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Abstract—Many general-purpose applications exploit Graphics 
Processing Units (GPUs) by executing a set of well-known data-
parallel primitives. Those primitives are usually invoked from the 
host many times, so their throughput has a great impact on the 
performance of the overall system. Thus, the study of novel 
algorithmic strategies to optimize their implementation on 
current devices is an interesting topic to the GPU community. In 
this paper we focus on optimizing the reduction primitive, which 
merely reduces a data sequence into a single value using a binary 
associative operator. Although tree-based and sequential-based 
algorithms have been already implemented on GPUs, a 
comparison of both algorithm performance had not been carried 
out yet. Thus, our first contribution is to present an experimental 
study of state-of-the-art reduction algorithms on CUDA. Next we 
introduce two algorithmic optimizations that are integrated into 
the fastest solution (a sequential-based algorithm), improving its 
throughput even more. Finally, we replicate this methodology to 
the segmented version of the primitive, which applies when the 
input is composed of several independent segments. In this case, 
it is not clear which algorithm exhibits the best performance, 
since throughput deeply depends on the distribution of segments 
along the input. According to our results, tree-based algorithms 
run faster for small segments, while sequential methods are 
better for medium and large ones. 

Keywords- parallel reduction; segmented parallel reduction; 
data-parallel algorithms; GPGPU; CUDA. 

I. INTRODUCTION 

Nowadays Graphics Processing Units (GPUs) are used to 
accelerate a wide range of general-purpose applications by 
exploiting their high-performance many-core processors. GPUs 
usually contribute to the overall computation in two different 
ways: carrying out some specific tasks through user-designed 
kernels or executing some data-parallel primitives provided by 
a growing number of libraries (e.g. CUDPP, CLPP, GPULib, 
Thrust…). While programmers assume control of the 
throughput of their kernels, primitives are integrated as black 
boxes whose performance relies on the library. On the other 
hand, hardware improvements incorporate more functional 
units in each release, along with larger shared memories and 
sophisticated cache hierarchies. For those reasons, the study of 
algorithmic strategies to optimize the implementation of these 
primitives, and the adjustment to the features of the upcoming 
GPU architectures, are ever-interesting topics to the General-
Purpose GPU community [8]. 

In this paper, we focus on optimizing the classic reduction 
primitive, paying attention to its two versions. Its unsegmented 
form takes a binary associative operator  (e.g. ൅, ൈ, ݉݅݊ 
and ݉ܽݔ) and an array of ܰ data [a0, a1, ..., aN-1] as inputs, and 
it returns as output one value (a0  a1  ...  aN-1). In its 
segmented version, the input array is divided into segments of 
consecutive data, and the output is the individual reduction of 
each segment. Thus, the output size is the number of segments 
included in the given input. Observe that the segmented 
primitive could be easily implemented in terms of the 
unsegmented primitive, by extracting each segment and 
reducing it, isolated from the global input, with the 
unsegmented primitive. Nevertheless, this should be done 
many times (one for each segment), and some of the segments 
may be too small to justify further kernel executions. In 
consequence, this approach would not take the most of GPUs. 
On the contrary, the segmented solutions we illustrate will 
simultaneously perform separate parallel reductions on the 
segments of the input. For this reason unsegmented and 
segmented reductions are introduced as independent primitives 
along the paper. 

The two reduction versions are useful building blocks for 
solving a wide variety of problems on GPU. For example and 
using CUDA, the unsegmented version has been successfully 
applied to solve the Single-Source Shortest-Path problem [12] 
and to build the Minimum Spanning Tree [16], while the 
segmented version to construct kd-trees on GPU for ray tracing 
[17] and to accelerate sparse-matrix multiplication [3]. 

Concerning the properties the operator  must fulfill, only 
associativity is essential. Actually, the correctness of all the 
algorithms described along this paper deeply relies on it. Most 
of the presented algorithms also make use of identity; so, 1 
will denote an identity element for  from now on. Although 
the operator could be commutative as well, as it happens to the 
examples above, we will not suppose it in this paper, i.e. they 
are considered to be “non-commutative”. The advantage of 
using commutativity, along with associativity, is that any pair 
of elements could be reduced regardless of their location on the 
input. However, these pairs must belong to the same segment in 
segmented reduction, which makes it difficult to exploit 
commutativity in this case. Hence, the exploitation of 
commutativity seems to come into conflict with the segment 
arrangement. 
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One of the main aims of this paper is to compare two kinds 
of reduction approaches: recursive (tree-based) versus 
sequential algorithms. In fact, our first contribution is to 
experimentally confront the state-of-the-art algorithms of both 
types. Obviously, we have replicated the experimental study for 
the two versions of the primitive. As a second contribution, we 
propose two algorithmic optimizations that can be integrated 
into any of the previous algorithms, regardless their nature. We 
have tested them into the fastest solution, resulting in 
significant speed-up for unsegmented reduction. However, they 
did not lead to succeed in the segmented case since the 
resulting solutions are bounded by the shared memory size. 

II. RELATED WORK 

The kernels presented by Harris [10] are the most popular 
CUDA implementations for the unsegmented reduction 
primitive. They are actually included as project examples in 
every CUDA SDK release. His document introduces seven 
kernels from a didactic perspective, in such a way that each 
kernel improves the performance of the previous one. 
Nevertheless, many of them require the operator to be 
commutative. 

