
The University of Manchester Research

The Development of a Database-driven Application
Benchmarking Approach to Performance Modelling
DOI:
10.1109/hpcsim.2014.6903760

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Riley, G., & Smari, W. W. (Ed.) (2014). The Development of a Database-driven Application Benchmarking
Approach to Performance Modelling. In W. W. Smari (Ed.), Proceedings of the 2014 International Conference on
Hight Performance Computing and Simulation (HPCS 2014) IEEE. https://doi.org/10.1109/hpcsim.2014.6903760

Published in:
Proceedings of the 2014 International Conference on Hight Performance Computing and Simulation (HPCS 2014)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:17. Apr. 2024

https://doi.org/10.1109/hpcsim.2014.6903760
https://research.manchester.ac.uk/en/publications/aa5115e1-847d-4ec1-a8a8-7603b519f743
https://doi.org/10.1109/hpcsim.2014.6903760

The Development of a Data-driven Application
Benchmarking Approach to Performance Modelling

A. Osprey∗†, G. D. Riley‡, M. Manjunathaiah∗, and B. N. Lawrence∗†
∗University of Reading, UK

†National Centre for Atmospheric Science (NCAS), UK
‡University of Manchester, UK

{a.osprey, m.manjunathaiah, b.n.lawrence}@reading.ac.uk, graham.riley@manchester.ac.uk

Abstract—Performance modelling is a useful tool in the lifeycle
of high performance scientific software, such as weather and
climate models, especially as a means of ensuring efficient use of
available computing resources. In particular, sufficiently accurate
performance prediction could reduce the effort and experimental
computer time required when porting and optimising a climate
model to a new machine.

Yet as architectures become more complex, performance
prediction is becoming more difficult. Traditional methods of
performance prediction, based on source code analysis and
supported by machine benchmarks, are proving inadequate to
the task. In this paper, the reasons for this are explored by
applying some traditional techniques to predict the computation
time of a simple shallow water model which is illustrative of the
computation (and communication) involved in climate models.
These models are compared with real execution data gathered
on AMD Opteron-based systems, including several phases of the
U.K. academic community HPC resource, HECToR. Some success
is had in relating source code to achieved performance for the
K10 series of Opterons, but the method is found to be inadequate
for the next-generation Interlagos processor.

The experience leads to the investigation of a data-driven
application benchmarking approach to performance modelling.
Results for an early version of the approach are presented using
the shallow model as an example. In addition, the data-driven
approach is compared with a novel analytical model based on
fitting logarithmic curves to benchmarked application data. The
limitations of this analytical method provide further motivation
for the development of the data-driven approach and results of
this work have been published elsewhere.

Keywords—Performance modelling; benchmarking; multicore,
shallow water model

I. INTRODUCTION

In climate modelling and numerical weather prediction,
improved performance over time arises in roughly equal
proportions from algorithmic developments and through the
purchase of new hardware, which is typically refreshed every
four or five years. Over time, computer architectures have
become more complex, with current processors containing 6, 8
or 12 cores, and implementing out-of-order instruction execu-
tion, deep memory hierarchies, sophisticated communication

This research was partly sponsored by the EU FP7-Infrastructures-201201
project, IS-ENES2 (GA312979)

systems within shared memory nodes, and complex intercon-
nection networks between nodes. As a result, performance is
becoming ever more complex to predict.

The ultimate motivation for this work is be able to compare
the performance of different runtime scenarios under which a
code might execute on a given HPC system. Scenarios may
differ in the number of processes (and threads allocated);
the domain decomposition used with a particular allocation
of processes; and the mapping of processes to specific cores
(often called an affinity mapping). These options lead to a
large parameter space, and the aim of this work is to develop
a performance modelling tool to support the rapid exploration
of options, seeking scenarios which provide (near) optimal
performance. Generally, climate modelling centres explore this
space experimentally, but this is costly in terms of both human
effort and computational resources, see for example Edwards
[1].

Performance modelling is a useful process for ensuring
that high performance computing (HPC) applications, such
as climate models, make the best use of available computing
resources. Performance modelling can inform choices of new
algorithmic developments as well as support performance
tuning of codes on existing and new architectures, thus helping
target the, typically scarce, development effort available. Fur-
thermore it can be used to reduce the cost of computer time
for experimentation to find good deployment configurations
(Kerbyson and Jones [2], Barker et al. [3]).

Analytical application models parameterise performance in
terms of key application inputs, and run-time deployment op-
tions, see Hoefler et al. [4]. Such models break the application
down into computational kernels, and communication events,
then use empirical or analytical techniques to estimate the time
to execute each portion of work.

In this paper, we examine different methods of modelling
the computational work of a simple shallow water model [5]
that replicates the type of work present in a typical climate
model. The target architectures considered are all systems
composed of various iterations of the AMD Opteron processor
series.

