to indicate the quotient q and the remainder r of the
division ஽ܰ/ܩ. Then, a CUDA-block must reduce q+1 data-
blocks if blockIdx.x<r, or just q data-blocks otherwise.

In order to improve performance, the grid size must be
carefully chosen according to the requirements of the kernel.
Given a block size ܤ , the maximum number of resident
CUDA-blocks per multiprocessor (MBPMሻ is computed
according to the CUDA Occupancy Calculator. Then ܩ is fixed
to NUM_MULTIPROCESSORS*MBPM. The underlying idea is
to fill each multiprocessor with the maximum number of
CUDA-blocks that can reside together on it. Thus, no CUDA-
warp will wait for being allocated on a multiprocessor. We use
the adjective persistent to denote these CUDA-blocks since
they will be residing on the device until the whole input is
processed.

Using persistent blocks results in a small grid size, since the
number of multiprocessors is limited by the device, and MBPM	
cannot exceed 8 in any of the current CUDA compute
capabilities. Thus, one kernel execution is almost enough to
reduce the whole input. Indeed, the results after the first launch
do not even complete a data-block because ܩ ൏ ܦ . In
consequence, we remove the usual recursion controlled by the
host, and furthermore the cost of storing partial results into
global memory between recursive calls.

The idea of persistent blocks has been already applied to
other topics. For example, it was recently used to accelerate the
traversal step of GPU-implemented ray tracers by Aila and
Lane [1], under the term persistent thread. In fact, Harris [10]
already proposed a reduction algorithm, the so-called
cascading kernel#7, whose CUDA-blocks reduce many data-
blocks, but during the load stage, rather than during the
reduction stage, and using a commutative operator.
Nevertheless, these authors do not explain how the grid size
 .is chosen in their respective papers (ܩ)

2) Producer-consumer scheme: We add another
optimization onto the persistent technique in order to help the
schedulers to hide memory latency a little more. The idea is to
classify the set of CUDA-warps into two groups: consumers
and producers, of respective sizes C and P. At each iteration,
consumer warps sequentially reduce the data-block loaded in
the previous iteration, while producer warps load a new data-
block. Thus, consumers can reduce at the same time producers
load new data.

Algorithm 4 shows the code fragment that implements the
producer-consumer scheme. Two data-blocks are held in shared
memory, which are accessed through two pointers, s_load and
s_comp. These pointers are swapped at the beginning of each
iteration (line 10). Then, consumer warps reduce the data-block
pointed by s_comp (line 13), while producer warps load the

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

void Matrix_reduction (float* s_data){
 unsigned int thid = threadIdx.x;
 float current_red;
 //Only the first threads reduce
 if(thid < H){
 unsigned int s_base = thid * (W + PADDING);
 float* row = &s_data[s_base];
 current_red = row[0];

 for(unsigned int k=1; k<W; k++)
 current_red = op(current_red, row[k]);

 //Store the reduction of the row
 s_data[thid] = current_red;

 tb_reduceWarp(s_data, thid, thid&31, s_data[0]);
 }//if
} //The final result is in s_data[0]

Algorithm 3. Sequential matrix-based reduction. HൌWൌ 32.

X0 X1 ... XW-1 pad

... pad

X(H-1)W X(H-1)W-1 ... XHW-1 pad

W

H

Figure 1. Arranging s_data as a matrix.

514

data-block that is located at index first in global memory into
the buffer pointed by s_load (line 15). Observe that a
synchronization barrier is required (line 16) to prevent warps
from overwriting the other buffer. Also notice that the first/last
data-block is loaded/reduced before/after the loop. The number
of iterations is controlled by variable d, which holds the number
of data-blocks assigned to this CUDA-block. The result of
reducing a data-block is accumulated into the shared variable
s_current_red inside the reduceChunk routine.