The two segmented reduction algorithms we have found are 
located at the previous references [17, 3], where the primitive is 
also applied to solve a specific problem. In both cases, those 
proposals are based on the works of Blelloch for the scan 
primitive below mentioned. 

The reduction primitive is actually a part of the (inclusive) 
scan primitive, which has been studied more widely because of 
its great applicability [5]. Thus, we must describe in this 
section some of the progress made on the scan primitive. Scan 
also takes an array [a0, a1, ..., aN-1] and a binary associative 
operator  as inputs, but it returns an array containing the 
reduction of all the prefixes [a0, (a0  a1), ..., (a0  a1  ...  
aN-1)]. Scan also accepts a segmented version. In this case, the 
output is the unsegmented scan of each segment. 

The classic parallel algorithms for scan were studied by 
Blelloch [4, 5]. His formulations were based on recursive 
equations whose application described a full binary tree. For 
this reason, they are called tree-based algorithms. Later on, 
with the advent of GPUs, these formulations were adapted to 
the novel programming model. Thus, tabulation techniques 
were applied to replace the recursive nature of tree-based 
algorithms with an iterative processing. Horn [11] was the first 
developing GPU-based implementations of the scan primitive. 
The complexity O(NlogN) of its formulation was improved by 

Gress et al. [9] and Sengupta et al. [13] to a linear algorithm. 
The latter presents a work-efficient step-efficient 
implementation on CUDA that was adapted to the segmented 
case a year later [14]. In order to improve performance of 
previous algorithm, the authors exploit shared memory usage. 
However, the implementations involve bank conflicts, and the 
kernels may not scale well with shared memory size. 

Subsequently, Dotsenko et al. [7] presented work-efficient 
sequential algorithms for the unsegmented and segmented scan. 
They decompose the input into blocks that are arranged as 
matrices in shared memory. Each matrix is sequentially 
reduced by rows and partial results are stored in a smaller 
array, which is processed later on. The overhead of previous 
tree-based formulations concerning synchronization barriers is 
reduced since each thread reduces a row. Immediately, 
Sengupta et al. [15] improved their tree-based algorithms 
incorporating an intra-warp operation: each warp individually 
performs a scan over 32 elements. Next, one warp carries out 
another intra-warp execution over the previous results to 
generate the reduction of the whole block. The advantages of 
this operation are that many synchronization barriers become 
unnecessary. However that paper does not include a 
comparison with the work by Dotsenko et al, thus, the most 
recent and fastest implementations of both trends –the intra-
warp scan [15] for the tree-based trend and the sequential scan 
[7] for the sequential family– have not been experimentally 
compared yet. 

III. UNSEGMENTED REDUCTION 

Along the paper, we use the term block to denote two 
different concepts. A CUDA-block is a block of threads, while 
a data-block is a chunk of consecutive data that is individually 
reduced by a CUDA-block. As we will see later, a CUDA-
block can reduce one or several data-blocks. We use ܤ and ܦ 
to denote the sizes of a CUDA-block and a data-block, 
respectively (see Glossary). 

A data-block is loaded from global memory to shared 
memory by the corresponding CUDA-block, before being 
reduced. This is done exploiting coalesced readings. When the 
input size N is not a multiple of D, we append a virtual padding 
to the last data-block, which is filled with values 1. This is 
done through an if-statement during the loading stage. Thus, all 
the algorithms of this paper work on ஽ܰ ൌ ݈ܿ݁݅ሺܰ/ܦሻ data-
blocks. 

In order to reveal the main differences among the 
algorithms, we focus on how a data-block is reduced into a 
single result, and on how this value is handled afterwards. 
Thus, we will suppose that the array s_data holds a data-block 
in shared memory for subsequent reduction. 

A. State-of-the-art Reductions 

A common characteristic of these algorithms is that each 
CUDA-block exactly reduces a data-block. The result is then 
written back into global memory by a thread of the CUDA-
block. Hence, the grid size is ܩ ൌ ஽ܰ, which also corresponds 
to the output size. In consequence, the output must be reduced 
again with another kernel launch, and so on, until a single result 
is left. This is usually known as a multi-pass approach. 

N	 Number of elements in the input array 
D	 Size of a data-block 

஽ܰ	 Number of data-blocks inside the input ሺൌ ݈ܿ݁݅ሺܰ/ܦሻሻ 
B	 Number of threads in a CUDA-block 
G	 Number of CUDA-blocks in a grid 
R	 #Elements a thread loads in tree-based reductions ሺൌ  ሻܤ/ܦ
W	 Width of the matrix in sequential matrix-reductions 
H	 Height of the matrix in sequential matrix-reductions 

MBPM	 Maximum number of resident blocks per multiprocessor 
P	 Number of producer warps in the producer-consumer scheme 
C	 Number of consumer warps in the producer-consumer scheme 

nBanks	 Number of banks in the shared memory of the device 
Glossary. Parameters used in the paper. 
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1) Tree-based reductions: Supposing that s_data lays on 
the leaves of a full binary tree, tree-based algorithms reduce 
each pair of siblings using , in a bottom-up manner. Hence, 
they require ܦ to be a power of two. The underlying recursive 
equations are: 

redሺ݊ሻ ൌ ቊ
red൫݈݂݁ݐሺ݊ሻ൯⊕ red൫ݐ݄݃݅ݎሺ݊ሻ൯ ݎ݁݊݊݅	ݏ݅	݊	݂݅

݊ ݂݈ܽ݁	ݏ݅	݊	݂݅
									ሺ1ሻ 

Algorithm 1 is similar to the kernel#2 by Harris [10]. At 
each iteration, a thread reduces two elements at line 14 (with 
indices ai and bi), and stores the result in ai, which 
corresponds to a left-storing approach. Storing into bi would 
be also possible (right-storing). The first iteration requires a 
thread for each pair of elements, thus ܦ ൌ  must be a ܤ and ܤ2
power of two as well. So the algorithm executes the loop 
ሻܤଶሺ2݃݋݈  times. Also observe that in each iteration, the 
number of active threads is halved (line 7), reaching a single 
active thread in the last iteration. 

