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Abstract—Achieving high efficiency with numerical kernels for - Smart Expression Template (SET) math libraries. These li-
sparse matrices is of utmost importance, since they are pamf praries attempt to combine highly optimized math kernets fo
many simulation codes and tend to use most of the available \ector and matrix operations with the advantages of a domain

compute time and resources. In addition, especially in larg e . S .
scale simulation frameworks the readability and ease of use specific language. They include an intuitive formulation of

of mathematical expressions are essential components fohe Mathematical operations, high readability, and easy nuadifi
continuous maintenance, modification, and extension of swfare. tion of operations (see for instance Listing 1).

In this context, the sparse matrix-matrix multiplication i s of
special interest. In this paper we thoroughly analyze the sigle- | isting 1: spMMM formulation in the Blaze SET math library.
core performance of sparse matrix-matrix multiplication kernels . : : ;
in the Blaze Smart Expression Template (SET) framework. We ;k/’iaze‘ ‘gi?iiiiji:ﬁzilzzdﬁ:i’czzwﬁagifBA’ Br G
develop simple models for estimating the achievable maximm " _".", B;
performance, and use them to assess the efficiency of our
implementations. Additionally, we compare these kernels ith

several commonly used SET-based C++ libraries, which, jusas In this paper we .focus on the opti.mization of the sequential
Blaze aim at combining the requirements of high performance SPMMM algorithm in theBlazeSET library, and compare the
with an elegant user interface. resulting performance characteristics for two chosen sspar

For the different sparse matrix structures considered herewe matrices with similar high-performance SET-based frame-

show that our implementations are competitive or faster tha < |t will be clear that such a comparison can only make
those of the other SET libraries for most problem sizes on a

current Intel multicore processor. sense whgn the e}naly5|s is performed over a wide range of
problem sizes, which rules out an extensive survey of papula
[. MOTIVATION matrix collections. We recognize that such a survey would be

: . . . L desirable. In this work we prefer a deeper analysis with more
Various popular simulation algorithms in high performance P P Y

computing (HPC), such as computational dynamics for rig{gSlght, however, and leave the survey to future research.

bodies, rely on sparse matrix-matrix multiplication (sSpMy This paper is organized as follows. In Sectfoh Il we give

. ) : 2 short overview of other C++ math libraries that follow an
as one of their computational kernels. Due to its centra ro L . .
approach similar t@laze before Sectiof 1l briefly summa-

in the applications and its computational complexity it fs 0. : .
| the app computatior ompiexity It 1 rizes the details of our benchmark platform and benchmgrkin
vital importance to have highly optimized implementations . . .
. strategy. In Sectioh IV we describe basic tasks and negessar

However, apart from performance, other metrics such a : .

. py S steps for spMMM, together with appropriate performance
programmability, readability and foremost maintainabikre o

. models. Here we also demonstrate the general suitabilitysof

crucial for a successful long-term software developmeiotef

Yet these metrics usually play only a minor role in HPC,SET methodology for HPC in terms of performance and the

software development. Although there exist several a advantages in terms of software development. The optimized
. . . . . . kernels are benchmarked and compared to several other SET-
to provide fast spMMM implementations, these librarieke i

most HPC software efforts, strictly focus on high perforicean based C++ math libraries in Sectib V. Secian VI concludes