Fig. 2 graphically exposes the advantages of this technique,
using the sequential matrix-based solution presented in
Algorithm 3 as the underlying reduction method. Remember
that each data-block is arranged as a matrix of size ܦ ൌ ܪ ൈ
ܹ ൌ 1024, where ܪ ൌ 32 and ܹ ൌ 32 denote its height and
width, respectively. The figure depicts how warps can be
dispatched if the optimization is incorporated (on the left), and
if is not (on the right). In the first case, the producer-consumer
scheme has a configuration of ܲ ൌ 8 producers (warps from
W1 to W8) versus ܥ ൌ 1 consumers (warp W0). Observe that a
single consumer warp is enough, since exactly 32 rows must be
reduced. In addition, each producer is responsible for loading

ܲ/ܦ ൌ 128	 elements, which is done in 128/32 ൌ 4 coalesced
readings. Whenever a producer has requested data from global
memory, it must wait until those data are available. This
waiting time can be used to request more data by another
producer, or to reduce the previous data-block by the
consumer.

On the right, the figure shows the execution of the
persistent sequential matrix-based algorithm without the
optimization. In this case we have 8 warps in a CUDA-block
ሺܤ ൌ 256ሻ processing ܦ ൌ 1024 elements as before. Notice
that warp W0 starts reducing only when all the data-block are
available in shared memory. Thus, each iteration is slightly
longer than one using the producer-consumer scheme.

Although the producer-consumer paradigm is a well-known
technique, its implementation on GPU is a recent issue. Besides
our paper, Bauer et al. apply DMA techniques to solve in GPU
other problems [2]. Our scheme can be compared to their
“manual double-buffering” technique.

IV. SEGMENTED REDUCTION

In segmented reduction (s-reduction in the sequel), the
input is divided into segments. We demarcate them by using
another array of size N, called owner, such that owner[i] holds
the index of the segment of element i. Hence, owner is sorted in
non-decreasing order. Notice that the output of the s-reduction
is an array whose size is the number of segments. In the sequel,
the variable g_output will denote such array, which is located
on global memory.

Next we adapt the algorithms presented so far to the
segmented case. Again we focus on the reduction step, since it
exposes the differences among them. Thus, we suppose that
data and owners already hold in shared memory, specifically in
s_data and s_owner.

A. State-of-the-art Segmented Reductions

Zhou et al. [17] propose a tree-based algorithm by adapting
(1) to the segmented case. The underlying recurrences are:

s‐redሺ݊ሻ ൌ

ە
ۖ
۔

ۖ
s‐red൫݈ሺ݊ሻ൯ۓ ⊕ s‐red൫ݎሺ݊ሻ൯	൤

,ݎ݁݊݊݅	ݏ݅	݊ ܽ݊݀
owner൫݈ሺ݊ሻ൯ൌowner൫ݎሺ݊ሻ൯	

s‐red൫݈ሺ݊ሻ൯ ൤
,ݎ݁݊݊݅	ݏ݅	݊ ܽ݊݀
owner൫݈ሺ݊ሻ൯്owner൫ݎሺ݊ሻ൯ †

݊ ሾ݊	݅ݏ	݈݂݁ܽ

ownerሺ݊ሻ ൌ ቊ
owner൫݈ሺ݊ሻ൯ ݎ݁݊݊݅	ݏ݅	݊	

ത݊ ݂݈ܽ݁	ݏ݅	݊

Expressions ݈ሺ݅ሻ and ݎሺ݅ሻ respectively denote the left and right
children of an inner node ݅, and ത݊ is the owner of leaf ݊. Zhou
et al. include an extra operation that must be applied when the
siblings have different owners (label †). In this case, the s-
reduction of the right child must be accumulated into the
global solution. Specifically, each thread stores in ai the
reduction of two elements, only if their owners are the same.
Otherwise, only the left one is propagated, while the other is
used to update g_output. Hence, the prefix of the processed
chunk is propagated in a bottom-up manner, which agrees with
this left-storing approach. Fig. 3 shows an example of a tree-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

//Load the first data‐block
if(warpid>=C)
 loadChunk(first, s_load);
__syncthreads();
first += D;

//Producer‐consumer loop
for(unsigned int k=1; k<d; k++){
 //swap shared buffer pointers
 aux = s_load; s_load = s_comp; s_comp = aux;
 //Each thread does its job
 if(warpid<C)
 reduceChunk(s_comp, s_current_red);
 else
 loadChunk(first, s_load);
 __syncthreads();
 first += D;
} //for

//Reduce the last data‐block
if(warpid<C)
 reduceChunk(s_load, s_current_red);
__syncthreads();
//The result is in s_current_red

Algorithm 4. Producer-consumer scheme.

