
ar
X

iv
:1

30
3.

16
51

v2
 [

cs
.P

F
]

6
M

ay
 2

01
3

Model-guided Performance Analysis of the Sparse
Matrix-Matrix Multiplication

Tobias Scharpff∗, Klaus Iglberger∗, Georg Hager† and Ulrich Rüde∗
∗Chair for System Simulation, University Erlangen-Nuremberg, Erlangen, Germany

Email: {tobias.scharpff,klaus.iglberger,uli.ruede}@fau.de
†Erlangen Regional Computing Center, University Erlangen-Nuremberg, Erlangen, Germany

Email: georg.hager@fau.de

Abstract—Achieving high efficiency with numerical kernels for
sparse matrices is of utmost importance, since they are partof
many simulation codes and tend to use most of the available
compute time and resources. In addition, especially in large
scale simulation frameworks the readability and ease of use
of mathematical expressions are essential components for the
continuous maintenance, modification, and extension of software.

In this context, the sparse matrix-matrix multiplication i s of
special interest. In this paper we thoroughly analyze the single-
core performance of sparse matrix-matrix multiplication kernels
in the BlazeSmart Expression Template (SET) framework. We
develop simple models for estimating the achievable maximum
performance, and use them to assess the efficiency of our
implementations. Additionally, we compare these kernels with
several commonly used SET-based C++ libraries, which, justas
Blaze, aim at combining the requirements of high performance
with an elegant user interface.

For the different sparse matrix structures considered here, we
show that our implementations are competitive or faster than
those of the other SET libraries for most problem sizes on a
current Intel multicore processor.

I. M OTIVATION

Various popular simulation algorithms in high performance
computing (HPC), such as computational dynamics for rigid
bodies, rely on sparse matrix-matrix multiplication (spMMM)
as one of their computational kernels. Due to its central role
in the applications and its computational complexity it is of
vital importance to have highly optimized implementations.
However, apart from performance, other metrics such as
programmability, readability and foremost maintainability are
crucial for a successful long-term software development effort.
Yet these metrics usually play only a minor role in HPC
software development. Although there exist several approaches
to provide fast spMMM implementations, these libraries, like
most HPC software efforts, strictly focus on high performance
but do not so well in most other software metrics (see also [1]).
This neglect especially endangers complex, long-term software
developments due to impeded maintenance work. However,
the maintainability of software should be of major interest: on
average, 60% of the total software development costs is spent
in maintenance, where long-term projects usually lean towards
higher maintenance costs [2]. Improving the maintainability
immediately leads to less effort in software modification and
extension and subsequently to fewer software defects.

This realization is the driving force behind several C++

Smart Expression Template (SET) math libraries. These li-
braries attempt to combine highly optimized math kernels for
vector and matrix operations with the advantages of a domain-
specific language. They include an intuitive formulation of
mathematical operations, high readability, and easy modifica-
tion of operations (see for instance Listing 1).

Listing 1: spMMM formulation in the Blaze SET math library.

1blaze::CompressedMatrix<double,rowMajor> A, B, C;

2// ... Initialization of matrices A and B

3C = A * B;

In this paper we focus on the optimization of the sequential
spMMM algorithm in theBlazeSET library, and compare the
resulting performance characteristics for two chosen sparse
matrices with similar high-performance SET-based frame-
works. It will be clear that such a comparison can only make
sense when the analysis is performed over a wide range of
problem sizes, which rules out an extensive survey of popular
matrix collections. We recognize that such a survey would be
desirable. In this work we prefer a deeper analysis with more
insight, however, and leave the survey to future research.

This paper is organized as follows. In Section II we give
a short overview of other C++ math libraries that follow an
approach similar toBlaze, before Section III briefly summa-
rizes the details of our benchmark platform and benchmarking
strategy. In Section IV we describe basic tasks and necessary
steps for spMMM, together with appropriate performance
models. Here we also demonstrate the general suitability ofthe
SET methodology for HPC in terms of performance and the
advantages in terms of software development. The optimized
kernels are benchmarked and compared to several other SET-
based C++ math libraries in Section V. Section VI concludes
the paper and provides suggestions for future work.