but do not so well in most other software metrics (see alsp [1fhe paper and provides suggestions for future work.
This neglect especially endangers complex, long-termvsoé
developments due to impeded maintenance work. However,
the maintainability of software should be of major interest The C++ programming language provides the feature to
average, 60% of the total software development costs ist spditectly overload mathematical operators, which enablesrga
in maintenance, where long-term projects usually lean tdsva intuitive application of mathematical operations. Howedeie
higher maintenance costs| [2]. Improving the maintaingbilito the necessary creation of a temporary in each operation,
immediately leads to less effort in software modificatiom anthe performance of classic C++ operator overloading can-
extension and subsequently to fewer software defects. not compete with other approaches. A reputed solution are
This realization is the driving force behind several C+Expression Templates (ET), which due to lazy evaluation
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of the result promise optimized performance. The first EBandwidth (as measured by the STREAM benchmark [18])
based C++ library for dense arithmetic wktz++ [3]. This is about 18.5 GB/s. For each non-zero element of a sparse
framework, written by the inventor of ETs, Todd Veldhuizenmatrix we store the value as double precision floating point
has been recognized as a pioneer in the area of C++ templatenber and an index as a 64-bit integral value. Since we
metaprogrammingd [4]. The BoosBLASlibrary [5] is one of concentrate on general sparse matrices and there is nar vecto
the most widespread ET math libraries since it is distriduteyather instruction in current x86 designs, we do not utilize
together with the Boost library [6]. In contrast ®litz++ it SIMD vectorization but run scalar code. This means that the
additionally provides sparse matrices and vectors. Howev€PU is capable of performing one double precision floating
in [1] we have demonstrated that the assumption that Epsint multiplication and one double precision floating foin
are a performance optimization is not justified, and hawldition as well as either two load or one load (LD) and one
introduced an improved solution by the Smart Expressiatore (ST) instruction per cycle [19]. Therefore the théoad
Template (SET) methodology. Among other features, SEpgak performance is 7.6 GFlop/s.

encapsulate performance-optimized compute kernelshib®et  The penchmark platform runs an openSuse 12.1 and

provided by the BLAS and LAPACK standards. An earlyye yse the GNU g++ compiler with the following com-
example for a SET library i&irmadillo [[7], which is restricted piler flags: -wall -Werror -ansi -pedantic -03

to dense linear algebra operations, but employs SETS 19.vx -DNDEBUG
integrate BLAS and LAPACK for optimized performance.

The same feature is provided BWTL4, which additionally Bl
includes sparse matrix operations. An alternative withilaim

We use the Blazemark benchmark suite, which ships with
aze for a direct comparison of the different libraries. It uses
the same random seed for all libraries and care is taken that

functionality is theGMM++ library [8], which allows to use . )
ATLAS [9] as BLAS backend. Numerics involving dense an(r]z;\ndomly generated numbers and structures are identical fo
' all tested libraries. We extended the Blazemark to have the

sparse matrices and vectors, the use of optimized kernds, %ption to compare not only different libraries but also
the advanced SET features of intrinsics-based vectovizati . . ipit
non-BLAS operations and automatic expression optiminati Implementations of th@lazespMMM kermels. To make sure
are su orteF()j by thEigen3[L0] and theBIE)alze[ll_ll] IibFr)aries %hat all measured times are accurate the Blazemark runs shor

bp Y ger . o . test-cases several times until the total runtime exceeds tw
In contrast toEigen3 which provides optimized kernels for

all basic operationBlazeuses BLAS subroutines for BLAS seconds. Furthermor_e, each test is pe_rformed at least S time
. and the best result is taken as the final measurement. The
level 2 and 3 operations.

In [] we have analyzed several of these ET implemerr]]aumber of floating point operations per second (Flops/s) for

tations in detail and have introduced the notion of SEfsegpMMM are calculated as follows: The number of required

and our SET libraryBlaze in particular. In [12] we have multiplications is

extended our analysis to more ET-based libraries, focused

on the optimization and vectorization capabilities for sken

arithmetic, and presented performance results for the CG

algorithm, which is fundamental for many applications. In

this work we expand our analysis to sparse arithmetic and the _ )

sparse matrix-matrix multiplication (spMMM) in particula Whereai is the number of non-zeros in theth column of
Much work has been devoted to sparse matrix based & @ndby is the number of non-zeros in thieth row of B.

gorithms and efficient implementations in the past. Howeveyh® number of additions required is always bounded by the

most publications deal with parallel sparse matrix-veotoi- required numper of multiplications. We alwa_ys use the worst

tiplication [13], [12], [18], since it is of pivotal importe Case assumption to cal_culate_the Flops_, whl_ch means that the

in solving sparse linear systems and sparse eigenvalue pr@¥erall number of floating point operations is approximgatel

lems. While there has also been substantial work on spafééce the number of multiplications.