In order to avoid bank conflicts in shared memory, Harris 
replaces this interleaved addressing access with a sequential 
addressing pattern in his kernel#3. This new approach requires 
 to be commutative, so this technique has not been considered 
in this paper. On the contrary, we overcome bank conflicts by 
including the usual padding of one element every nBanks 
elements, where nBanks is the number of banks in the shared 
memory of the device. Thus, the total padding is 2B/nBanks 
elements. This is why we update the indices at lines 11 and 12. 
Incorporating this offset does not penalize occupancy on 
current devices, and the overhead due to the index arithmetic is 
negligible. 

Tree-based algorithms are quite fast, but they suffer from 
too much synchronization. Notice that a barrier must be located 
between iterations (line 6). However, the number ܴ of elements 
that a thread loads from global memory can be tuned to achieve 
a certain speed-up. Notice that ܦ ൌ ܴ ∗  then holds. We do ܤ
not consider such improvements as algorithmic optimizations, 
but code optimizations, so we have not paid attention to them 
in this paper. Observe that ܴ =2 in Algorithm 1. On the 
contrary, ܴ=8 in the scan implementation of CUDPP 1.1.1 [6]. 

2) Intra-warp tree-based reductions: Sengupta et al. [15] 
improve the previous tree-based algorithm by working at the 
warp level. In order to explain this techique, let us extend the 
notation of CUDA-block and data-block to the case of warps. 
Briefly, a CUDA-warp is composed of 32 adjacent threads 
inside a CUDA-block, which run implicitely synchronized in 
SIMD fashion, while a data-warp is a chunk of 32 consecutive 
data inside a data-block. Sengupta et al. avoid bank conflicts 
and many synchronization barriers, using an intra-warp routine 
in which each data-warp is scanned by a CUDA-warp. The 
device function tb_reduceWarp of Algorithm 2 adapts this 
tecnique to the reduction primitive. During its execution, each 
CUDA-warp is responsible for reducing one data-warp, and 
sending the result to parameter target. The five iterations that 
are enough to reduce a data-warp have been unrolled, as the 
authors do. Notice that no explicit synchronization barriers are 
requiered due to the way CUDA-warps run in CUDA. 

The kernel TB4_Warp_reduction  of Algorithm 2 
repeatedly invokes the previous function to reduce the whole 
data-block. It uses a shared array called s_result to hold the 
intermediate result each data-warp produces. We have used 
-thus ܴ=4, there are Nwarps=8 CUDA ,256=ܤ and 1024=ܦ
warps, which are responsible for reducing 4 data-warps, and 
the number of intermediate results is 32. Each data-warp is 
reduced at line 28, and the result is sent to 
s_result[warpid+k*Nwarps]. Finally, intermediate results are 
reduced again at line 33 by the first CUDA-warp. The final 
result is sent to s_data[0] for the sake of clarity; in practice it 
is sent straight to global memory. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

void TB2_reduction (float* s_data){ 
  unsigned int thid = threadIdx.x; 
  unsigned int stride = 1; 
  unsigned int i, ai, bi; 
  for(unsigned int d=B; d>0; d>>=1){ 
    __syncthreads(); 
    if(thid < d){ 
      i = 2*stride*thid; 
      ai = i; 
      bi = ai + stride; 
      ai += (ai >> 5); //log2(nBanks)=5 
      bi += (bi >> 5); //log2(nBanks)=5 
      //Reduction 
      s_data[ai] = op(s_data[ai], s_data[bi]);    
    }//if 
    stride <<=1; 
  }//for 
  //The result is in s_data[0] 
} 

Algorithm 1. Tree-based reduction. Rൌ2. 

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

void tb_reduceWarp( float* s_data,  
                    unsigned int thid, 
                    unsigned int lane, 
                    float& target){    
 //REDUCTION INTRA‐WARP (Left‐Storing) 
 if( !(lane & 1)  ) s_data[thid]= 
   op(s_data[thid], s_data[thid+1]); //%2=0 
 if( !(lane & 3)  ) s_data[thid]= 
   op(s_data[thid], s_data[thid+2]); //%4=0 
 if( !(lane & 7)  ) s_data[thid]= 
   op(s_data[thid], s_data[thid+4]); //%8=0 
 if( !(lane & 15) ) s_data[thid]= 
   op(s_data[thid], s_data[thid+8]); //%16=0 
 if( !(lane & 31) ) target= 
   op(s_data[thid], s_data[thid+16]);//%32=0 
} 
// *************************************** 
//D=1024, B=256 => Nwarps=8, 32 intermediate results 
void TB4_Warp_reduction (float* s_data){ 
 __shared__ float s_result[32];//32 results 
 unsigned int thid   = threadIdx.x; 
 unsigned int warpid = thid >> 5; //thid/32 
 unsigned int lane   = thid & 31; //thid%32 
 