W0 W1 W2 W3 W4 W5 W6 W7

Figure 2. Producer-consumer scheme (left).
Persistent sequential matrix-based reduction (right).

T
im

e

 Reading Latency Reduction

W0 W1 W2 W3 W4 W5 W6 W7 W8

515

based s-reduction for the + operator; on the left it illustrates
the reduction process where each box contains a pair
(datum,owner), on the right it shows how the output buffer
evolves as the algorithm progresses. Notice that the buffer is
initialized with 1 values.

In order to adapt Algorithm 1 to the segmented case, it is
enough to replace line 14 with the following code fragment:

14
15
16
17
18
19

unsigned int lo = s_owner[ai]; //left owner
unsigned int ro = s_owner[bi]; //right owner
if(lo!=ro)
 g_output[ro] = op(g_output[ro], s_data[bi]);
else
 s_data[ai] = op(s_data[ai], s_data[bi]);

The partial result of the first segment inside this data-block

ends at s_data[0] and s_owner[0]. The kernel is responsible for
s-reducing a data-block, thus a multi-pass approach is required
again to completely s-reduce a larger input. This is common to
all the algorithms we present in this subsection.

Warps can also be exploited to improve Zhou et al.’s
algorithm by avoiding some synchronizations. Basically, we
must replace lines 7, 9, 11, 13 and 15 of Algorithm 2 with a
proper call to the following device routine, in order to obtain
tb_s_reduceWarp:

1
2
3
4
5
6
7

void s_reducePair_toTheLeft(float* g_output,
 unsigned int oLeft, float &dLeft,
 unsigned int oRight, float dRight){
 if(oLeft!=oRight)
 g_output[oRight] = op(g_output[oRight], dRight);
 else dLeft = op(dLeft, dRight);
}

Notice that prefixes are propagated again. Replacing in

TB4_Warp_reduction any call to tb_reduceWarp with a call to
tb_s_reduceWarp results in the intra-warp tree-based kernel for
s-reduction.

Concerning sequential matrix-based reduction, we must
replace lines 7-16 of Algorithm 3 with the following code
fragment to cover the segmented case:

 7
 8
 9
10
11

float* dRow = &s_data[s_base];
unsigned int* oRow = &s_owner[s_base];
//The first element is specially processed
current_red = dRow[0];
current_owner = oRow[0];

12
13
14
15
16
17
18
19
20
21
22
23
24
25

for(unsigned int k=1; k<W; k++){
 if(current_owner!=oRow[k]){
 g_output[current_owner] =
 op(current_red, g_output[current_owner]);
 current_owner = oRow[k];
 current_red = dRow[k];
 }else
 current_red = op(current_red, dRow[k]);
}//for
//Store the reduction of the row
s_data [thid] = current_red;
s_owner[thid] = current_owner;
tb_s_reduceWarp_toTheRight(s_data, s_owner, g_output,
 thid, thid&31, s_data[0], s_owner[0]);

Data layout is left-to-right, top-to-bottom, hence the suffix

of the processed chunk inside the row is propagated now (line
12), and the tree-based s-reduction at lines 24-25 must be right-
storing. The partial result of the last segment is sent to
s_data[0] and s_owner[0].

B. Algorithmic Optimizations

The techniques we proposed for the unsegmented case can
be integrated into the previous state-of-the-art segmented
algorithms. Specifically, we incorporate persistent blocks, and
the producer-consumer scheme afterward, into the sequential
matrix-based algorithm. This latter technique requires a
considerable amount of shared memory, since two data-blocks
for the elements and another two data-blocks for the owners are
needed at the same time for a CUDA-block. Thus, occupancy
decreases on current devices, which turns into a not
competitive performance as we will see.

V. EMPIRICAL RESULTS AND DISCUSSION

We have used a NVIDIA GTX 480 (capability 2.0 -Fermi,
480 cores, 1536MB of GDDR5 global memory, configured as
48KB of shared memory per multiprocessor and 16KB of L1
cache), with driver 270.61, and the CUDA Toolkit, SDK and
Compute Visual Profiler 4.0.