matrix-matrix multiplication, it mostly deals with exedomn Two different input matrices over a range of problem sizes

and communication efficiency in the parallel casel [16]] [17hre used to review the outcome of our analysis. The first test-

Here, however, we only cover the sequential kernel any try tase multiplies two five-band matrices, which are created by

understand its features in a well-defined setting, and éshec using a 5-point stencil resulting from a finite difference-di

in the context of SET frameworks. Consequently, issues ofetization of a Dirichlet boundary value problem on a squar

load and communication balancing, which would be crucidll graphs showing the result of multiplying two of these

in the parallel case, do not arise. five-band matrices are marked with (FD). The second test-

case uses two randomly generated quadratic matrices. Elor ea

matrix five random numbers are placed on random locations
An Intel Sandy Bridge i7-2600 CPU was used for all benchin each row. This allows for a good comparability between

marks. Using only one of the four cores it runs at 3.8 GHthe two test-cases in terms of the fill rate of the matrices.

with 8 MB of shared L3 cache, 256 kB of L2 cache and 32 kBVhenever a graph shows the outcome of the multiplication of

of L1 data cache. The maximum achievable main memotwyo randomly generated matrices it is marked with (random).
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IIl. BENCHMARK PLATFORM AND TEST-CASES



V. IMPLEMENTATION AND PERFORMANCE ANALYSIS OF  providing a fallback to the “classic” algorithm. The effddt
THE SAMMM KERNEL convert the format is linear in the number of non-zero estrie

For a thorough analysis it has turned out to be convenie-‘:,?erefore it is not necessary to implement a total of eight

to split the spMMM kernel in two logically independent partscomputation kernels for all eight possible combinationss |
The pure computation and the actual storing of the results sufficient to convert one of the two matrices to be able to use

the row-major or column-major algorithm.
A. The pure spMMM computation kernel In order to arrive at a realistic upper performance limit for

Looking only at the pure computation of the spMMMCYr computational kernels we employ a simplg bandwidth-
allows to implement this part of the kernel and be sure thBgsed performance model [23]. [21]: The maximum perfor-
it works at the highest possible performance without arfjjance for a loop is
interference of additional data accesses for storing theltre Brnas
In Blaze we use implementations of the two well known P = max (Pmam?> ’
formats “compressed sparse row” (CSR) and “compressed ) ) ¢ ]
sparse column” (CSC)T20]. These formats usually show goa\dwere bmax 1S .the bandwidth of the relevant data path in
performance for general matrices on general-purpose cach¥tes/s ands. is the loop’s code balance:
based microprocessors. Both formats use an array of psjnter Data traffic [Bytes]
which provides an immediate access to a specific row (CSR) Be = Floating point operations [Flops]
or column (CSC). ) ) )

The classic way of calculating a matrix-matrix producfNis model works well if the performance of the loop is
C = A« Bis to perform a dot product-like operation betweefOMminated by the data transfers to and.from a single data
arow of A and a column of3 for each element in the resultingPath- Other effects, such as dependencies, abundant branch
matrix. To achieve optimal performance with this approachlsPredictions, or the general inability of a single core to
the format should be CSR for matrik and CSC forB, while saturate the bandwidth of some memory hierarchy levels, may
the format ofC' is irrelevant. The problem is that both vector§USe significant deviations from the modell[24]. However, i
are sparse and therefore the operation suffers from all knot§ Still @ valuable starting point for a loop-based perfonge

issues of sparse vector-vector multiplications. Furtieenihe analysis, since it provides a "light speed” estimate. We-con
results of these “dot products” are zero most of the tim&entrate here on modeling the more advanced implemensation

Optimizations such as unrolling or blocking, which would®' e SPMMM kernel, since the naive version is plagued by

lead to increased computational intensffyl[21].1[14], rely conditional branches and erratic access patterns, whichar
exploiting specific matrix structures and will not be exgior €2Sily modeled.

here. _ o Listing 2: The row-major computation kernel without storing the
Another algorithm, optimized for a set of three CSR or threesult to the matrixC'.