We begin with a detailed analytical model of the processor,
that counts the cycles to complete floating point operations

978-1-4799-5313-4/14/$31.00 ©2014 IEEE 715

plus loads and stores to and from cache and memory. It will be
established that, even for a simple model, traditional analytical
modelling techniques are inadequate, even when supplemented
with run-time or benchmarked machine information. The
limitations of these techniques motivate the development of a
data-driven approach to performance modelling, based on the
targeted collection of application benchmark data to support
the exploration of runtime scenario choices.

This empirical modelling approach is illustrated by eval-
uating against measured results, and comparing it with a
more sophisticated analytic model, based on fitting logarithmic
curves to benchmarked data. The results of these modelling
efforts are positive, and provide support for the benchmark-
driven method. The authors have found this method to be
the most appropriate for capturing both computation and
communication behaviour, though the focus in this paper is
on the modelling of computation only. The utility of the data-
driven approach is demonstrated in a companion paper (Osprey
et al. [6]) addressing the evaluation of runtime scenario deploy-
ment choices when mapping processes to cores in complex
multicore HPC architectures. In ongoing work the approach is
being applied to other architectures including IBM Power 7
and IBM Blue-Gene/Q.

The structure of the paper is as follows. Section II describes
the shallow water model, Section III describes the AMD
Opteron-based target architectures used in the study, Section
IV reviews traditional analytical performance modelling tech-
niques based on computational intensity and theoretical peak
performance measures and illustrates their use and limitations
on the shallow water model. Section V motivates and develops
the data-driven empirical model, based on the collection of
targeted application benchmark data, and then Section VI
develops a more complex, novel model for sthe shallow
water example based on fitting mathematical functions to the
measured data. Finally, Section VII concludes and discusses
future work.

II. SHALLOW WATER CODE

The NCAR shallow water model [5], is a small program that
solves the shallow water equations with a second-order finite-
difference scheme [7] on a horizontally staggered Arakawa C
grid [8]. The shallow water equations are a simplified version
of those solved in the dynamical cores of complex weather
and climate models such as the UK Met Office Unified Model
(UM). The code we use (hereafter called “shallow”) originated
from the NCAR website [5] but was substantially rewritten for
the purpose of this work. The full code structure is outlined
in Fig. 1.

Shallow performs calculations over a rectangular domain of
size M by N with periodic boundary conditions in both di-
rections to replicate the behaviour on a sphere whilst avoiding
the use of poles. Local domains are sized m by n with arrays
dimensioned as m + 1 by n + 1 to allow for a single halo

row and column. a There are 13 local array fields and at each
timestep the code performs 10 array update loops, 3 array
copies, and 7 exchanges of halo data. Similar stencil-based
computational work over arrays of data and communications
to update halo regions form significant parts of the UM
dynamical core.

Listing 1. Structure of shallow code.

Initialisation:
* Read inputs (iterations, problem size

processor decomposition)
* Allocate array space
* Initialise scalar variables for solver
* Initialise velocities (U and V),

pressure (P) and stream function (PSI)
* Apply periodic boundary conditions

Time-stepping loop:
* Compute CU, CV, Z and H (from U, V and P)
* Apply periodic boundary conditions to

CU, CV, Z and H
* Compute UNEW, VNEW and PNEW

(from U, V, P plus CU, CV, Z and H)
* Apply periodic boundary conditions to

UNEW, VNEW and PNEW
* Time smoothing and update for next tstep

(UOLD, VOLD, POLD -> U, V, P)
(U, V and P -> UNEW, VNEW and PNEW)

Finalisation:
* Write timer information
* Deallocate arrays

The first 7 loops only update inner points (1:M,1:N) as
boundary points are updated in a separate step, and the final
3 loops update the full array domain including boundaries
(1:M+1,1:N+1). We consider each array update loop in-
dividually to emulate a larger scale application with multiple
compute kernels. A summary of the operations performed
in each loop is given in Table I. Loads account for spatial
cacheline reuse, since if two values are adjacent in memory,
i.e. a(i,j) and a(i+1,j), they will reside in the same
cacheline and only a single load will be required.

The “reference flops” is the number of floating point oper-
ations listed in the source code for each loop, and is used to
calculate the performance in Gflops/s. b The use of reference
flops provides a baseline for comparison across systems. Flops
derived from hardware counters can give different results due
to compiler optimisations, speculative branch execution (not
an issue here), and packed SSE instructions which may be
counted as a single operation.

Here, addition, multiplications and subtractions are defined

aThis is unlike other dynamical core which often have at least 2 halo rows
and columns due to dependencies in all directions.

bIn this work flops will be used as an abbreviation for floating point
operations, and flops/s for the performance metric floating point operations
per second.