 //Reduce s_data[kB+warpid*32, kB+(warpid+1)*32) 
 //and store the result into s_result[k*Nwarps+warpid]
 for(unsigned int k = 0; k<4; k++) 
   tb_reduceWarp(s_data, thid+k*blockDim.x, lane, 
                s_result[warpid+k*Nwarps]); 
 __syncthreads(); 
 
 if(warpid==0) 
   tb_reduceWarp(s_data, thid, lane, s_data[0]); 
 //The final result is in s_data[0] 
} 

Algorithm 2. Intra-warp tree-based reduction. Bൌ28,	Dൌ210. 
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3) Sequential reductions: Dotsenko et al. [7] propose an 
algorithm for the scan primitive that is based on a matrix 
representation of s_data, as Fig. 1 shows. ܪ 	and ܹ 
respectively denote the height and width of this matrix, so 
ܦ ൌ ܪ ൈܹ . Algorithm 3 adapts their MatrixScan to the 
reduction primitive. Observe that one thread is responsible for 
sequentially reducing one row of ܹ  elements, thus only ܪ 
threads are required to reduce the whole data-block (line 5). 
Nevertheless, all the threads inside the CUDA-block 
cooperated at the beginning to load the data, including these ܪ 
threads. 

Since reducing a row involves no synchronizations, the 
performance of the algorithm could be improved by 
maximizing ܹ. Nevertheless, ܦ must be small enough to fit in 
shared memory, thus ܹ and ܪ are forced to be rather small as 
well. In addition, ܪ should be a multiple of the CUDA-warp 
size in order to avoid divergent warps. To sum up, Dotsenko et 
al. finally assign ܹ and ܪ to be the warp size (ܹ ൌ ܪ ൌ 32). 
A padding of one element is then added at the end of each row 
to avoid bank conflicts. Moreover, the ܪ  values that are 
obtained after reducing the ܪ rows can be reduced using one 
intra-warp tree-based reduction (line 16). Also notice that only 
one warp continues beyond line 5 since ܪ ൌ 32, so no explicit 
synchronization is needed at line 15. 

B. Algorithmic Optimizations 

We present two algorithmic optimizations that can be 
integrated into any of the solutions described above. 

1) Persistent blocks: We can force each CUDA-block to 
reduce multiple consecutive data-blocks, instead of a single 
one. Thus, the output size decreases since the number of 
CUDA-blocks ሺܩሻ is smaller than the number of data-blocks. 
Moreover, the number of multipasses falls as ܩ decreases. The 

reductions of the data-blocks assigned to a CUDA-block are 
accumulated using a shared variable. Specifically, one of its 
threads accumulates the result of a data-block into the 
reduction of the previous data-blocks. 

In order to distribute all the data-blocks among all the 
CUDA-blocks, we simply incorporate two new parameters into 
the kernel to indicate the quotient q and the remainder r of the 
division ஽ܰ/ܩ. Then, a CUDA-block must reduce q+1 data-
blocks if blockIdx.x<r, or just q data-blocks otherwise. 

In order to improve performance, the grid size must be 
carefully chosen according to the requirements of the kernel. 
Given a block size ܤ , the maximum number of resident 
CUDA-blocks per multiprocessor (MBPMሻ is computed 
according to the CUDA Occupancy Calculator. Then ܩ is fixed 
to NUM_MULTIPROCESSORS*MBPM. The underlying idea is 
to fill each multiprocessor with the maximum number of 
CUDA-blocks that can reside together on it. Thus, no CUDA-
warp will wait for being allocated on a multiprocessor. We use 
the adjective persistent to denote these CUDA-blocks since 
they will be residing on the device until the whole input is 
processed. 

Using persistent blocks results in a small grid size, since the 
number of multiprocessors is limited by the device, and MBPM	
cannot exceed 8 in any of the current CUDA compute 
capabilities. Thus, one kernel execution is almost enough to 
reduce the whole input. Indeed, the results after the first launch 
do not even complete a data-block because ܩ ൏ ܦ . In 
consequence, we remove the usual recursion controlled by the 
host, and furthermore the cost of storing partial results into 
global memory between recursive calls. 

The idea of persistent blocks has been already applied to 
other topics. For example, it was recently used to accelerate the 
traversal step of GPU-implemented ray tracers by Aila and 
Lane [1], under the term persistent thread. In fact, Harris [10] 
already proposed a reduction algorithm, the so-called 
cascading kernel#7, whose CUDA-blocks reduce many data-
blocks, but during the load stage, rather than during the 
reduction stage, and using a commutative operator. 
Nevertheless, these authors do not explain how the grid size 
 .is chosen in their respective papers (ܩ)

2) Producer-consumer scheme: We add another 
optimization onto the persistent technique in order to help the 
schedulers to hide memory latency a little more. The idea is to 
classify the set of CUDA-warps into two groups: consumers 
and producers, of respective sizes C and P. At each iteration, 
consumer warps sequentially reduce the data-block loaded in 
the previous iteration, while producer warps load a new data-
block. Thus, consumers can reduce at the same time producers 
load new data.  