CSC matrices, was introduced [n[22]. As shown in Figure lvoid compute (

multiplies each non-zero valug. . of row r of matrix A with 2 CSRMatrixs C,

all non-zero entries, . of matrix B. The intermediate results ZEEZE gggzzizz Zg')

are collected in a dense temporary vector, which is inytiall,

filled with zeros, by just adding each result to the currel typedef CSRMatrix::const_iterator iterator;
value at the position: of the temporary yector. If this is dqné8 I et <She e o el i ey @
for all non-zero values of row of matrix A, the vector iS¢ nnzestimation( Cc, A, B );

a dense representation of thiln row of the resulting matrix.o .
Note that the approach can also be applied to column-m# // Temporary vector to store the result row-wise

) i A A std: :vector<double> temp( C.columns(), 0.0 );
matrices in the spMMM with three CSC matrices. 13
14 // Loop over all rows of the target matrix
tempcecoceee 15 for( std::size_t cy = 0; cy < C.rows(); ++cy )
16 {
I m 17 iterator ait( A.begin(cy) );
O o0 © o 18 iterator const aend( A.end(cy) );
[ o000 [ ] 19
[ J = o0 o000 20 // Loop over the non-zero entries of the
o0 | oo o 5 // current row of A
L4 ° ® o oo 22 for( ; ait!=aend; ++ait )
o o [ N ] e o 23 {
A B C 24 std::size_t const indexA( ait->index () );
Figure 1: Sketch of a spMMM with the row-major algorithm. *° double const valueR( ait=>value{) );
27 iterator bit( B.begin (indexA) );
In case one of the two matrices is available in CSR forri iterator const bend( B.end(indexd) );

and the other in CSC format it turns out to be more efficig] // Loop over the non-zero entries of the
to convert one of the matrices to the other format instead: //  current row of B



1100

T
32 for( ; bit!=bend; ++bit ) 10001 i : ]
33 { !

34 size_t const indexB( bit->index() ); // LD soor ! ]
35 800 1 |

36 // Update value 700

37 // LD + Mult + LD + ADD + ST 600

MFlops/sec

1004 — CSR x CSC‘ (with Conversion)

|
|
!
38 temp[indexB] += valueA * bit->value(); 500 i
39 } | %
40 } 400 ! S
| ®
41 300 ! -
42 // Write result to matrix C 200- | — CSRxCsR ]
43 // Reset all entries of vector temp to 0.0 !
|
|

44} !

0 . | ; .
45} 10 100 1000 10000 100000
N

Listing [2 shows the code for the row-major computatioﬁigure 2:  Performance results of the pure computation (FD).
kernel. The inner loop between linEs]32 dnd 39 has a co%%?o mgﬁrgsu/r;ectheoretlcal performance beyond the L3 limit is
balance of 16 Bytes/Flop. We assume that the update to the
temp[] vector causes a load and a store to the relevant
memory hierarchy level, but ignore non-consecutive aExss,
which would lead to excess data traffic. Hence, the predistio
of the balance model must be seen as best-case values. Wit"izo
the L1 cache this leads to a maximum theoretical performan 110
of 3800 MFlops/sec at 3.8 GHz clock frequency, whereas i *®
memory the limit is 1140 MFlops/sec. 0

Figure[2 shows performance results versus problem sig 74
(number of matrix rows) for the 5-point finite differencerste
cil matrices. The row-major algorithm (CSR CSR) clearly
achieves the best results for CSRCSR and even comes
close to the theoretical performance of 1140 MFlops/se
beyond the L3 cache limit. Even if the right-hand side opdrar
is given as a CSC matrix and is therefore internally conderte o
to CSR (CSRx CSC (with conversion)), still about 50% of N
the original performance is achieved. The classic CSRSC Figure 3: Performance results of the pure computation (random).
kernel cannot compete with the the row-major approach diige maximum theoretical performance beyond the L3 limit is
to the problems mentioned before. The fact that the rol40MFlops/sec.
major algorithm’s performance only drops slightly for niegis
that do not fit into the L3 cache anymore shows that the Note that the general guideline to have a regular matrix
balance model is problematic for in-cache situations, andem structure for best performance is valid predominantly ievwi
advanced modeling techniques would be requited [24]. Af the left-hand side matrix4; the performance is largely
data of the left-hand side matrix is traversed with stride.onindependent of the structure &f.