716

TABLE I
BREAK DOWN OF OPERATIONS IN EACH ARRAY UPDATE LOOP

Memory accesses Stores Loads Reference
with reuse flops

cu cu, p, u 1 2 3
cv cv, p, v 1 3 3
z z, v, u, p 1 5 13
h h, p, u, v 1 4 9
unew unew, uold, z, cv, h 1 6 10
vnew vnew, vold, z, cu, h 1 6 10
pnew pnew, pold, cu, cv 1 4 6
uold uold, u, unew 1 3 5
vold vold, v, vnew 1 3 5
pold pold, p, pnew 1 3 5

TABLE II
ACTUAL FLOATING POINT OPERATIONS

Actual flops
cu 2 *, 1 +
cv 2 *, 1 +
z 2 *, 2 +, 3 -, 1 /
h 4 *, 4 +
unew 3 *, 4 +, 2 -
vnew 3 *, 3 +, 3 -
pnew 2 *, 4 -
uold 2 *, 2 +, 1 -
vold 2 *, 2 +, 1 -
pold 2 *, 2 +, 1 -

as 1 flop, and divides are counted as 5. This is because the
Opteron processor used in this work takes 5 times as many
cycles to execute a divide (Section III). The precedence for
counting non-add/multiply operations as multiples is from the
Parkbench project [9]. Compiler optimisations remove some
redundant operations that can be carried over to the next loop
iteration, and so these are not included in the “actual flops”
listed in Table II.

To measure performance, timers are inserted around each
individual array update loop using MPI_Wtime (the recom-
mended timer for the HECToR architecture at the time). Unless
otherwise stated shallow is run for 4000 iterations with all
inputs except problem size and parallel decomposition kept
constant

III. AMD OPTERON BASED TARGET
ARCHITECTURES

Experiments were performed on four systems: Chronos, a
small cluster at the University of Manchester, and Phase 2a,
2b and 3 of HECToR, the UK’s national academic supercom-
puting service from 2007 to 2013 [10]. The AMD processors
used in Chronos (4-core Shanghai), Hector Phase 2a (4-core
Barcelona) and 2b (12-core Magny-Cours) are all from the
AMD K10 family of processors. A comparison between these
machines is given in Table III along with the compilers used.
HECToR Phase 3 used the more complex AMD Interlagos
processor.

The K10-based AMD Opteron can concurrently dispatch
11 operations: 3 integer execution, 3 address generation, 3
floating point and multimedia (add, multiply and misc) and 2

loads or stores to data cache [11]. Additionally, with packed
SSE instructions it should be possible to perform 2 adds and
2 multiplies simultaneously. Each of these operations takes a
number of cycles to complete, but some or all of this can
be hidden by prefetching, branch prediction and out-of-order
execution. Floating point operations take: 4 cycles for add and
multiply, 20 cycles for double precision divide and 27 cycles
for double precision square root. There are pipelines so the
adds and multiplies can reach a throughput of 1 per cycle. A
detailed description of the Opteron architecture and processing
of instructions is given by de Vries [12].

Each core has 64 KB 2-way set associative L1 caches for
data and instructions, plus a 512 KB 16-way set associative
L2 cache. Cachelines are 64 bytes in length. Caches follow a
victim-cache regime, where data are loaded directly into L1
cache and evicted to L2 when no longer needed, and then
on to L3 when space runs out. L3 cache is fully shared with
the other cores on the processor, with no need for duplication
[13]. Data are removed from L3 only when no cores require
it. (The alternative method, used by Intel processors, is for
inclusive caches where the highest cache level replicates data
held by the lower caches.) On the Magny-Cours, 1 MB of L3
cache is given over to HT Assist, a system that manages cache
coherency, leaving 5 MB cache shared amongst the cores on
the die [14].

TABLE III
DETAILS OF THE AMD OPTERON K10 MACHINES USED

Chronos Phase 2a Phase 2b
(Cray XT4) (Cray XE6)

Processor 4-core Shanghai 4-core Barcelona 2 x 12-core
Magny-Cours

Core speed 2.4 GHz 2.3 GHz 2.1 GHz
L1 cache 64 KB 64 KB 64 KB
L2 cache 512 KB 512 KB 512 KB
L3 cache 6 MB shared 2 MB shared 6 MB shared

per 6-core die
Memory 24 GB DDR2 8 GB DDR2 32 GB DDR3
Mem speed 600 MHz 800 MHz 1333 MHz
Compiler gfortran -O3 pgf90 -fastsse pgf90 -fastsse

crayftn -O3

HECToR Phase 3, a Cray XE6 system, is based on an AMD
Opteron Interlagos processor which has a somewhat different
architecture. The Interlagos is part of the Bulldozer series
of Opteron processors [15]. Processor sockets contains two
dies that each comprise four “compute modules”. Compute
modules are made up of two integer cores that include a
load store unit, 16 KB of private L1 cache and an integer
scheduler. Both cores share 2 MB of L2 cache and a single
floating point unit that is double the width of the K10 series,
allowing for a greater amount of flexibility. Applications with
greater per-core memory requirements can run with only a
single integer unit per module (“core-pair mode”) whilst still
having access to the full floating point capability. Running
with both cores (“compact mode”) means more instructions
feeding the floating point pipeline and thus generally should
provide greater performance.