Algorithm 4 shows the code fragment that implements the 
producer-consumer scheme. Two data-blocks are held in shared 
memory, which are accessed through two pointers, s_load and 
s_comp. These pointers are swapped at the beginning of each 
iteration (line 10). Then, consumer warps reduce the data-block 
pointed by s_comp (line 13), while producer warps load the 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

void Matrix_reduction (float* s_data){ 
 unsigned int thid = threadIdx.x; 
 float current_red; 
 //Only the first threads reduce 
 if(thid < H){ 
  unsigned int s_base = thid * (W + PADDING); 
  float* row = &s_data[s_base]; 
  current_red = row[0]; 
 
  for(unsigned int k=1; k<W; k++) 
     current_red = op(current_red, row[k]); 
 
  //Store the reduction of the row 
  s_data[thid] = current_red; 
   
  tb_reduceWarp(s_data, thid, thid&31, s_data[0]); 
 }//if 
} //The final result is in s_data[0] 

Algorithm 3. Sequential matrix-based reduction. HൌWൌ 32. 

X0 X1 ... XW-1 pad 

... ... ... ... pad 

X(H-1)W X(H-1)W-1 ... XHW-1 pad 

W 

H 

Figure 1. Arranging s_data as a matrix. 
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data-block that is located at index first in global memory into 
the buffer pointed by s_load (line 15). Observe that a 
synchronization barrier is required (line 16) to prevent warps 
from overwriting the other buffer. Also notice that the first/last 
data-block is loaded/reduced before/after the loop. The number 
of iterations is controlled by variable d, which holds the number 
of data-blocks assigned to this CUDA-block. The result of 
reducing a data-block is accumulated into the shared variable 
s_current_red inside the reduceChunk routine.  

Fig. 2 graphically exposes the advantages of this technique, 
using the sequential matrix-based solution presented in 
Algorithm 3 as the underlying reduction method. Remember 
that each data-block is arranged as a matrix of size ܦ ൌ ܪ ൈ
ܹ ൌ 1024, where ܪ ൌ 32 and ܹ ൌ 32 denote its height and 
width, respectively. The figure depicts how warps can be 
dispatched if the optimization is incorporated (on the left), and 
if is not (on the right). In the first case, the producer-consumer 
scheme has a configuration of ܲ ൌ 8 producers (warps from 
W1 to W8) versus ܥ ൌ 1 consumers (warp W0). Observe that a 
single consumer warp is enough, since exactly 32 rows must be 
reduced. In addition, each producer is responsible for loading 

ܲ/ܦ ൌ 128	 elements, which is done in 128/32 ൌ 4 coalesced 
readings. Whenever a producer has requested data from global 
memory, it must wait until those data are available. This 
waiting time can be used to request more data by another 
producer, or to reduce the previous data-block by the 
consumer. 

On the right, the figure shows the execution of the 
persistent sequential matrix-based algorithm without the 
optimization. In this case we have 8 warps in a CUDA-block 
ሺܤ ൌ 256ሻ  processing ܦ ൌ 1024  elements as before. Notice 
that warp W0 starts reducing only when all the data-block are 
available in shared memory. Thus, each iteration is slightly 
longer than one using the producer-consumer scheme. 

Although the producer-consumer paradigm is a well-known 
technique, its implementation on GPU is a recent issue. Besides 
our paper, Bauer et al. apply DMA techniques to solve in GPU 
other problems [2]. Our scheme can be compared to their 
“manual double-buffering” technique. 

IV. SEGMENTED REDUCTION 

In segmented reduction (s-reduction in the sequel), the 
input is divided into segments. We demarcate them by using 
another array of size N, called owner, such that owner[i] holds 
the index of the segment of element i. Hence, owner is sorted in 
non-decreasing order. Notice that the output of the s-reduction 
is an array whose size is the number of segments. In the sequel, 
the variable g_output will denote such array, which is located 
on global memory. 

Next we adapt the algorithms presented so far to the 
segmented case. Again we focus on the reduction step, since it 
exposes the differences among them. Thus, we suppose that 
data and owners already hold in shared memory, specifically in 
s_data and s_owner. 

A. State-of-the-art Segmented Reductions 

Zhou et al. [17] propose a tree-based algorithm by adapting 
(1) to the segmented case. The underlying recurrences are: 

s‐redሺ݊ሻ ൌ

ە
ۖ
۔

ۖ
s‐red൫݈ሺ݊ሻ൯ۓ ⊕ s‐red൫ݎሺ݊ሻ൯	൤

,ݎ݁݊݊݅	ݏ݅	݊ ܽ݊݀
owner൫݈ሺ݊ሻ൯ൌowner൫ݎሺ݊ሻ൯	

s‐red൫݈ሺ݊ሻ൯ ൤
,ݎ݁݊݊݅	ݏ݅	݊ ܽ݊݀
owner൫݈ሺ݊ሻ൯്owner൫ݎሺ݊ሻ൯ †

݊ ሾ݊	݅ݏ	݈݂݁ܽ

ownerሺ݊ሻ ൌ ቊ
owner൫݈ሺ݊ሻ൯ ݎ݁݊݊݅	ݏ݅	݊	

ത݊ ݂݈ܽ݁	ݏ݅	݊

 