For the right-hand side operand the prefetcher can easily )
predict which data to load, thanks to the fixed five-band patteB- Storing the spMMM result
of the matrix. The algorithm in Listing 2 only calculates all the entries

Figure[3 shows the results for the test case which usfes the result matrix, but never actually stores them to the
randomly generated spares matrices. The classic €¥F8C matrix object. Therefore all further optimization is dnivéy
algorithm is not influenced by the structure of the matricdbe requirement to access the memory when storing the result
and therefore shows the same bad performance we sawnirihe most efficient way.

Figure 2. The row-major approach clearly achieves betterin this context, estimating the number of non-zero entries
results. However, because of the random structure of tlte leéh the resulting matrix is an essential aspect. It is of highe
hand side operand the prefetcher does not work optimally fionportance to prevent frequent dynamic memory allocations
the right-hand side matrix; thus, performance goes dowh witluring the calculation. Therefore an estimation of the final
growing problem sizes. The classic approach does not shoumber of non-zero entries is required that never underesti
any significant performance for problem sizes greater thamates and, if possible, only slightly overestimates thedede
N = 200. Compared to this the row-major approach showsemory. We found that the number of multiplications reqdiire
a much better performance even for huge matrices that do tmtperform the spMMM (se&lll) is a good estimate. Each
fit into the L3 cache anymore, and also if the right-hand sidetermediate result either takes a place which is still z&ro
matrix hast to be converted to the other format. Due to tlie added to another intermediate result. Due to this fact the
cache-unfriendly access patterns the calculated perfwenanumber is always equal or higher than the number of non-

imits cannot nearly be reached for this matrix.

T
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— CSRxCSC

—— CSR x CSC (with Conversion)
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!
"Brute Force"-bool
— "Brute Force"-char
— "Brute Force"-double
— - MinMax-char
— MinMax-double

zeros in the resulting matrix. Using this estimation the mgm 550
allocation is only done once at the beginning of the kernel. 5%
Another performance-critical part is the interface forstg 450
the values in the resulting matrix. Our implementation & th
CSR/CSC formats provides two low-level functions for this§ *°[
First theappend function, which appends an entry. It is the & **[
programmer’s responsibility to append values in inCI’G.jiSiI’LEL il
row order and, within each row, in increasing column orde :
The second function i€inalize, which marks the end of
a row after all values have been appended. It has to be call _|
after each row and leaves the matrix in a consistent state (n« oL . )
that the CSC format is handled accordingly). Streaming tt  *° 100 B
results in this way has the advantage that all the values are ) ) . ) . )
stored in one suc):/cessive memory b%ock, and the underlyi%rﬁzg?s5('ran%%mgafgf?ﬁeogoﬂﬁggtspE,;/r'l,:,tl(,\e,l Force” and "MinMax
data structure for the row access is only modified once per '
SpMMM.

We have shown above that the row-major algorithm (sede ble approach without die additional lookup vector. Also
Listing[2) is very efficient. It calculates a dense represton ouble app P '

of each result row, which subsequently has to be stored in fhaown are our MinMax” kernels, which basically do the same

. S the “Brute Force” kernels, but additionally keep track of
sparse result matrix. However, the way the temporary vec %r

. . . , _the lowest and highest index of the non-zero entries in the
is converted to a sparse row is crucial. A first alterna'uvt% mporary vector. Especially in the test-case with the figad
is a brute force approach, which iterates over theible porary - =SP y

matrices this optimization gives a considerable perforrean
values of the temporary vector and appends all non-zeresal

to the resulting matrix (‘Brute Forcelouble). To reduce llé)oost. Notably, using the additionathar vector hurts the

the amount of memory that has to be traversed the Sec(ﬁnedformance of "MinMax” considerably. With the "MinMax