717

IV. ANALYTICAL MODELS

Due to their complexity, detailed models of modern pro-
cessors are generally only applied to small code kernels that
follow a single execution pattern. They do, however, provide
a means of understanding low-level performance issues, and
if the method is systematic, it can be made automatic, see
for example the PMaC performance prediction framework
(Snavely et al [16], [17]).

Generally the two most important factors to consider are
the speed at which data can be accessed from cache or
memory, and the speed at which floating point operations can
be executed.

A. Related work

Snavely et al., 2001 [16] predict performance in Gflops/s
from the number of floating point operations (flops) executed
divided by the number of memory operations (mops), scaled
by the speed per memory operation. This assumes that the
code is “memory-bound” and that any time spent performing
floating-point operations is overlapped by time transferring
cachelines. Note that the number of flops divided by the
number of mops is also known as the “compute intensity”.
Since Gflops/s are derived from the floating point operations
divided by run time, the run time is effectively only dependent
on the performance of memory operations. That is, the initial
formulation

Perf =

(

flops
mops

)

× bandwidth, (1)

reduces to
Time =

mops
bandwidth

, (2)

where the bandwidth is calculated from the location and access
patterns of the memory operations.

This is equivalent to the performance estimated from so
called balance-metrics, described by Callahan et al., 1988 [18].
They state that the processor efficiency can be calculated from
the “machine balance”, which is the rate of memory accesses
divided by the rate of flops, divided by the “loop balance”,
which is the number of memory accesses divided by the
number of flops. Multiplied by the peak processor speed, this
gives the predicted performance as

Perf =

(

(bandwidth / flop rate)
(mops / flops)

)

× flop rate. (3)

The floating point terms can then be factored out and the
remaining terms rearranged to give (2). Note that to be
accurate the bandwidth should relate to the location of the
data, which may be in cache.

Datta et al., 2009 [19] consider the effect of prefetching
on the achieved bandwidth, noting that several cache misses
occur before full streaming bandwidth is achieved. The time
to update a loop is given by the time to load the first
cacheline, plus the time to load the next k cachelines before

full streaming is achieved (at some intermediate cost), plus
the time to load the remaining cachelines at the full streaming
bandwidth. These costs are determined by using a memory
benchmark and varying the access patterns and block sizes.

When the data are resident in L1 cache, accesses can be
very fast and the run-time limited by the speed of floating
point operations. Snavely et al., 2002 [17] account for floating
point work by adding an extra term to (2):

Time =
mops

bandwidth
+

flops
peak flop rate

, (4)

where the flop rate is the theoretical peak for the processor.
As discussed by the authors, this does not account for the
overlap of flops and mops and the theoretical peak is a
highly unrealistic value. In later work, a more sophisticated
convolution is used that considers the overlap between the
terms (Carrington et al., 2005 [20]).

Treibig et al [21] present a more detailed method that counts
the cycles required to perform the floating point and data
transfers. They consider the number of operations that can be
performed simultaneously and the cost of performing each one,
taking into account the cycles to load data from each cache
level. This is found to work well for the processors studied
but requires detailed knowledge of the architecture and low
level measurements in some cases.

In the following sections we use the methods described
here to determine whether the performance of shallow can be
predicted from source code operations and machine metrics.

B. Estimating memory-bound performance

The performance when data are resident in main memory
is estimated using (1) for each individual loop of shallow.
Compute intensity (flops/mops) can be reported from the PGI
compiler, but this does not account for cacheline reuse, so
it is derived from the operations listed in Table I. As the
theoretical maximum bandwidth is unlikely to be achieved by
real code, we simply plot compute intensity versus measured
performance (Fig. 1). Ideally, a realistic memory bandwidth
would be measured from a benchmarking tool.

The compute intensity values show a near-linear relation-
ship with the observed performance, suggesting a model for
memory-bound performance based on two machine factors:

Perf (Gflops/s) = β ·
flops
mops

+ α. (5)

The parameter values derived for each system are listed in
Table IV. Note that if α is ignored, then (1/β) is equivalent
to the achieved memory bandwidth. Thus on the HECToR
systems, the shallow kernel achieves around 1 Gword/s or
approximately 8 GB/s.

C. Estimating peak performance

The theoretical peak performance is the maximum perfor-
mance that could be expected given the operations that need

718

Chronos gfortran

0.3 0.5 0.7 0.9 1.1
Measured perf (Gflops/s)

0.6

1.0

1.5

1.9

2.3
C

om
pu

te
 in

te
ns

ity
Phase 2a PGI

0.6 1.0 1.3 1.6 2.0
Measured perf (Gflops/s)

0.6

1.0

1.5

1.9

2.3

C
om

pu
te

 in
te

ns
ity

Phase 2b PGI

0.6 1.0 1.3 1.7 2.1
Measured perf (Gflops/s)

0.6

1.0

1.5

1.9

2.3

C
om

pu
te

 in
te

ns
ity

Phase 2b CCE

0.6 1.0 1.3 1.7 2.1
Measured perf (Gflops/s)

0.6

1.0

1.5

1.9

2.3

C
om

pu
te

 in
te

ns
ity

h
z
cv
cu

pnew
vnew
unew

pold
vold
uold

Figure 1. Compute intensity against performance in memory (from a 512 ×
512 problem size) for different machine and compiler combinations for each
computation loop in shallow.