This paper focuses on empirically comparing algorithms by
testing their straight implementations. Thus, we have not tuned
the code as much as possible. In the experiments described
below, the operator is the minimum function on float data (4
bytes). The timing information was obtained by reducing ten
times a random input, and by taking their performance on
average. The input size is Nൌm*220, where m	 ranges from 16
to 31. We also tested other operators, e.g. + on float data,
obtaining similar runtimes that are not included in the paper.

Concerning global memory accesses, Fermi architecture
incorporates an on-chip cache hierarchy which is fairly
configurable. Specifically, accesses can be cached in both L1
and L2, which is the default setting, or in L2 only. Since our
implementations report similar runtimes under both
configurations, the results we present below correspond to the
default mode (L1 and L2).

A. Unsegmented Reduction Results

We have tested the five algorithms previously presented:

 TB2: the tree-based solution of Algorithm 1, with ܴ ൌ 2
and ܦ ൌ .ܤ2

 TB4‐warp: the intra-warp tree-based solution included in
Algorithm 2, with ܴ ൌ 4 and ܦ ൌ .ܤ4

Figure 3. Example of a tree-based s-reduction. The reduction of
the first segment has not been written to the output buffer yet.

ሺ1,0ሻ	 ሺ2,0ሻ	 ሺ3,1ሻ	 ሺ4,1ሻ	 ሺ5,2ሻ	 ሺ6,2ሻ	 ሺ7,3ሻ	 ሺ8,3ሻ	

ሺ3,0ሻ	 ሺ7,1ሻ	 ሺ11,2ሻ

ሺ3,0ሻ	

ሺ3,0ሻ	

ሺ11,2ሻ	

ሺ15,3ሻ

0	0	 0 0

0	0	 0 0

7	0	 0 15

7	0	 11 15†	

†	 †	

Output	Buffer

516

 Matrix: the sequential solution of Algorithm 3, with
ܪ ൌ ܹ ൌ 32, and ܦ ൌ 1024.

 Persistent Matrix: the previous Matrix solution
incorporating persistent blocks.

 Diffwarps: the previous Persistent Matrix solution
incorporating the producer-consumer scheme described in
Algorithm 4. We use the term Diffwarps to express that
warps carry out different tasks.

Notice that we have only incorporated the algorithmic
optimizations into the sequential matrix-based reduction. The
reason is that Matrix exhibits the best performance for
unsegmented reduction.

The features of the five implementations are presented in
Table I on the left. It includes MBPM for persistent solutions
because it determines the corresponding grid size. Runtimes
and effective bandwidths are shown in Fig. 4. Diffwarps
exhibits the best throughput, with a bandwidth near to 104
GB/s. If ܤ௥ and ܤ௪ denote the number of bytes read and written
by the algorithm, and ݁݉݅ݐ is the runtime in seconds, effective
bandwidth has been calculated as ሺሺܤ௥ ൅ ௪ሻܤ 10ଽ⁄ ሻ ⁄݁݉݅ݐ .

Table I on the right shows some empirical details for 30*220
elements. These columns are especially relevant since they
exhibit the behavior of each kernel execution individually.
Notice that non-persistent solutions (TB2, TB4_Warp and Matrix)
require three launches to completely reduce the input, while
persistent ones (P_Matrix and Diffwarps) only need two.
According to the Profiler reports, we include the following
runtime information: grid size, global memory read throughput
and average number of warps that are active on a
multiprocessor per cycle aw/ac, which is calculated as (active
warps)/(active cycles). Notice that bandwidth and aw/ac
decrease as the reduction process advances. This is because the
input for the first launch is larger than the input for consecutive
launches. Hence, the GPU has less workload and becomes less
efficient for subsequent launches, which explains why
persistent solutions run faster.

B. Segmented Reduction Results

We have tested the corresponding five segmented
algorithms. Their features are shown in Table II. Observe that
the theoretical occupancy of most algorithms is smaller than
those of their unsegmented counterparts. In the case of
Diffwarps, it is so small (38%) that it is not competitive. Thus,
we have added a variant which sequentially s-reduces a smaller
matrix (H=32, W=16). Let Diffwarps16 denote such solution.
Notice that we then recover the 94% occupancy of the
unsegmented version.