. - : ernel each checked entry of temporary vector is more likely
approach is to use an additional lookup vector, either oéty% non-zero value and therefore the advantage of the looku
bool (“Brute Force”bool) or char (“Brute Force’char). 9 P

Inthe STL astd: :vector<bool> is implemented as a bit vector is not big enough to compensate the extra effort.

field [25] and can therefore hold information for 512 posiso EveT tho“gh the "MinMax" approach is_ be_‘t.ter than “3rute
per cache line instead of oubles or 64chars. Figureh Force,” both influence the performance significantly. Iniadd

shows the performance results for the CSFCSR “brute tion, the bigger the problem sizes the more the performance
force” kernels for the 5-point finite difference stencilsdanSUfférs compared to the pure computation kernel. With the

Figure[® shows the corresponding results for the randonﬂ{]Oblem size also the Ien_gth of th.e-temporary vector and
created matrices. the number of elements in the minimum-maximum range

increases, but the absolute number of non-zeros does not
- change significantly.

"Brute Force™-bool The next approach is to store all indices for non-zero

— "Brute Force"-char g

- jBuute Force-double elements within a row in a separate vector, which is usually

— MinMax-double 1 small enough to fit into any cache level. After the complete ro

1 is calculated the few entries of the vector that hold thedesli

{ are sorted usingtd: :sort, and then only these positions

| of the temporary vector are appended to the resulting matrix

Figure[® shows the performance results for the CSRSR

for the five-point finite difference stencils with the sodin

kernel (Sort) and Figurd 7 illustrates the correspondisglts

for the test-case with the randomly generated matrices. It

0 10600 10000 160000 shows that the performance drawback of the sorting approach

N does not significantly increase with the problem size.
Figure 4: Comparison of different “Brute Force” and “MinMax”  Eqr both test-cases the “MinMax” approach still performs
kernels (FD) for the complete SpMMM. better at small problem sizes. Hence, the final approach is
to combine the “MinMax” and “Sort” kernels to the new

Despite the fact that “Brute Forcéleol accesses the least‘Combined” kernel. The decision which of the two storing

memory it has to perform additional Boolean operations fatrategies to use is performed for every single row. Noté tha

each entry, which leads to the worst performance in botthis more important that the decision can be done quicklytha

cases. Also in both cases the additioaakr vector increases that it is precise, as it is performed for every row sepayatel

the performance slightly compared with the “Brute Force™he current implementation uses “MinMax” if its region is
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Figure 8: Comparison of the “MinMax” approach with the “Sort”
approach, multiplying randomly generated matrices witkxedi0.1%
fill ratio.

V. PERFORMANCE COMPARISON OFSET LIBRARIES

In this section we compare the performance of Blaze
library to other expression template based C++ libraries. W
selected the most common libraries that provide the acegrdi
kernels for the multiplication of two CSR matrices and the
multiplication of a CSR and a CSC matrix. We use the Boost
uBLASlibrary in version 1.51MTL4 in version 4.0.8883 (open

Figure 7: Comparison of the “MinMax” approach with the “Sort” source edition)Eigen3in version 3.1.1, an@lazein version
approach (random) for the complete spMMM.