II. RELATED WORK

The C++ programming language provides the feature to
directly overload mathematical operators, which enables avery
intuitive application of mathematical operations. However, due
to the necessary creation of a temporary in each operation,
the performance of classic C++ operator overloading can-
not compete with other approaches. A reputed solution are
Expression Templates (ET), which due to lazy evaluation

http://arxiv.org/abs/1303.1651v2

of the result promise optimized performance. The first ET-
based C++ library for dense arithmetic wasBlitz++ [3]. This
framework, written by the inventor of ETs, Todd Veldhuizen,
has been recognized as a pioneer in the area of C++ template
metaprogramming [4]. The BoostuBLASlibrary [5] is one of
the most widespread ET math libraries since it is distributed
together with the Boost library [6]. In contrast toBlitz++ it
additionally provides sparse matrices and vectors. However,
in [1] we have demonstrated that the assumption that ETs
are a performance optimization is not justified, and have
introduced an improved solution by the Smart Expression
Template (SET) methodology. Among other features, SETs
encapsulate performance-optimized compute kernels like those
provided by the BLAS and LAPACK standards. An early
example for a SET library isArmadillo [7], which is restricted
to dense linear algebra operations, but employs SETs to
integrate BLAS and LAPACK for optimized performance.
The same feature is provided byMTL4, which additionally
includes sparse matrix operations. An alternative with similar
functionality is theGMM++ library [8], which allows to use
ATLAS [9] as BLAS backend. Numerics involving dense and
sparse matrices and vectors, the use of optimized kernels, and
the advanced SET features of intrinsics-based vectorization of
non-BLAS operations and automatic expression optimization
are supported by theEigen3[10] and theBlaze[11] libraries.
In contrast toEigen3, which provides optimized kernels for
all basic operations,Blazeuses BLAS subroutines for BLAS
level 2 and 3 operations.

In [1] we have analyzed several of these ET implemen-
tations in detail and have introduced the notion of SETs
and our SET libraryBlaze in particular. In [12] we have
extended our analysis to more ET-based libraries, focused
on the optimization and vectorization capabilities for dense
arithmetic, and presented performance results for the CG
algorithm, which is fundamental for many applications. In
this work we expand our analysis to sparse arithmetic and the
sparse matrix-matrix multiplication (spMMM) in particular.

Much work has been devoted to sparse matrix based al-
gorithms and efficient implementations in the past. However,
most publications deal with parallel sparse matrix-vectormul-
tiplication [13], [14], [15], since it is of pivotal importance
in solving sparse linear systems and sparse eigenvalue prob-
lems. While there has also been substantial work on sparse
matrix-matrix multiplication, it mostly deals with execution
and communication efficiency in the parallel case [16], [17].
Here, however, we only cover the sequential kernel any try to
understand its features in a well-defined setting, and especially
in the context of SET frameworks. Consequently, issues of
load and communication balancing, which would be crucial
in the parallel case, do not arise.

III. B ENCHMARK PLATFORM AND TEST-CASES

An Intel Sandy Bridge i7-2600 CPU was used for all bench-
marks. Using only one of the four cores it runs at 3.8 GHz
with 8 MB of shared L3 cache, 256 kB of L2 cache and 32 kB
of L1 data cache. The maximum achievable main memory

bandwidth (as measured by the STREAM benchmark [18])
is about 18.5 GB/s. For each non-zero element of a sparse
matrix we store the value as double precision floating point
number and an index as a 64-bit integral value. Since we
concentrate on general sparse matrices and there is no vector
gather instruction in current x86 designs, we do not utilize
SIMD vectorization but run scalar code. This means that the
CPU is capable of performing one double precision floating
point multiplication and one double precision floating point
addition as well as either two load or one load (LD) and one
store (ST) instruction per cycle [19]. Therefore the theoretical
peak performance is 7.6 GFlop/s.

The benchmark platform runs an openSuse 12.1 and
we use the GNU g++ compiler with the following com-
piler flags: -Wall -Werror -ansi -pedantic -O3

-mavx -DNDEBUG

We use the Blazemark benchmark suite, which ships with
Blaze, for a direct comparison of the different libraries. It uses
the same random seed for all libraries and care is taken that
randomly generated numbers and structures are identical for
all tested libraries. We extended the Blazemark to have the
option to compare not only different libraries but also multiple
implementations of theBlazespMMM kernels. To make sure
that all measured times are accurate the Blazemark runs short
test-cases several times until the total runtime exceeds two
seconds. Furthermore, each test is performed at least 5 times
and the best result is taken as the final measurement. The
number of floating point operations per second (Flops/s) for
the spMMM are calculated as follows: The number of required
multiplications is

n−1
∑

k=0

āk ∗ b̄k,

where āk is the number of non-zeros in thek-th column of
A, and b̄k is the number of non-zeros in thek-th row of B.
The number of additions required is always bounded by the
required number of multiplications. We always use the worst
case assumption to calculate the Flops, which means that the
overall number of floating point operations is approximately
twice the number of multiplications.

