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Abstract—The growing complexity of computer system hard-
ware and software makes their behavior analysis a challenging
task. In this context, tracing appears to be a promising solution
as it provides relevant information about the system execution.
However, trace analysis techniques and tools lack in providing the
analyst the way to perform an efficient analysis flow because of
several issues. First, traces contain a huge volume of data difficult
to store, load in memory and work with. Then, the analysis flow is
hindered by various result formats, provided by different analysis
techniques, often incompatible. Last, analysis frameworks lack an
entry point to understand the traced application general behavior.
Indeed, traditional visualization techniques suffer from time and
space scalability issues due to screen size, and are not able to
represent the full trace. In this article, we present how to do an
efficient analysis by using the Shneiderman’s mantra: “Overview
first, zoom and filter, then details on demand”. Our methodology
is based on FrameSoC, a trace management infrastructure that
provides solutions for trace storage, data access, and analysis flow,
managing analysis results and tool. Ocelotl, a visualization tool,
takes advantage of FrameSoC and shows a synthetic representa-
tion of a trace by using a time aggregation. This visualization
solves scalability issues and provides an entry point for the
analysis by showing phases and behavior disruptions, with the
objective of getting more details by focusing on the interesting
trace parts.

Keywords—Application analysis, trace management, analysis
tools, visualization tools, debugging, performance analysis

I. INTRODUCTION

Nowadays, computer systems are made of increasingly
complex hardware and software components. Their hard-
ware architectures are possibly multicore, heterogeneous and
distributed. Their software stack is composed of numerous
layers including, for example, middlewares to abstract the
platform [1]. In this context, application debugging and per-
formance optimization become tremendously difficult tasks.

By tracing the application, the analyst gathers low-level
information on its execution (function calls, thread or process
execution states, interruptions, CPU load, memory usage, hard-
ware counters). In debugging case, the objective is finding the
cause of a perturbation or an undesirable behavior. In perfor-
mance optimization, the analyst looks for bottlenecks and less
efficient algorithms and code parts. Following Shneiderman’s
principle [2], an analysis starts by an overview of the trace,
showing general information. Then, the analyst focuses on the
interesting parts (visible perturbation, particular phase), and
filters noise. Finally, he get details on demand, e.g., access

to source code. This process can be iterative if necessary.
However, several issues hinder this analysis flow:

Big Trace Management: Computer program traces may
contain a large quantity of events (for example, we get several
million events for a dozen of seconds of G-Streamer video
decoding). High quantity of information in the trace translates
into a large data volume to store and load in program memory
for analysis. In particular, access to trace data is slow because
it is often sequential or mono dimensional. In worst cases, the
analyst cannot even access to the trace because of performance
and memory. Efficient trace management storage is thus a
mandatory first step to do an efficient analysis.

Analysis Flow Support: An effective analysis typically
involves several treatments on traces, either on raw data, or
within a flow where the result of one computation is reused
as an input of another (for instance, filter the trace, process
filtered data, then visualize the result of this processing).
Usually, because of the variety of analysis techniques and
tools, output data is not standardized. Thus, the analysis flow
requires an adaptation to enable data sharing between tools.
This leads to a strong software complexity, whereas output data
standardization would provide a straightforward compatibility.

Trace Overview: Analysis first step requires to show
a synthetic view of the trace. Traditional techniques, like
Gantt Chart, are used to represent trace events over time and
space. However, these techniques suffer from scalability issues,
because the level of detail is too high. Using a finite screen,
representing one million events leaves only one pixel for an
event. This leads to cluttered drawings, non-exact proportions
or uncontrolled visual aggregation. Zooming or panning, to
counter these issues, provoke context loss. Aggregating the
events is an other tentative to represent the full trace, but
existing solutions cause an important information loss.