TABLE IV
PARAMETER VALUES FOR LINEAR DATA FIT OF MEMORY-BOUND

PERFORMANCE (5).

System β α

Phase 2b PGI 1.005 0.108
Phase 2b CCE 1.054 0.0550
Phase 2a PGI 0.991 0.233
Chronos gfortran 1.961 0.0625

to be executed. A model based on the method described by
Treibig et al [21] is developed, considering only the L1 case.

The Opteron processor can perform several tasks concur-
rently (see Section III) including two memory operations
(either two loads or one load and one store) and two floating
point operations (one add and one multiply or up to two
adds and two multiplies with SSE instructions). From this
information, the minimum number of cycles required to update
one cacheline is derived from the operations listed in Table I,
assuming full pipelining, full use of SSE vectorised instruc-
tions where possible and prefetching such that all cachelines
are ready in L1 cache when needed.

For example, the cu loop requires 1 store and 2 loads (as
p(i+1,j) will be reused at the next iteration it need only be
loaded once). These operations can be completed in 2 cycles.
Simultaneously on the floating point registers 2 vectorised
multiplies and 1 addition can be executing. For the z loop
careful consideration must be made to the floating point divide.
This takes 5 cycles to execute on the multiply register when
fully pipelined, during which time the minuses and adds can
execute, then an additional cycle is required to perform two
vectorised multiplies for a total of 6 cycles. The memory
operations in this case take only 3 cycles and so are fully

hidden.

The theoretical peak performance is then given by dividing
the number of flops by the minimum execution cycles and then
multiplying by the core speed as follows:

Perf (Gflops/s) =
flops

cycles
× clock speed (GHz). (6)

This results in predictions that are out by a considerable
factor, but do show a strong correlation to the observed peak
performance (Fig. 2).

Chronos gfortran

1.2 1.4 1.6 1.8 2.0
Measured perf (Gflops/s)

3.5

4.5

5.4

6.4

7.4

P
re

di
ct

ed
 p

er
f (

G
flo

ps
/s

)

Phase 2a PGI

1.8 2.3 2.8 3.2 3.7
Measured perf (Gflops/s)

3.4

4.4

5.5

6.6

7.6

P
re

di
ct

ed
 p

er
f (

G
flo

ps
/s

)

Phase 2b PGI

1.6 2.0 2.5 3.0 3.4
Measured perf (Gflops/s)

3.0

4.0

4.9

5.9

6.8

P
re

di
ct

ed
 p

er
f (

G
flo

ps
/s

)

Phase 2b CCE

1.5 1.9 2.2 2.6 3.0
Measured perf (Gflops/s)

3.0

3.9

4.8

5.6

6.5

P
re

di
ct

ed
 p

er
f (

G
flo

ps
/s

)

Figure 2. Theoretical peak performance against peak performance measured
form a series of runs, for different machine and compiler combinations. Key
for the loops is as in Fig. 1.

Again the strong relationship implies a linear model such
as

Perf (Gflops/s) = δ ·
flops

cylces
+ γ. (7)

The derived parameter values for each system are listed in
Table V.

TABLE V
PARAMETER VALUES FOR LINEAR DATA FIT OF PEAK PERFORMANCE (7).

System δ γ

Phase 2b PGI 0.968 -0.0498
Phase 2b CCE 1.028 -0.0519
Phase 2a PGI 0.872 0.0506
Chronos gfortran 1.518 -0.131

Although the peak metric is based on PGI compiler optimi-
sations, it works well for the Cray compiler too, suggesting
both implement the same type of optimisations. The cycle
count does not work as well for Chronos, which is likely to be
due to the system in general (including the gfortran compiler)
being less tuned for high performance scientific applications.
In particular, it is hypothesised that the Chronos runs do not
include SSE vectorisation, since the achieved performance
is nearly two times slower, despite having a slightly faster
processor.

719

A more detailed comparison of the loop performance on
Chronos versus HECToR shows that the peak performance
occurs for larger problem sizes on Chronos - when the data are
in L2 or L3 cache rather than L1 or L2 cache. If it is supposed
that much of the performance difference is due to the compiler,
then it could be inferred that compiler optimisations have more
of an effect when the problem fits into the lower level caches.
Therefore the lack of optimisations would mean that small
amounts of data would not be sufficient to efficiently utilise
the floating point pipeline, and better performance would only
be seen when the pipeline was saturated with a large steady
stream of data. The shape of the Chronos plots could then be
interpreted as having the L1/L2 peak missing. This explains
why the theoretical peak metric was not appropriate as it is
based on L1 cache performance. A more appropriate model
would consider the compiler optimisations actually applied
and the data transfer cost from the correct cache level.