1.1, the latter employing the fastest “Combined” kernehfro
Section[IV-B. All libraries were benchmarked as given. We
only present double precision results in MFlop/s graphs for

smaller than twice the number of non-zero values in this rogach test case. For all in-cache benchmarks we make sure that
and “Sort” in all other cases. In Figufé 7 the switch fronthe data has already been loaded to the cache.
“MinMax” to “Sort” is clearly visible betweenV = 49 and Figure [@ shows the comparison of the results of the
N = 64. We found that as long as the storing method is n@SR x CSR kernels for sparse matrices resulting from five-
about to change, the “Combined” kernel is at most 5% lepsint finite difference stencils. Th8laze library achieves
efficient than the kernels with only a single strategy. OWeraroughly twice the performance d&igen3and MTL4. uBLAS
the “Combined” kernel reaches 35% of the pure computatieannot compete with the others, since it abstracts from the
performance for the CSR CSR test case using the five-pointictual storage order of the operands and traverses the right
finite difference stencils. hand side operand in a column-wise fashion despite it being
All previously shown test-cases used matrices with a fixesiored in row-major order. It becomes apparent that with a
number of non-zero entries in each row. This means that the fitoper implementation of the kernel the size of the matrix
ratio decreases with increasing problem size. The bendhmhardly influences the performance. Only a small drop can be
shown in Figuré18 uses the same matrix generation algoritaserved for matrices that do not fit into the L3 cache anymore
as for the random case, but the fill ratio is 0.1% for each roand have to be loaded from main memory.
instead of the fixed five elements. With the increasing altsolu Figure [I0 summarizes the results for the CSFCSR
number of non-zero entries in each row the fill ratio of the rdeernels for randomly created sparse matrices. AgBlaze
sult matrix increases. AV ~ 38000 the “MinMax” approach shows a higher performance than tiiggen3 and MTL4
exceeds the performance of the “Combined” kernel, whidtbraries, anduBLASfalls far behind. In comparison to sparse
uses the “Sort” storing strategy. At this point the fill ratifithe matrices resulting from finite difference stencils, thoutte
result matrix is 3.7% or about 1400 non-zero entries per roperformance clearly depends on the size of the matrix and
For the “MinMax” kernel this means that on average evemyegrades with growing matrix sizes.
third cache line loaded actually contains one non-zeroyentr The results for the CSR CSC kernels for sparse matrices
Our conclusion is that there is a break-even point in terms @sulting from five-point finite difference stencils are ggated
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Figure 10: Performance comparison for the CSR = CSRCSR Figure 12: Performance comparison for the CSR = CSRCSC
benchmark (random). benchmark (random).

in Figure[11. The performance of tdazeandMTL4 libraries memory access patterns. Due to further optimizations in the

drop due to the creation of a temporary CSR matrix amdemory management and storage strategy, we can provide the

converting the storage order of the right-hand side operamgirrently fastest C++-based spMMM as part of BlazeC++

The performance oEigen3slightly increases in comparisonlibrary. Blazecombines high maintainability, which proves to

to the CSRx CSR kernel. Also the performance of thBLAS be of essential importance for large scale software develop

library increases since the strategy of multiplying a rowd amment, with HPC-grade performance that matches or exceeds

a column fits the given storage orders. However, still thtte capabilities of other commonly used C++ math libraries.

performance drops quickly with growing problem size and With the single core performance optimized the next step

prohibits the multiplication of large sparse matrices. to improve theBlaze library is to include shared memory
Finally, Figurd I shows the results for CSRCSC kernels parallelization to exploit many- and multicore architeet

for random sparse matrices. Again, the performance of thide expect that the typical contention and saturation effect

Blazeand MTL4 libraries drop to the creation of a convertegeen with these architectures will add many new effects to

temporary and the performance Bigen3slightly increases. the results presented here. Additionally, more work has to

Consequently, the performanceifjen3can even surpass thebe invested in further improving the single core perforneanc

Blazeperformance for medium-sized matrices. For small arigikploiting the given structure of the sparse matrix opesand

large sparse matricéslazeexhibits the best performance. might be a possible approach. Alternative sorting algorith

which are better suited to sort short lists of unique integra

numbers may also be advantageous. Finally, the decision
We have conducted the first thorough performance analygigerion for which of the two storing strategies to use ntigh

of several spMMM kernels on a modern standard processgg further improved.

Employing a simple performance model we have demonstrated

that our implementations can come close to the maximum

predicted performance in the computational part of the élern

for out-of-cache situations with matrices leading to stieay

VI. CONCLUSION AND FUTURE WORK
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