The way segments are distributed has a profound impact on
the performance of all the algorithms, since the accesses to
global memory, which are required when the left and right
owners are different, called irregular accesses in the sequel, are
irregularly spread along execution. Thus, we have tested three
scenarios: (a) a single huge segment covering the whole data,
(b) segments of random size, ranging from 10 to 50, and (c)
many small segments of size 3.

Fig. 5 shows the runtimes we have obtained for the three
cases. Concerning state-of-the-art reductions, the figure shows
two surprising facts: (1) TB2 runs faster than TB4‐warp in the
three scenarios, and (2) tree-based solutions exhibit a better
performance w.r.t. sequential ones as the segment size gets
smaller. We will explain the reasons we find below. With
regards to the algorithmic optimizations, P_Matrix and Matrix
show similar performance in the three cases, and Diffwarps
and Diffwarps16 are not competitive in general, although the
latter exhibits higher throughput.

Let us focus on scenario (a), that is, only one segment
appears. Since irregular accesses do not take place, the results
should be similar to those obtained for unsegmented reduction.
Two facts remain: matrix-based beat tree-based methods, and
P_Matrix improves Matrix; but two new issues come up. On
the one hand, Diffwarps16 is not among the fastest solutions in
segmented reduction, while Diffwarps was the fastest in the
unsegmented case. Each data-block requires loading the same
amount of bytes in Diffwarps16 (segmented) as in Diffwarps
(unsegmented), since the matrix is halved (W=16) but owners
are also loaded. On the contrary, the data size that is processed
in a data-block is halved in Diffwarps16 (W=16). Hence, read
bandwidth gets halved, which finally results in a suboptimal
performance. The Profiler endorses such claim since global
memory read throughput falls from 104.17 GB/s in Diffwarps
(unsegmented) to 53.67 GB/s in Diffwarps16 (segmented), for
the first launch on 30*220 elements.

On the other hand, the relation between TB2 and TB4‐warp
gets reversed from unsegmented to segmented reduction. TB4‐
warp has the advantage of requiring less explicit
synchronization barriers, but it presents more intra-warp
divergences because many threads inside a CUDA-warp are
stalled inside function tb_reduceWarp. These divergences cause
more harm to the segmented version of TB4‐warp than to its
unsegmented counterpart, because the divergent code is heavier
in the segmented case due to s_reducePair_toTheLeft. Table III
proves such assumption by showing the percentage of
divergent branches the Profiler reports for 30*220 elements.
Observe that TB2 and TB4‐warp exhibit a similar divergence for
unsegmented reduction, while TB4‐warp is around ten times

TABLE I. KERNEL FEATURES FOR REDUCTION (LEFT). PROFILER’S REPORT FOR 30*220 DATA (RIGHT).

Solution #Registers
Shared

Memory
Block
Size

Theoretical
Occupancy

MBPM
N= 30*220

#Blocks
Global Memory Read

Throughput (GB/s)
aw/ac

TB2 9 2B+2B/nBanks 256 100% - 61440, 120, 1 25.53, 17.58, 0.11 46.24, 36.37, 7.88

TB4-warp 13 4B+32 256 100% - 30720, 30, 1 36.36, 16.45, 0.03 45.12, 22.21, 7.35

Matrix 10 H(W+1) 256 100% - 30720, 30, 1 92.88, 26.33, 0.01 39.48, 20.85, 6.24

Persistent Matrix 15 H(W+1) 256 100% 6 90, 1 94.25, 0.68 45.25, 7.82

DiffWarps 15 2(H(W+1)) 288 94% 5 75, 1 104.17, 0.74 41.95, 8.83

517

more divergent for segmented reduction.