Two different input matrices over a range of problem sizes
are used to review the outcome of our analysis. The first test-
case multiplies two five-band matrices, which are created by
using a 5-point stencil resulting from a finite difference dis-
cretization of a Dirichlet boundary value problem on a square.
All graphs showing the result of multiplying two of these
five-band matrices are marked with (FD). The second test-
case uses two randomly generated quadratic matrices. For each
matrix five random numbers are placed on random locations
in each row. This allows for a good comparability between
the two test-cases in terms of the fill rate of the matrices.
Whenever a graph shows the outcome of the multiplication of
two randomly generated matrices it is marked with (random).

IV. I MPLEMENTATION AND PERFORMANCE ANALYSIS OF

THE SPMMM KERNEL

For a thorough analysis it has turned out to be convenient
to split the spMMM kernel in two logically independent parts:
The pure computation and the actual storing of the results.

A. The pure spMMM computation kernel

Looking only at the pure computation of the spMMM
allows to implement this part of the kernel and be sure that
it works at the highest possible performance without any
interference of additional data accesses for storing the result.
In Blaze we use implementations of the two well known
formats “compressed sparse row” (CSR) and “compressed
sparse column” (CSC) [20]. These formats usually show good
performance for general matrices on general-purpose cache-
based microprocessors. Both formats use an array of pointers,
which provides an immediate access to a specific row (CSR)
or column (CSC).

The classic way of calculating a matrix-matrix product
C = A ∗B is to perform a dot product-like operation between
a row ofA and a column ofB for each element in the resulting
matrix. To achieve optimal performance with this approach,
the format should be CSR for matrixA and CSC forB, while
the format ofC is irrelevant. The problem is that both vectors
are sparse and therefore the operation suffers from all known
issues of sparse vector-vector multiplications. Furthermore the
results of these “dot products” are zero most of the time.
Optimizations such as unrolling or blocking, which would
lead to increased computational intensity [21], [14], relyon
exploiting specific matrix structures and will not be explored
here.

Another algorithm, optimized for a set of three CSR or three
CSC matrices, was introduced in [22]. As shown in Figure 1 it
multiplies each non-zero valuear,c of row r of matrixA with
all non-zero entriesbc,x of matrixB. The intermediate results
are collected in a dense temporary vector, which is initially
filled with zeros, by just adding each result to the current
value at the positionx of the temporary vector. If this is done
for all non-zero values of rowr of matrix A, the vector is
a dense representation of therth row of the resulting matrix.
Note that the approach can also be applied to column-major
matrices in the spMMM with three CSC matrices.

() () ()* =

temp

A B C

Figure 1: Sketch of a spMMM with the row-major algorithm.

In case one of the two matrices is available in CSR format
and the other in CSC format it turns out to be more efficient
to convert one of the matrices to the other format instead of

providing a fallback to the “classic” algorithm. The effortto
convert the format is linear in the number of non-zero entries.
Therefore it is not necessary to implement a total of eight
computation kernels for all eight possible combinations. It is
sufficient to convert one of the two matrices to be able to use
the row-major or column-major algorithm.

In order to arrive at a realistic upper performance limit for
our computational kernels we employ a simple bandwidth-
based performance model [23], [21]: The maximum perfor-
mance for a loop is

P = max

(

Pmax,
bmax

Bc

)

,

where bmax is the bandwidth of the relevant data path in
bytes/s andBc is the loop’s code balance:

Bc =
Data traffic [Bytes]

Floating point operations [Flops]

This model works well if the performance of the loop is
dominated by the data transfers to and from a single data
path. Other effects, such as dependencies, abundant branch
mispredictions, or the general inability of a single core to
saturate the bandwidth of some memory hierarchy levels, may
cause significant deviations from the model [24]. However, it
is still a valuable starting point for a loop-based performance
analysis, since it provides a “light speed” estimate. We con-
centrate here on modeling the more advanced implementations
of the spMMM kernel, since the naive version is plagued by
conditional branches and erratic access patterns, which are not
easily modeled.

Listing 2: The row-major computation kernel without storing the
result to the matrixC.