Expressions ݈ሺ݅ሻ and ݎሺ݅ሻ respectively denote the left and right 
children of an inner node ݅, and ത݊ is the owner of leaf ݊. Zhou 
et al. include an extra operation that must be applied when the 
siblings have different owners (label †). In this case, the s-
reduction of the right child must be accumulated into the 
global solution. Specifically, each thread stores in ai the 
reduction of two elements, only if their owners are the same. 
Otherwise, only the left one is propagated, while the other is 
used to update g_output. Hence, the prefix of the processed 
chunk is propagated in a bottom-up manner, which agrees with 
this left-storing approach. Fig. 3 shows an example of a tree-

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

//Load the first data‐block
if(warpid>=C)  
  loadChunk(first, s_load); 
__syncthreads(); 
first += D; 
 
//Producer‐consumer loop 
for(unsigned int k=1; k<d; k++){  
  //swap shared buffer pointers 
  aux = s_load; s_load = s_comp; s_comp = aux; 
  //Each thread does its job 
  if(warpid<C)  
     reduceChunk(s_comp, s_current_red); 
  else 
     loadChunk(first, s_load); 
  __syncthreads(); 
  first += D; 
} //for 
 
//Reduce the last data‐block 
if(warpid<C)  
  reduceChunk(s_load, s_current_red); 
__syncthreads(); 
//The result is in s_current_red 

Algorithm 4. Producer-consumer scheme. 
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Figure 2. Producer-consumer scheme (left). 
Persistent sequential matrix-based reduction (right). 
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based s-reduction for the + operator; on the left it illustrates 
the reduction process where each box contains a pair 
(datum,owner), on the right it shows how the output buffer 
evolves as the algorithm progresses. Notice that the buffer is 
initialized with 1 values. 

In order to adapt Algorithm 1 to the segmented case, it is 
enough to replace line 14 with the following code fragment: 

 
14 
15 
16 
17 
18 
19 

unsigned int lo = s_owner[ai]; //left  owner 
unsigned int ro = s_owner[bi]; //right owner 
if(lo!=ro)  
   g_output[ro] = op(g_output[ro], s_data[bi]); 
else 
   s_data[ai] = op(s_data[ai], s_data[bi]); 

 
The partial result of the first segment inside this data-block 

ends at s_data[0] and s_owner[0]. The kernel is responsible for 
s-reducing a data-block, thus a multi-pass approach is required 
again to completely s-reduce a larger input. This is common to 
all the algorithms we present in this subsection. 

Warps can also be exploited to improve Zhou et al.’s 
algorithm by avoiding some synchronizations. Basically, we 
must replace lines 7, 9, 11, 13 and 15 of Algorithm 2 with a 
proper call to the following device routine, in order to obtain 
tb_s_reduceWarp: 

 
1 
2 
3 
4 
5 
6 
7 

void s_reducePair_toTheLeft(float* g_output, 
       unsigned int oLeft,  float &dLeft, 
       unsigned int oRight, float dRight){ 
  if(oLeft!=oRight) 
    g_output[oRight] = op(g_output[oRight], dRight);
  else dLeft = op(dLeft, dRight); 
} 

 
Notice that prefixes are propagated again. Replacing in 

TB4_Warp_reduction any call to tb_reduceWarp with a call to 
tb_s_reduceWarp results in the intra-warp tree-based kernel for 
s-reduction. 

Concerning sequential matrix-based reduction, we must 
replace lines 7-16 of Algorithm 3 with the following code 
fragment to cover the segmented case: 

 
 7 
 8 
 9 
10 
11 

float* dRow = &s_data[s_base];
unsigned int* oRow = &s_owner[s_base]; 
//The first element is specially processed 
current_red   = dRow[0]; 
current_owner = oRow[0]; 

12
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

for(unsigned int k=1; k<W; k++){ 
  if(current_owner!=oRow[k]){ 
    g_output[current_owner] = 
          op(current_red, g_output[current_owner]); 
    current_owner = oRow[k]; 
    current_red   = dRow[k]; 
  }else 
    current_red = op(current_red, dRow[k]); 
}//for 
//Store the reduction of the row  
s_data [thid] = current_red; 
s_owner[thid] = current_owner; 
tb_s_reduceWarp_toTheRight(s_data, s_owner, g_output, 
              thid, thid&31, s_data[0], s_owner[0]); 

 
Data layout is left-to-right, top-to-bottom, hence the suffix 

of the processed chunk inside the row is propagated now (line 
12), and the tree-based s-reduction at lines 24-25 must be right-
storing. The partial result of the last segment is sent to 
s_data[0] and s_owner[0]. 

B. Algorithmic Optimizations 

The techniques we proposed for the unsegmented case can 
be integrated into the previous state-of-the-art segmented 
algorithms. Specifically, we incorporate persistent blocks, and 
the producer-consumer scheme afterward, into the sequential 
matrix-based algorithm. This latter technique requires a 
considerable amount of shared memory, since two data-blocks 
for the elements and another two data-blocks for the owners are 
needed at the same time for a CUDA-block. Thus, occupancy 
decreases on current devices, which turns into a not 
competitive performance as we will see. 

V. EMPIRICAL RESULTS AND DISCUSSION 

We have used a NVIDIA GTX 480 (capability 2.0 -Fermi, 
480 cores, 1536MB of GDDR5 global memory, configured as 
48KB of shared memory per multiprocessor and 16KB of L1 
cache), with driver 270.61, and the CUDA Toolkit, SDK and 
Compute Visual Profiler 4.0. 