D. Conclusions

Some success was achieved with these theoretical metrics.
Although we were unable to make accurate predictions, it
was possible to identify which loops would perform better
than others based on their instruction mix. A realistic mem-
ory bandwidth could be estimated from a standard memory
benchmarking tool, however it is unclear how to derive the
peak performance scaling without directly benchmarking the
code. Attempts to extend this work to the Interlagos processor
(HECToR Phase 3) were unsuccessful due to i) different
compiler optimisations being applied, ii) the complexity of
the two integer cores sharing a single wide floating point
unit. Thus the conclusion from using this simple model is
that realistic performance prediction from the source code
is too complex for modern processors due to unpredictable
factors, such as the compiler translation to machine code, and
techniques such as out of order execution.

V. EMPIRICAL MODEL

As has been shown, it is difficult to make accurate perfor-
mance predictions without some form of application bench-
marking. In this section a simple empirical model is developed
based on interpolation between measured performance for
different problem sizes. Careful selection of problem sizes,
respecting the cache architecture of the target machine, reduces
the cost of collecting the data. Once defined, evaluating the
model is cheap, making it suitable for exploring different
runtime scenarios.

Outline

A series of benchmark experiments of different problem
sizes are used to provide a reference performance (P) in
Gflops/s. This is then multiplied by the number of floating
point operations performed during the run to predict the total

runtime for that loop. Thus the time to complete one block of
computations over the whole run is

T (s) = P (flops/s) × flops × Idim × Jdim × Nitr, (8)

where flops is the number of floating point operations per-
formed on each loop iteration, Idim and Jdim are the loop
dimensions and Nitr is the number of time-stepping iterations.
The reference performance is given by a lookup function with
the total memory usage as input, which for shallow would be

P (flops/s) = Lookup{ (M + 1)(N + 1) × 13 × 8 bytes } ,
(9)

where (M +1) by (N +1) are the array sizes, of which there
are 13, all comprising 8 byte real numbers.

Results

Results are reported from HECToR phase 3 with the Cray
compiler. Benchmark runs were performed over a set of 23
square problem sizes from 1×1 to 600×600 to provide a range
of problem sizes from L1 cache resident to memory resident.
Fig. 3 shows the results with a linear interpolation between
measurements. As the plot uses a log-scale the interpolated
lines appear logarithmic. Performance is plotted against the
memory usage for the program in order to estimate where
the data reside in cache or memory. The memory usage is
calculated from the local array size times the number of arrays
in use (13) times the number of bytes per element (8).

L1 L2 L3 Mem

poldvolduoldpnewvnewunewhzcvcu

pold
vold
uold
pnew
vnew
unew
h
z
cv
cu

400 B 16 KB 2 MB 8 MB 26 MB
Memory usage (13 fields)

0.0

1.0

2.0

3.0

4.0

4.5

G
flo

ps
/s

Figure 3. Empirical model for each computational loop in shallow for
different problem sizes (based on linear interpolation between measured
values).

As an estimate of how well this model characterises the per-
formance over all problem sizes, the estimates are compared
to measured performance for a larger set of runs (Fig. 4). Note
that these figures are plotted on a linear x-axis, and L2 results
are plotted on a smaller scale as otherwise this detail is lost.
The loops are split into 3 plots for clarity only.

720

L2 cache

0 1 MB 2 MB
Memory usage (13 fields)

0.0

1.0

2.0

3.0

4.0
4.5

G
flo

p/
s

L2 cache

0 1 MB 2 MB
Memory usage (13 fields)

0.0

1.0

2.0

3.0
3.5

G
flo

p/
s

L2 cache

0 1 MB 2 MB
Memory usage (13 fields)

0.0

1.0

2.0

3.0

4.0
4.5

G
flo

p/
s

poldvolduoldpnewvnewunewhzcvcu

pold
vold
uold
pnew
vnew
unew
h
z
cv
cu

L3 cache Memory

2 MB 8 MB 26 MB 36 MB
Memory usage (13 fields)

0.5

1.0

2.0

3.0

4.0

G
flo

ps
/s

Figure 4. Predicted performance from empirical model plotted against
measured results for various problem sizes.

Discussion

The benchmark model agrees reasonably well with the
observed performance, apart from some pathological peaks
and troughs. It is hypothesised that the dips are due to cache-
thrashing. The L1 cache is 2-way set-associative and when the
arrays have certain sizes, the same indices of all arrays can
be mapped to the same cache location, causing frequent cache
eviction. This is only observed when the arrays are dynami-
cally allocated. When the array sizes are fixed, the compiler
can avoid these issues by padding and other techniques. Two
performance modes appear in the [uvp]old loops between
the empirical model values (connected by lines), and the values
from the validation run. Further investigation showed these
pattern to be repeatable and the separation between each set
of runs, seems to be simply due to the regular increase between
array sizes.