1void compute(

2 CSRMatrix& C,

3 const CSRMatrix& A,

4 const CSRMatrix& B)

5{

6 typedef CSRMatrix::const_iterator iterator;

7

8 // Estimate the number of elements in matrix C

9 nnzEstimation(C, A, B);

10

11 // Temporary vector to store the result row-wise

12 std::vector<double> temp(C.columns(), 0.0);

13

14 // Loop over all rows of the target matrix

15 for(std::size_t cy = 0; cy < C.rows(); ++cy)

16 {

17 iterator ait(A.begin(cy));

18 iterator const aend(A.end(cy));

19

20 // Loop over the non-zero entries of the

21 // current row of A

22 for(; ait!=aend; ++ait)

23 {

24 std::size_t const indexA(ait->index());

25 double const valueA(ait->value());

26

27 iterator bit(B.begin(indexA));

28 iterator const bend(B.end(indexA));

29

30 // Loop over the non-zero entries of the

31 // current row of B

32 for(; bit!=bend; ++bit)

33 {

34 size_t const indexB(bit->index()); // LD

35

36 // Update value

37 // LD + Mult + LD + ADD + ST

38 temp[indexB] += valueA * bit->value();

39 }

40 }

41

42 // Write result to matrix C

43 // Reset all entries of vector temp to 0.0

44 }

45}

Listing 2 shows the code for the row-major computation
kernel. The inner loop between lines 32 and 39 has a code
balance of 16 Bytes/Flop. We assume that the update to the
temp[] vector causes a load and a store to the relevant
memory hierarchy level, but ignore non-consecutive accesses,
which would lead to excess data traffic. Hence, the predictions
of the balance model must be seen as best-case values. Within
the L1 cache this leads to a maximum theoretical performance
of 3800 MFlops/sec at 3.8 GHz clock frequency, whereas in
memory the limit is 1140 MFlops/sec.

Figure 2 shows performance results versus problem size
(number of matrix rows) for the 5-point finite difference sten-
cil matrices. The row-major algorithm (CSR× CSR) clearly
achieves the best results for CSR× CSR and even comes
close to the theoretical performance of 1140 MFlops/sec
beyond the L3 cache limit. Even if the right-hand side operand
is given as a CSC matrix and is therefore internally converted
to CSR (CSR× CSC (with conversion)), still about 50% of
the original performance is achieved. The classic CSR× CSC
kernel cannot compete with the the row-major approach due
to the problems mentioned before. The fact that the row-
major algorithm’s performance only drops slightly for matrices
that do not fit into the L3 cache anymore shows that the
balance model is problematic for in-cache situations, and more
advanced modeling techniques would be required [24]. All
data of the left-hand side matrix is traversed with stride one.
For the right-hand side operand the prefetcher can easily
predict which data to load, thanks to the fixed five-band pattern
of the matrix.

Figure 3 shows the results for the test case which uses
randomly generated spares matrices. The classic CSR× CSC
algorithm is not influenced by the structure of the matrices
and therefore shows the same bad performance we saw in
Figure 2. The row-major approach clearly achieves better
results. However, because of the random structure of the left-
hand side operand the prefetcher does not work optimally for
the right-hand side matrix; thus, performance goes down with
growing problem sizes. The classic approach does not show
any significant performance for problem sizes greater than
N = 200. Compared to this the row-major approach shows
a much better performance even for huge matrices that do not
fit into the L3 cache anymore, and also if the right-hand side
matrix hast to be converted to the other format. Due to the
cache-unfriendly access patterns the calculated performance

10 100 1000 10000 100000

N

0

100

200

300

400

500

600

700

800

900

1000

1100

M
F

lo
ps

/s
ec

CSR x CSR
CSR x CSC
CSR x CSC (with Conversion)

L1
 C

ac
he

L3
 C

ac
he

Figure 2: Performance results of the pure computation (FD).
The maximum theoretical performance beyond the L3 limit is
1140 MFlops/sec.

limits cannot nearly be reached for this matrix.

10 100 1000 10000 100000

N

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

M
F

lo
ps

/s
ec

CSR x CSR
CSR x CSC
CSR x CSC (with Conversion)

L1
 C

ac
he

L3
 C

ac
he

Figure 3: Performance results of the pure computation (random).
The maximum theoretical performance beyond the L3 limit is
1140 MFlops/sec.

Note that the general guideline to have a regular matrix
structure for best performance is valid predominantly in view
of the left-hand side matrixA; the performance is largely
independent of the structure ofB.