This paper focuses on empirically comparing algorithms by 
testing their straight implementations. Thus, we have not tuned 
the code as much as possible. In the experiments described 
below, the operator is the minimum function on float data (4 
bytes). The timing information was obtained by reducing ten 
times a random input, and by taking their performance on 
average. The input size is Nൌm*220, where m	 ranges from 16 
to 31. We also tested other operators, e.g. + on float data, 
obtaining similar runtimes that are not included in the paper. 

Concerning global memory accesses, Fermi architecture 
incorporates an on-chip cache hierarchy which is fairly 
configurable. Specifically, accesses can be cached in both L1 
and L2, which is the default setting, or in L2 only. Since our 
implementations report similar runtimes under both 
configurations, the results we present below correspond to the 
default mode (L1 and L2). 

A. Unsegmented Reduction Results 

We have tested the five algorithms previously presented: 

 TB2: the tree-based solution of Algorithm 1, with ܴ ൌ 2 
and ܦ ൌ  .ܤ2

 TB4‐warp: the intra-warp tree-based solution included in 
Algorithm 2, with ܴ ൌ 4 and ܦ ൌ   .ܤ4

Figure 3. Example of a tree-based s-reduction.  The reduction of 
the first segment has not been written to the output buffer yet. 
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 Matrix: the sequential solution of Algorithm 3, with 
ܪ ൌ ܹ ൌ 32, and ܦ ൌ 1024. 

 Persistent  Matrix: the previous Matrix solution 
incorporating persistent blocks. 

 Diffwarps: the previous Persistent  Matrix solution 
incorporating the producer-consumer scheme described in 
Algorithm 4. We use the term Diffwarps to express that 
warps carry out different tasks. 

Notice that we have only incorporated the algorithmic 
optimizations into the sequential matrix-based reduction. The 
reason is that Matrix exhibits the best performance for 
unsegmented reduction. 

The features of the five implementations are presented in 
Table I on the left. It includes MBPM for persistent solutions 
because it determines the corresponding grid size. Runtimes 
and effective bandwidths are shown in Fig. 4. Diffwarps 
exhibits the best throughput, with a bandwidth near to 104 
GB/s. If ܤ௥ and ܤ௪ denote the number of bytes read and written 
by the algorithm, and ݁݉݅ݐ is the runtime in seconds, effective 
bandwidth has been calculated as ሺሺܤ௥ ൅ ௪ሻܤ 10ଽ⁄ ሻ ⁄݁݉݅ݐ . 

Table I on the right shows some empirical details for 30*220 
elements. These columns are especially relevant since they 
exhibit the behavior of each kernel execution individually. 
Notice that non-persistent solutions (TB2, TB4_Warp and Matrix) 
require three launches to completely reduce the input, while 
persistent ones (P_Matrix and Diffwarps) only need two. 
According to the Profiler reports, we include the following 
runtime information: grid size, global memory read throughput 
and average number of warps that are active on a 
multiprocessor per cycle aw/ac, which is calculated as (active 
warps)/(active cycles). Notice that bandwidth and aw/ac 
decrease as the reduction process advances. This is because the 
input for the first launch is larger than the input for consecutive 
launches. Hence, the GPU has less workload and becomes less 
efficient for subsequent launches, which explains why 
persistent solutions run faster. 

B. Segmented Reduction Results 

We have tested the corresponding five segmented 
algorithms. Their features are shown in Table II. Observe that 
the theoretical occupancy of most algorithms is smaller than 
those of their unsegmented counterparts. In the case of 
Diffwarps, it is so small (38%) that it is not competitive. Thus, 
we have added a variant which sequentially s-reduces a smaller 
matrix (H=32, W=16). Let Diffwarps16 denote such solution. 
Notice that we then recover the 94% occupancy of the 
unsegmented version. 

The way segments are distributed has a profound impact on 
the performance of all the algorithms, since the accesses to 
global memory, which are required when the left and right 
owners are different, called irregular accesses in the sequel, are 
irregularly spread along execution. Thus, we have tested three 
scenarios: (a) a single huge segment covering the whole data, 
(b) segments of random size, ranging from 10 to 50, and (c) 
many small segments of size 3. 

Fig. 5 shows the runtimes we have obtained for the three 
cases. Concerning state-of-the-art reductions, the figure shows 
two surprising facts: (1) TB2 runs faster than TB4‐warp in the 
three scenarios, and (2) tree-based solutions exhibit a better 
performance w.r.t. sequential ones as the segment size gets 
smaller. We will explain the reasons we find below. With 
regards to the algorithmic optimizations, P_Matrix and Matrix 
show similar performance in the three cases, and Diffwarps 
and Diffwarps16 are not competitive in general, although the 
latter exhibits higher throughput. 

Let us focus on scenario (a), that is, only one segment 
appears. Since irregular accesses do not take place, the results 
should be similar to those obtained for unsegmented reduction. 
Two facts remain: matrix-based beat tree-based methods, and 
P_Matrix improves Matrix; but two new issues come up. On 
the one hand, Diffwarps16 is not among the fastest solutions in 
segmented reduction, while Diffwarps was the fastest in the 
unsegmented case. Each data-block requires loading the same 
amount of bytes in Diffwarps16 (segmented) as in Diffwarps 
(unsegmented), since the matrix is halved (W=16) but owners 
are also loaded. On the contrary, the data size that is processed 
in a data-block is halved in Diffwarps16 (W=16). Hence, read 
bandwidth gets halved, which finally results in a suboptimal 
performance. The Profiler endorses such claim since global 
memory read throughput falls from 104.17 GB/s in Diffwarps 
(unsegmented) to 53.67 GB/s in Diffwarps16 (segmented), for 
the first launch on 30*220 elements. 