With regard to the other scenarios, tree-based solutions are
gaining positions as the segment size gets smaller. They
overtake Diffwarps and Diffwarps16 in case (b), and exhibit the
best performance in case (c). The reason we find is that the
probability of getting coalesced accesses, concerning irregular
accesses, increases for tree-based reductions when segments
are small. To explain it let us focus on segments of size 3, i.e.
case (c). We have simulated the first launch of TB2, TB4‐warp
and Matrix to analyze the ratio of read data transfers to
requested accesses. Transfers have been counted according to
the way Fermi serves memory in chunks of 32 adjacent floats
(128 bytes). Table IV examines what happens to the first
CUDA-warp of the first CUDA-block. According to the values
of ܦ for each solution, TB2 runs 9 recursive levels, TB4‐warp
requires 5 levels for intra-warp reductions, and Matrix
processes 32 columns. Since the results of columns 1, 2 and 3
get repeated, only columns from 0 to 6 are presented in the
table. In addition, TB4‐warp and Matrix require 5 levels more to
reduce intermediate results. They have been included in the
table for TB4‐warp (levels 5-9). Notice that TB2 exhibits the
lowest ratios, especially in the first levels, which indicates that
irregular accesses are quite coalesced. On the contrary, the ratio
for Matrix is always 1, that is, each request access is served
with an independent transfer, which penalizes its performance.

VI. CONCLUSION AND FUTURE WORK

Sequential approaches have a better performance than tree-
based ones for unsegmented reduction. With regards to the
segmented case, performance depends on the distribution of
segments. According to our results for regularly-spread
segments, tree-based methods exhibit a higher bandwidth for
small sizes, whereas sequential ones run faster for medium and
large ones.

The two optimizations we have presented result in a speed-
up for the unsegmented problem. Concerning the segmented
case, performance is improved by using persistent blocks over
segments of large size, while it remains the same for

medium/small segments. Diffwarps is very shared-memory
demanding, which makes its occupancy decrease. Thus, it is
not competitive for segmented reduction on nowadays graphics
hardware, although this could change for future devices since
the current tendency has been to increase shared memory size.

The optimizations only have been integrated into the
sequential matrix-based algorithm, and we plan to test them
onto the tree-based methods. Finally, the reduction is a part of
the scan primitive and the optimizations presented in this paper
could be embedded in the scan algorithms to improve their
performance.

ACKNOWLEDGMENT

Research supported by the Spanish Projects CCG10-
UCM/TIC-5476 and GR35/10-A-921547.

REFERENCES
[1] T. Aila and S. Laine, “Understanding the efficiency of ray traversal on

GPUs,” Proc. High Performance Graphics (HPG 09), ACM, 2009, pp.
145–149, DOI=10.1145/1572769.1572792.

[2] M. Bauer, H. Cook, and B. Khailany, “CudaDMA: Optimizing GPU
Memory Bandwidth via Warp Specialization,” Proc. Int. Conference for
High Performance Computing, Networking, Storage and Analysis (SC
'11), ACM, November 2011, DOI=10.1145/2063384.2063400.

[3] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication
on CUDA,” NVIDIA TR NVR-2008-004, Dec. 2008.

[4] G. E. Blelloch, Vector Models for Data-Parallel Computing, MIT Press,
1990.

[5] G. E. Blelloch, “Prefix sums and their applications,” Tech. Rep. CMU-
CS-90-190, School of Computer Science, Carnegie Mellon University,
1993.

[6] CUDA data parallel primitives library (CUDPP). http://gpgpu.org/
developer/cudpp.

[7] Y. Dotsenko, N. K. Govindaraju, P. Sloan, C. Boyd, and J. Manferdelli,
“Fast scan algorithms on graphics processors,” Proc. international
conference on Supercomputing (ICS 08), ACM, 2008, pp. 205-213,
DOI=10.1145/1375527.1375559.

[8] General-Purpose Computation on Graphics Hardware http://gpgpu.org/

[9] A. Gress, M. Guthe and R. Klein, “GPU-based collision detection for
deformable parameterized surfaces,” Computer Graphics Forum 25,
2006, pp. 497–506, DOI: 10.1111/j.1467-8659.2006.00969.x.

[10] M. Harris, Optimizing Parallel Reduction in CUDA, (2007), H

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projec
ts/reduction/doc/reduction.pdf.

[11] D. Horn, “Stream reduction operations for GPGPU applications,” GPU
Gems 2, M. Pharr (ed.), Addison Wesley, 2005, pp. 573–589.