B. Storing the spMMM result

The algorithm in Listing 2 only calculates all the entries
for the result matrix, but never actually stores them to the
matrix object. Therefore all further optimization is driven by
the requirement to access the memory when storing the result
in the most efficient way.

In this context, estimating the number of non-zero entries
in the resulting matrix is an essential aspect. It is of highest
importance to prevent frequent dynamic memory allocations
during the calculation. Therefore an estimation of the final
number of non-zero entries is required that never underesti-
mates and, if possible, only slightly overestimates the needed
memory. We found that the number of multiplications required
to perform the spMMM (see III) is a good estimate. Each
intermediate result either takes a place which is still zeroor
is added to another intermediate result. Due to this fact the
number is always equal or higher than the number of non-

zeros in the resulting matrix. Using this estimation the memory
allocation is only done once at the beginning of the kernel.

Another performance-critical part is the interface for storing
the values in the resulting matrix. Our implementation of the
CSR/CSC formats provides two low-level functions for this.
First theappend function, which appends an entry. It is the
programmer’s responsibility to append values in increasing
row order and, within each row, in increasing column order.
The second function isfinalize, which marks the end of
a row after all values have been appended. It has to be called
after each row and leaves the matrix in a consistent state (note
that the CSC format is handled accordingly). Streaming the
results in this way has the advantage that all the values are
stored in one successive memory block, and the underlying
data structure for the row access is only modified once per
spMMM.

We have shown above that the row-major algorithm (see
Listing 2) is very efficient. It calculates a dense representation
of each result row, which subsequently has to be stored in the
sparse result matrix. However, the way the temporary vector
is converted to a sparse row is crucial. A first alternative
is a brute force approach, which iterates over thedouble

values of the temporary vector and appends all non-zero values
to the resulting matrix (“Brute Force”-double). To reduce
the amount of memory that has to be traversed the second
approach is to use an additional lookup vector, either of type
bool (“Brute Force”-bool) or char (“Brute Force”-char).
In the STL astd::vector<bool> is implemented as a bit
field [25] and can therefore hold information for 512 positions
per cache line instead of 8doubles or 64chars. Figure 4
shows the performance results for the CSR× CSR “brute
force” kernels for the 5-point finite difference stencils and
Figure 5 shows the corresponding results for the randomly
created matrices.

10 100 1000 10000 100000

N

0

50

100

150

200

250

300

350

400

450

M
F

lo
ps

/s
ec

"Brute Force"-bool
"Brute Force"-char
"Brute Force"-double
MinMax-char
MinMax-double

L1
 C

ac
he

L3
 C

ac
he

Figure 4: Comparison of different “Brute Force” and “MinMax”
kernels (FD) for the complete spMMM.

Despite the fact that “Brute Force”-bool accesses the least
memory it has to perform additional Boolean operations for
each entry, which leads to the worst performance in both
cases. Also in both cases the additionalchar vector increases
the performance slightly compared with the “Brute Force”-

10 100 1000 10000 100000

N

0

50

100

150

200

250

300

350

400

450

500

550

M
F

lo
ps

/s
ec

"Brute Force"-bool
"Brute Force"-char
"Brute Force"-double
MinMax-char
MinMax-double

L1
 C

ac
he

L3
 C

ac
he

Figure 5: Comparison of different “Brute Force” and “MinMax”
kernels (random) for the complete spMMM.

double approach without die additional lookup vector. Also
shown are our “MinMax” kernels, which basically do the same
as the “Brute Force” kernels, but additionally keep track of
the lowest and highest index of the non-zero entries in the
temporary vector. Especially in the test-case with the five-band
matrices this optimization gives a considerable performance
boost. Notably, using the additionalchar vector hurts the
performance of “MinMax” considerably. With the “MinMax”
kernel each checked entry of temporary vector is more likely
a non-zero value and therefore the advantage of the lookup
vector is not big enough to compensate the extra effort.

Even though the “MinMax” approach is better than “Brute
Force,” both influence the performance significantly. In addi-
tion, the bigger the problem sizes the more the performance
suffers compared to the pure computation kernel. With the
problem size also the length of the temporary vector and
the number of elements in the minimum-maximum range
increases, but the absolute number of non-zeros does not
change significantly.