On the other hand, the relation between TB2 and TB4‐warp 
gets reversed from unsegmented to segmented reduction. TB4‐
warp has the advantage of requiring less explicit 
synchronization barriers, but it presents more intra-warp 
divergences because many threads inside a CUDA-warp are 
stalled inside function tb_reduceWarp. These divergences cause 
more harm to the segmented version of TB4‐warp than to its 
unsegmented counterpart, because the divergent code is heavier 
in the segmented case due to s_reducePair_toTheLeft. Table III 
proves such assumption by showing the percentage of 
divergent branches the Profiler reports for 30*220 elements. 
Observe that TB2 and TB4‐warp exhibit a similar divergence for 
unsegmented reduction, while TB4‐warp is around ten times 

TABLE I.  KERNEL FEATURES FOR REDUCTION (LEFT). PROFILER’S REPORT FOR 30*220 DATA (RIGHT). 

Solution #Registers 
Shared 

Memory 
Block 
Size 

Theoretical 
Occupancy 

MBPM 
N= 30*220 

#Blocks 
Global Memory Read 

Throughput (GB/s) 
aw/ac 

TB2 9 2B+2B/nBanks 256 100% - 61440, 120, 1 25.53, 17.58, 0.11 46.24, 36.37, 7.88 

TB4-warp 13 4B+32 256 100% - 30720, 30, 1 36.36, 16.45, 0.03 45.12, 22.21, 7.35 

Matrix 10 H(W+1) 256 100% - 30720, 30, 1 92.88, 26.33, 0.01 39.48, 20.85, 6.24 

Persistent Matrix 15 H(W+1) 256 100% 6 90, 1 94.25, 0.68 45.25, 7.82 

DiffWarps 15 2(H(W+1)) 288 94% 5 75, 1 104.17, 0.74 41.95, 8.83 
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more divergent for segmented reduction. 

With regard to the other scenarios, tree-based solutions are 
gaining positions as the segment size gets smaller. They 
overtake Diffwarps and Diffwarps16 in case (b), and exhibit the 
best performance in case (c). The reason we find is that the 
probability of getting coalesced accesses, concerning irregular 
accesses, increases for tree-based reductions when segments 
are small. To explain it let us focus on segments of size 3, i.e. 
case (c). We have simulated the first launch of TB2, TB4‐warp 
and Matrix  to analyze the ratio of read data transfers to 
requested accesses. Transfers have been counted according to 
the way Fermi serves memory in chunks of 32 adjacent floats 
(128 bytes). Table IV examines what happens to the first 
CUDA-warp of the first CUDA-block. According to the values 
of ܦ for each solution, TB2 runs 9 recursive levels, TB4‐warp 
requires 5 levels for intra-warp reductions, and Matrix 
processes 32 columns. Since the results of columns 1, 2 and 3 
get repeated, only columns from 0 to 6 are presented in the 
table. In addition, TB4‐warp and Matrix require 5 levels more to 
reduce intermediate results. They have been included in the 
table for TB4‐warp (levels 5-9). Notice that TB2 exhibits the 
lowest ratios, especially in the first levels, which indicates that 
irregular accesses are quite coalesced. On the contrary, the ratio 
for Matrix is always 1, that is, each request access is served 
with an independent transfer, which penalizes its performance. 

VI. CONCLUSION AND FUTURE WORK  

Sequential approaches have a better performance than tree-
based ones for unsegmented reduction. With regards to the 
segmented case, performance depends on the distribution of 
segments. According to our results for regularly-spread 
segments, tree-based methods exhibit a higher bandwidth for 
small sizes, whereas sequential ones run faster for medium and 
large ones. 

The two optimizations we have presented result in a speed-
up for the unsegmented problem. Concerning the segmented 
case, performance is improved by using persistent blocks over 
segments of large size, while it remains the same for 

medium/small segments. Diffwarps is very shared-memory 
demanding, which makes its occupancy decrease. Thus, it is 
not competitive for segmented reduction on nowadays graphics 
hardware, although this could change for future devices since 
the current tendency has been to increase shared memory size. 

The optimizations only have been integrated into the 
sequential matrix-based algorithm, and we plan to test them 
onto the tree-based methods. Finally, the reduction is a part of 
the scan primitive and the optimizations presented in this paper 
could be embedded in the scan algorithms to improve their 
performance. 
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Figure 5. Runtimes in ms (Y-axis) for s-reduction. Input size is x*220 elements (X-axis).  
(a) Only one segment, (b) random sized segments, (c) segments of size 3.

1,5

2,5

3,5

4,5

5,5

6,5

7,5

16 18 20 22 24 26 28 30
3

5

7

9

11

13

15

16 18 20 22 24 26 28 30

 TB2  TB4W Matrix P.Matrix DiffWarps DiffWarps 16

4

9

14

19

24

29

34

16 18 20 22 24 26 28 30

(a) (b) (c) 
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