As the problem size increases, clear performance steps can
be seen, with a reasonably constant performance in L2, then
a slope down towards a performance plateau in L3, then
another slope down towards a plateau in memory. This is
the usual behaviour seen on cache-based processors, and the

behaviour modelled by Kerbyson and Jones [2]. The model
doesn’t capture this exactly, except for where the values are
close to the “corners” of the function, however a smaller set of
benchmark values is used. The exponentially spaced problem
sizes appear to be well chosen in this regard as the cache
sizes also increase on an exponential scale, and so there are
benchmark values at all cache levels.

VI. LOGARITHMIC MODEL

The results plotted in the previous Section (Fig. 3 and
Fig. 4), infer that the observed performance steps between
cache levels could be represented by logarithmic lines. This
motivated an attempt to develop a more sophisticated ana-
lytical model based on only the peak performance and the
performance in memory. The model is presented in this section
and compared with the results from the purely empirical
approach.

Outline

The shape of the measured results suggest a log interpola-
tion may provide a good fit to the data. If performance was
benchmarked at the cache boundaries the log fit may capture
the sloped-step effect observed whilst still using only a small
number of values. The difficulty in capturing the effect linearly
is that the location of the plateaus and slopes are different for
different loops.

Here performance is represented by two logarithmic line,
one from the origin to the peak performance, and one from the
peak to the performance in memory, and a constant memory
performance once convergence has taken place. This is de-
scribed by an analytical model defined by three data points. As
logarithmic lines are used, the first data point (X0, Y0) cannot
be exactly at the origin, therefore a performance of 0 is defined
for some very small problem size. The peak performance
is described by the point (X1, Y1) and the performance in
memory by (X2, Y2), where Xi is the size in bytes of the
memory used, and Yi is the performance in Gflops/s. Once the
performance has reached the convergence point (X2), then the
constant memory performance is used (Y2).

The performance for any data size is given by

Perf =

A log x + λ, if x ≤ X1,
B log x + φ, if X1 ≥ x ≤ X2,
Y2, if x ≥ X2,

(10)

where the constants A, B, λ and φ can be derived by plugging
the value of the defined data points into the linear equations.

The advantages of this model over the purely empirical
model, are that the performance is encapsulated using fewer
values, and a good choice of values could allow for smoothing
over the observed discontinuities.

721

Results

The model is evaluated using the measured data from the
previous Section. The peak and memory convergence points
were hand-selected to avoid outlying points, although this
could also be done using formal statistical regression. We
choose to ignore the higher peaks for [uvp]old to better
fit the majority of the data.

Fig. 5 shows the analytical model plotted against the mea-
sured data points. Again the results are split into plots for
L2 cache, and L3 cache and memory. The larger problem
sizes in memory are not plotted as they converge to the
same value, allowing for more detail to be seen at smaller
scales. The results show that the model reasonably follows
the measured performance, to a level of accuracy comparable
to the empirical model.

L2 cache

0 1 MB 2 MB
Memory usage (13 fields)

0.0

1.0

2.0

3.0

4.0
4.5

G
flo

p/
s

L2 cache

0 1 MB 2 MB
Memory usage (13 fields)

0.0

1.0

2.0

3.0
3.5

G
flo

p/
s

L2 cache

0 1 MB 2 MB
Memory usage (13 fields)

0.0

1.0

2.0

3.0

4.0
4.5

G
flo

p/
s

poldvolduoldpnewvnewunewhzcvcu

pold
vold
uold
pnew
vnew
unew
h
z
cv
cu

L3 cache Memory

2 MB 8 MB 26 MB 36 MB
Memory usage (13 fields)

0.5

1.0

2.0

3.0

4.0

G
F

lo
p/

s

Figure 5. Predicted performance from analytical model plotted against
measured results for various problem sizes.

Discussion

The success of the model confirms the hypothesis that the
performance over all problem sizes can be represented by
logarithmic lines between the origin, peak performance and

performance in memory. Whilst this provides a simple and
novel representation of performance, the difficulty in practise
is in defining the input data points to use. It has already been
seen in Section IV that a relationship can be derived from
analysis of the source code, but actual values have to depend
on application benchmarks. Furthermore the location of the
peak and memory convergence need to be determined. Some
success may be had by using fixed locations, for example, a
peak location near the middle of L2 cache, but this is likely to
be error prone. Thus, in practise, this model may be difficult
to implement. Further, it remains to be determined whether the
performance of shallow on other machines or the performance
of other applications can be represented in this way.

VII. SUMMARY AND FUTURE WORK

Using a shallow water benchmark code illustrative of the
dynamical cores of weather and climate codes, this paper
has explored the use of traditional, source code based meth-
ods of the performance prediction of computation costs and
demonstrated their limitations on modern, complex architec-
tures based on the AMD Opteron family. These traditional
methods are usually supported by some form of machine-
based benchmarking. The use of targeted application-based
benchmark data collection in a data-driven approach to per-
formance modelling of runtime deployment scenario choices
has been presented and compared with a novel technique using
logarithmic curves to approximate the benchmarked data.