The next approach is to store all indices for non-zero
elements within a row in a separate vector, which is usually
small enough to fit into any cache level. After the complete row
is calculated the few entries of the vector that hold the indices
are sorted usingstd::sort, and then only these positions
of the temporary vector are appended to the resulting matrix.
Figure 6 shows the performance results for the CSR× CSR
for the five-point finite difference stencils with the sorting
kernel (Sort) and Figure 7 illustrates the corresponding results
for the test-case with the randomly generated matrices. It
shows that the performance drawback of the sorting approach
does not significantly increase with the problem size.

For both test-cases the “MinMax” approach still performs
better at small problem sizes. Hence, the final approach is
to combine the “MinMax” and “Sort” kernels to the new
“Combined” kernel. The decision which of the two storing
strategies to use is performed for every single row. Note that
it is more important that the decision can be done quickly than
that it is precise, as it is performed for every row separately.
The current implementation uses “MinMax” if its region is

10 100 1000 10000 100000

N

0

50

100

150

200

250

300

350

400

450

500
M

F
lo

ps
/s

ec

MinMax
Sort
Combined

L1
 C

ac
he

L3
 C

ac
he

Figure 6: Comparison of the “MinMax” approach with the “Sort”
approach (FD) for the complete spMMM.

10 100 1000 10000 100000

N

0

50

100

150

200

250

300

350

400

450

500

550

M
F

lo
ps

/s
ec

MinMax
Sort
Combined

L1
 C

ac
he

L3
 C

ac
he

Figure 7: Comparison of the “MinMax” approach with the “Sort”
approach (random) for the complete spMMM.

smaller than twice the number of non-zero values in this row
and “Sort” in all other cases. In Figure 7 the switch from
“MinMax” to “Sort” is clearly visible betweenN = 49 and
N = 64. We found that as long as the storing method is not
about to change, the “Combined” kernel is at most 5% less
efficient than the kernels with only a single strategy. Overall,
the “Combined” kernel reaches 35% of the pure computation
performance for the CSR× CSR test case using the five-point
finite difference stencils.

All previously shown test-cases used matrices with a fixed
number of non-zero entries in each row. This means that the fill
ratio decreases with increasing problem size. The benchmark
shown in Figure 8 uses the same matrix generation algorithm
as for the random case, but the fill ratio is 0.1% for each row
instead of the fixed five elements. With the increasing absolute
number of non-zero entries in each row the fill ratio of the re-
sult matrix increases. AtN ≈ 38000 the “MinMax” approach
exceeds the performance of the “Combined” kernel, which
uses the “Sort” storing strategy. At this point the fill ratioof the
result matrix is 3.7% or about 1400 non-zero entries per row.
For the “MinMax” kernel this means that on average every
third cache line loaded actually contains one non-zero entry.
Our conclusion is that there is a break-even point in terms of

problem size for which the “MinMax” approach is faster than
sorting because of the growing probability that loaded datais
actually stored in the result matrix.

10000

N

0

50

100

150

200

M
F

lo
ps

/s
ec

MinMax
Sort
Combined

2500

L3
 C

ac
he

R
A

M
 li

m
it

Figure 8: Comparison of the “MinMax” approach with the “Sort”
approach, multiplying randomly generated matrices with a fixed 0.1%
fill ratio.

V. PERFORMANCECOMPARISON OFSET LIBRARIES

In this section we compare the performance of theBlaze
library to other expression template based C++ libraries. We
selected the most common libraries that provide the according
kernels for the multiplication of two CSR matrices and the
multiplication of a CSR and a CSC matrix. We use the Boost
uBLASlibrary in version 1.51,MTL4 in version 4.0.8883 (open
source edition),Eigen3in version 3.1.1, andBlazein version
1.1, the latter employing the fastest “Combined” kernel from
Section IV-B. All libraries were benchmarked as given. We
only present double precision results in MFlop/s graphs for
each test case. For all in-cache benchmarks we make sure that
the data has already been loaded to the cache.

Figure 9 shows the comparison of the results of the
CSR× CSR kernels for sparse matrices resulting from five-
point finite difference stencils. TheBlaze library achieves
roughly twice the performance ofEigen3and MTL4. uBLAS
cannot compete with the others, since it abstracts from the
actual storage order of the operands and traverses the right-
hand side operand in a column-wise fashion despite it being
stored in row-major order. It becomes apparent that with a
proper implementation of the kernel the size of the matrix
hardly influences the performance. Only a small drop can be
observed for matrices that do not fit into the L3 cache anymore
and have to be loaded from main memory.