[12] P. J. Martín, R. Torres, and A. Gavilanes,. “CUDA Solutions for the
SSSP Problem,” Proc. International Conference on Computational

TABLE III. PROFILER’S REPORT FOR 30*220 ELEMENTS.

Solution #Blocks
Divergent Branches (%)

Unsegmented One Segment
TB2 61440, 120, 1 0.56, 0.70, 0.56 2.74, 2.74, 2.704

TB4-warp 30720, 30, 1 0.42, 0.42, 0.42 24.77, 24.81, 24.81

TABLE IV. ANALYZING IRREGULAR ACCESSES IN SEGMENTS OF
SIZE 3. ONLY THE FIRST CUDA-WARP IS CONSIDERED.

TB-level/Matrix-column 0 1 2 3 4 5 6 7 8 9

 accesses 11 21 32 32 16 8 4 2 1 -

TB2 transfers 1 2 3 6 6 6 4 2 1 -

 trans./acc. 0.09 0.09 0.09 0.18 0.37 0.75 1 1 1 -

 accesses 5 5 4 2 1 16 8 4 2 1

TB4-warp transfers 1 1 1 1 1 11 8 4 2 1

 trans./acc. 0.2 0.2 0.25 0.5 1 1 1 1 1 1

 accesses 11 10 11 11 10 11 11 … … …

Matrix transfers 11 10 11 11 10 11 11 … … …

 trans./acc. 1 1 1 1 1 1 1 … … …

TABLE II. KERNEL FEATURES FOR S-REDUCTION.

Solution

#Reg.

Shared

Memory

Block
size

Theoretical
Occupancy

M
B

P
M

TB2 10 2(2B+2B/nBanks) 256 100% -

TB4-warp 14 2(4B+32) 256 83% -

Matrix 11 2H(W+1) 256 83% -

Persistent
Matrix

20 2H(W+1) 256 83% 5

DiffWarps 25 4H(W+1) 288 38% 2

DiffWarps16 21 2H(W+1) 288 94% 5

518

Science (ICCS 09), Springer-Verlag, 2009, pp. 904-913,
DOI=10.1007/978-3-642-01970-8_91.

[13] S. Sengupta, A. E. Lefohn and J. D. Owens, “A work-efficient step-
efficient prefix sum algorithm,” Proc. Edge Computing Using New
Commodity Architectures, 2006, pp. 26–27.

[14] S. Sengupta, M. Harris, Y. Zhang, and J. Owens, “Scan Primitives for
GPU Computing,” Proc. Graphics Hardware (GH 07), ACM, 2007, pp.
97-106.

[15] S. Sengupta, M. Harris, HM. Garland H, “Efficient Parallel Scan Algorithms
for GPUs,” H NVIDIA TR NVR-2008-003H, Dec. 2008.

[16] W. Wang, Y. Huang and S. Guo, “Design and Implementation of GPU-
Based Prim´s Algorithm,” Modern Education and Computer Science, 4,
MECS-Press, 2011, pp 55-62.

[17] K. Zhou, Q. Hou, R. Wang and B. Guo, “Real-time kd-tree construction
on graphics hardware,” Proc. ACM SIGGRAPH Asia 2008, ACM, 2008,
pp. 1-11, DOI=10.1145/1457515.1409079.

0

20

40

60

80

100

120

TB2

 TB4W

Matrix

P.Matrix

DiffWarps

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

16 18 20 22 24 26 28 30

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

16 18 20 22 24 26 28 30

 TB2

 TB4W

Matrix

P.Matrix

DiffWarps

Figure 5. Runtimes in ms (Y-axis) for s-reduction. Input size is x*220 elements (X-axis).
(a) Only one segment, (b) random sized segments, (c) segments of size 3.

1,5

2,5

3,5

4,5

5,5

6,5

7,5

16 18 20 22 24 26 28 30
3

5

7

9

11

13

15

16 18 20 22 24 26 28 30

 TB2 TB4W Matrix P.Matrix DiffWarps DiffWarps 16

4

9

14

19

24

29

34

16 18 20 22 24 26 28 30

(a) (b) (c)

Figure 4. Results for unsegmented reduction. (Left and center) runtimes in ms (Y-axis). Input size is x*220 elements (X-axis).
(Right) effective bandwidths (GB/s).

519