In ongoing related work the authors have applied the data-
driven approach to the typical neighbour-based communication
patterns involved in climate models with similar positive
results. In other ongoing work, the work with shallow is being
evaluated on other architectures, notably a large IBM Power
7 system, as currently used by the Met Office, and an IBM
BlueGene/Q machine in order to test the robustness of the
approach across architectures.

The utility of the data-driven approach has been demon-
strated in a companion paper [6] addressing the evaluation of
runtime scenario deployment choices when mapping processes
to cores in complex multicore HPC architectures.

REFERENCES

[1] T. Edwards, “Optimising UPSCALE on HERMIT,” Cray CoE for
HECToR, Report, May 2012.

[2] D. J. Kerbyson and P. W. Jones, “A performance model of the Parallel
Ocean Program,” International Journal of High Performance Computing
Applications, vol. 19, no. 3, pp. 261–276, 2005.

[3] K. J. Barker, K. Davis, and D. J. Kerbyson, “Performance modeling in
action: Performance prediction of a Cray XT4 system during upgrade,”
in Proceedings of the 2009 IEEE International Symposium on Parallel
& Distributed Processing. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 1–8.

[4] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance modeling
for systematic performance tuning,” in State of the Practice Reports, ser.
SC ’11. New York, NY, USA: ACM, 2011, pp. 6:1–6:12.

[5] NCAR HPC shallow water model tutorial, UCAR, October 2006, http:
//www.cisl.ucar.edu/docs/hpc modeling/.

722

[6] A. Osprey, G. Riley, M. Manjunathaiah, and B. Lawrence, “A
benchmark-driven modelling approach for evaluating deployment
choices on a multi-core architecture,” in PDPTA ’13: Proceedings of the
19th International Conference on Parallel and Distributed Processing
Techniques and Applications, July 22–25, 2013.

[7] R. Sadourny, “The dynamics of finite-difference models of the shallow-
water equations,” Journal of the Atmospheric Sciences, vol. 32, pp. 680–
689, 1975.

[8] A. Arakawa, “Computational design for long-term numerical integration
of the equaions of fluid motion: Two dimensional incompressible flow.
Part 1,” Journal of Computational Physics, vol. 1, pp. 119–143, 1966.

[9] M. Berry, “Public international benchmarks for parallel computers:
Parkbench committee: Report-1,” Scientific Programming, vol. 3, pp.
100–146, June 1994, chairman: Roger Hockney.

[10] HECToR - UK National supercomputing service, UoE HPCX Ltd, The
University of Edinburgh, 2011, http://www.hector.ac.uk/.

[11] C. Keltcher, K. McGrath, A. Ahmed, and P. Conway, “The AMD
Opteron processor for multiprocessor servers,” Micro, IEEE, vol. 23,
no. 2, pp. 66 – 76, March-April 2003.

[12] H. de Vries, “Understanding the detailed architecture of AMD’s 64 bit
core,” Chip Architect, September 2003.

[13] A. Bailey, “Barcelona’s innovative architecture is driven by a new
shared cache,” AMD arcticle, August 2007, http://developer.amd.com/
documentation/articles/pages/8142007173.aspx.

[14] T. Carver, “Magny-Cours and Direct Connect Architecture 2.0,” AMD
article, March 2010, http://developer.amd.com/documentation/articles/
pages/magny-cours-direct-connect-architecture-2.0.aspx.

[15] D. Kanter, “AMD’s Bulldozer microarchitecture,” Real World Tech
online article, August 2010, http://www.realworldtech.com/bulldozer/.

[16] A. Snavely, N. Wolter, and L. Carrington, “Modeling application perfor-
mance by convolving machine signatures with application profiles,” in
WWC ’01: Proceedings of the Workload Characterization, 2001. WWC-
4. 2001 IEEE International Workshop. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 149–156.

[17] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha, “A framework for performance modeling and predic-
tion,” in Supercomputing ’02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2002, pp. 1–17.

[18] D. Callahan, J. Cocke, and K. Kennedy, “Estimating interlock and
improving balance for pipelined architectures,” Journal of Parallel and
Distributed Computing, vol. 5, pp. 334–358, 1988.

[19] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick,
“Optimization and performance modeling of stencil computations on
modern microprocessors,” SIAM Review, vol. 51, pp. 129–159, February
2009.

[20] L. Carrington, A. Snavely, and N. Wolter, “A performance prediction
framework for scientific applications,” Future Generation Computer
Systems, vol. 22, no. 3, pp. 336–346, 2006.

[21] J. Treibig, G. Hager, and G. Wellein, “Multi-core architectures: Com-
plexities of performance prediction and the impact of cache topology,”
CoRR, vol. abs/0910.4865, 2009.

723

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryList_V1
 qi2base