Figure 10 summarizes the results for the CSR× CSR
kernels for randomly created sparse matrices. Again,Blaze
shows a higher performance than theEigen3 and MTL4
libraries, anduBLASfalls far behind. In comparison to sparse
matrices resulting from finite difference stencils, though, the
performance clearly depends on the size of the matrix and
degrades with growing matrix sizes.

The results for the CSR× CSC kernels for sparse matrices
resulting from five-point finite difference stencils are presented

10 100 1000 10000 100000

N

0

50

100

150

200

250

300

350

400

450

500
M

F
lo

ps
/s

ec

Blaze
Eigen
MTL
uBLAS

uBLAS

MTL

Eigen

Blaze

L1
 C

ac
he

L3
 C

ac
he

Figure 9: Performance comparison for the CSR = CSR× CSR
benchmark (FD).

10 100 1000 10000 100000

N

0

50

100

150

200

250

300

350

400

450

500

550

600

M
F

lo
ps

/s
ec

Blaze
Eigen
MTL
uBLAS

uBLAS

MTL

Eigen

Blaze

L1
 C

ac
he

L3
 C

ac
he

Figure 10: Performance comparison for the CSR = CSR× CSR
benchmark (random).

in Figure 11. The performance of theBlazeandMTL4 libraries
drop due to the creation of a temporary CSR matrix and
converting the storage order of the right-hand side operand.
The performance ofEigen3slightly increases in comparison
to the CSR× CSR kernel. Also the performance of theuBLAS
library increases since the strategy of multiplying a row and
a column fits the given storage orders. However, still the
performance drops quickly with growing problem size and
prohibits the multiplication of large sparse matrices.

Finally, Figure 12 shows the results for CSR× CSC kernels
for random sparse matrices. Again, the performance of the
BlazeandMTL4 libraries drop to the creation of a converted
temporary and the performance ofEigen3slightly increases.
Consequently, the performance ofEigen3can even surpass the
Blazeperformance for medium-sized matrices. For small and
large sparse matricesBlazeexhibits the best performance.

VI. CONCLUSION AND FUTURE WORK

We have conducted the first thorough performance analysis
of several spMMM kernels on a modern standard processor.
Employing a simple performance model we have demonstrated
that our implementations can come close to the maximum
predicted performance in the computational part of the kernel
for out-of-cache situations with matrices leading to streaming

10 100 1000 10000 100000

N

0

50

100

150

200

250

300

350

400

M
F

lo
ps

/s
ec

Blaze
Eigen
MTL
uBLAS

uBLAS

MTL

Eigen

Blaze

L1
 C

ac
he

L3
 C

ac
he

Figure 11: Performance comparison for the CSR = CSR× CSC
benchmark (FD).

10 100 1000 10000 100000

N

0

50

100

150

200

250

300

350

400

450

M
F

lo
ps

/s
ec

Blaze
Eigen
MTL
uBLAS

uBLAS

MTL

Eigen

Blaze

L1
 C

ac
he

L3
 C

ac
he

Figure 12: Performance comparison for the CSR = CSR× CSC
benchmark (random).

memory access patterns. Due to further optimizations in the
memory management and storage strategy, we can provide the
currently fastest C++-based spMMM as part of theBlazeC++
library. Blazecombines high maintainability, which proves to
be of essential importance for large scale software develop-
ment, with HPC-grade performance that matches or exceeds
the capabilities of other commonly used C++ math libraries.

With the single core performance optimized the next step
to improve theBlaze library is to include shared memory
parallelization to exploit many- and multicore architectures.
We expect that the typical contention and saturation effects
seen with these architectures will add many new effects to
the results presented here. Additionally, more work has to
be invested in further improving the single core performance.
Exploiting the given structure of the sparse matrix operands
might be a possible approach. Alternative sorting algorithms
which are better suited to sort short lists of unique integral
numbers may also be advantageous. Finally, the decision
criterion for which of the two storing strategies to use might
be further improved.

REFERENCES

[1] K. Iglberger, G. Hager, J. Treibig, and U. Rüde, “Expression Templates
Revisited: A Performance Analysis of Current ET Methodologies,”
SIAM J. Sci. Comput., vol. 34, no. 2, pp. C42–C69, 2012. [Online].
Available: http://dx.doi.org/10.1137/110830125

[2] B. David, Ed.,97 Things Every Project Manager Should Know: Collec-
tive Wisdom from the Experts. O’Reilly Media, 2009.

[3] Blitz++ library, “Homepage of the Blitz++ library:
http://www.oonumerics.org/blitz.”

[4] D. Abrahams and A. Gurtovoy,C++ Template Metaprogramming, ser.
C++ In-Depth Series. Addison-Wesley, 2005.

[5] Boost uBLAS library, “Homepage of the Boost uBLAS li-
brary: http://www.boost.org/doc/libs/151 0/libs/numeric/ublas/doc/in-
dex.htm.”

[6] Boost, “Homepage of the Boost C++ framework: http://www.boost.org.”
[7] Armadillo C++ linear algebra library, “Hompage of the Armadillo

library: http://arma.sourceforge.net/.”
[8] GMM++ library, “Homepage of the GMM++ library:

http://download.gna.org/getfem/html/homepage/gmm.html.”
[9] Automatically Tuned Linear Algebra Software (ATLAS), “Homepage of

the ATLAS framework: http://math-atlas.sourceforge.net/.”
[10] G. Guennebaud, B. Jacobet al., “Eigen v3,” http://eigen.tuxfamily.org,

2010.
[11] Blaze library, “Homepage of the Blaze library: http://www.zisc.uni-

erlangen.de/blaze.”
[12] K. Iglberger, G. Hager, J. Treibig, and U. Rüde, “High

Performance Smart Expression Template Math Libraries,”Proceedings
of the HPCS 2012 conference, 2012. [Online]. Available:
http://dx.doi.org/10.1109/HPCSim.2012.6266939

[13] R. H. Bisseling, “Sparse matrix computations on bulk synchronous par-
allel computers,” inG. Alefeld, O. Mahrenholtz, and R. Mennicken (eds.),
Proc. ICIAM’95. Issue 1. Numerical Analysis, Scientific Computing,
Computer Science, Akademie Verlag, Berlin, 1996., 1995, pp. 25–4.

[14] S. Williams, L. Oliker, R. W. Vuduc, J. Shalf, K. A. Yelick, and
J. Demmel, “Optimization of sparse matrix-vector multiplication on
emerging multicore platforms,”Parallel Computing, vol. 35, no. 3, pp.
178–194, 2009.

[15] G. Schubert, H. Fehske, G. Hager, and G. Wellein, “Hybrid-parallel
sparse matrix-vector multiplication with explicit communication over-
lap on current multicore-based systems,”Parallel Processing Letters,
vol. 21, no. 3, pp. 339–358, 2011.

[16] W. F. McColl and A. Tiskin, “Memory-efficient matrix multiplication in
the BSP model,”Algorithmica, vol. 24, p. 287297, 1999.

[17] G. Ballard, A. Buluc, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz,
and S. Toledo, “Communication optimal parallel multiplication of sparse
random matrices,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2013-13, Feb. 2013. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-13.pdf

[18] J. D. McCalpin, “STREAM: Sustainable Memory Bandwidthin High
Performance Computers,” University of Virginia, Charlottesville, Tech.
Rep. 09-8, 2007.

[19] Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel Press, 2012. [Online]. Available:
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

[20] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Ei-jkhout, R. Pozo, C. Romine, and H. van der Vorst,Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, 1994.

[21] G. Hager and G. Wellein,Introduction to High Performance Computing
for Scientists and Engineers, ser. Chapman & Hall/CRC Computational
Science Series. CRC Press, 2010.

[22] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,”ACM Transactions on Mathematical
Software, vol. 4, no. 3, pp. 250–269, 1978.

[23] S. W. Williams, A. Waterman, and D. A. Patterson,
“Roofline: An insightful visual performance model for
floating-point programs and multicore architectures,” EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2008-134, Oct 2008. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html

[24] G. Hager, J. Treibig, J. Habich, and G. Wellein, “Exploring performance
and power properties of modern multicore chips via simple machine
models,” submitted. [Online]. Available: http://arxiv.org/abs/1208.2908

[25] S. Meyers,Effective STL, ser. Addison-Wesley Professional Computing
Series. Addison-Wesley, 2008.

http://dx.doi.org/10.1137/110830125
http://dx.doi.org/10.1109/HPCSim.2012.6266939
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-13.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.html
http://arxiv.org/abs/1208.2908

	I Motivation
	II Related Work
	III Benchmark Platform and Test-Cases
	IV Implementation and performance analysis of the spMMM kernel
	IV-A The pure spMMM computation kernel
	IV-B Storing the spMMM result

	V Performance Comparison of SET Libraries
	VI Conclusion and Future Work
	References