We solve these three main issues with two contributions.
The first one is FrameSoC [3], a new trace management and
analysis framework. With FrameSoC, we manage large traces
by providing a database storage solution, where trace infor-
mation is represented with a generic data-model. FrameSoC
features an interface to get and filter trace information, which
optimizes access time to data and avoid memory saturation.
Regarding the analysis complexity issue, which represents our
main challenge, we propose facilities to enable analysis flows,
by expressing and storing analysis results using a common
format. Moreover, we can plug to the infrastructure various



analysis tools, like statistics modules, filters, data mining
engines and visualizations, using a generic interface. Our
second contribution is Ocelotl, a visualization tool employing
time aggregation techniques to represent a trace synthesis.
Its objective is to provide the analyst an entry point to the
analysis. By interacting with the visualization, the user gets
information such as phases (initialization, steady states) or
behavior disruptions. Moreover, compared to other aggregation
techniques, Ocelotl gives the user the control over information
loss. The tool is plugged into FrameSoC and takes advantages
of its features, such as data queries, event filtering and result
management. In this article, we present successively these
two contributions (Section II, III, IV), by evoking for each
one related works, theoretical aspects and implementations.
In Section V, we detail a complete analysis flow, from the
overview provided by Ocelotl to more detailed information,
by using case studies. This part has the objective of validating
our analysis methodology across a real example. In particular,
it will highlight the synergy between both contributions and
their respective features. We will conclude in Section VI by
proposing new features and improvement for the analysis.

II. FRAMESOC: TRACE MANAGEMENT FRAMEWORK
A. Existing Solutions for Storing Traces

Traditionally, raw trace data are stored in plain files (event
logs), with no specific support for optimized random accesses
or filtering. As a consequence, the analysis requires to load the
whole file into main memory [4]. Other approaches propose the
use of a structured trace file, more suitable for specific kinds
of access. A frame-based file format [5], for example, enables
fast time-guided navigation. Another structured format [6]
optimizes accesses in both time and space (processes) dimen-
sions. These approaches help the access to trace information
only in a fixed and limited number of dimensions and are
not flexible for arbitrary selections. A different approach for
storing traces is the use of a database, which ensures scalability
while keeping flexibility for data-access. Some of the database
solutions proposed in literature only provide the support for a
single trace format (e.g., [7], [8]), while other solutions are
more open to different trace formats (e.g., [9], [10]).

B. Our Database Solution for Trace Storage and Management

FrameSoC addresses the issue of huge trace storage by
using a relational database. Several pragmatic motivations led
us to this choice. First, a database separates the logical data-
model from the physical representation of data. Furthermore,
thanks to accurate modeling and normalization, information is
stored with minimal redundancy. Then, we can easily access
parts of the trace or filter noise by using trivial querying.
Search operations can be optimized by defining indexes: this
mechanism is flexible and not limited to time or space di-
mensions. Finally, complex computations on trace data can be
performed in the database, instead of loading the whole trace
in memory and do such computations at the application level.

The core of our database solution is the generic data-
model. It represents trace metadata, trace raw data and analysis
results, with related tools metadata (Figure 1). The central
entity of the model is the trace, which has metadata and can be
related to files (e.g., configuration files, platform description).
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Fig. 1. Generic data-model for trace management (Crow’s Foot notation)

A trace is composed by several events, each of them having an
active entity producing it. Event producers can be organized
in a hierarchy, reflecting, for instance, the execution hierarchy
in the traced application (processes/threads). This model is
innovative since, beside trace data, it provides some predefined
but extensible types of analysis results, with the link to the
corresponding analysis tools (Section III). Our data-model is
actually a new self-defining trace format (like SDDF [11] or
Pajé [12])), since the description of trace types and event
types is part of the stored information. Using this approach we
obtain a generic trace representation, with minimal semantics
and suitable for representing any kind of trace format without
information loss. At present, we have managed to represent
with our model KPTrace [13], Pajé [12]. A Java API (Frame-
SoC library) is provided to easily interact with this data-model.
Given the richness of our data-model, the role of the database is
central in our solution. Indeed, we use the database to manage
several traces, store analysis results produced on such traces,
and also organize the tools producing such results. None of
the aforementioned existing database solutions consider multi-
trace requests (e.g., to identify a subset of traces for a multi-
trace analysis) or the generic storage of results, and analysis
tools are not taken into account.

To be independent from a given DBMS technology, our
infrastructure is designed to be able to work with different
DBMS (DataBase Management System), provided that a sim-
ple adaptation module is implemented: at this time, support for
MySQL and SQLite is provided. With the aim of providing a
simple and scalable solution, we store each trace in a different
database and all trace databases are coordinated using a central
system database. When considering storage scalability issues,
none of the supported DBMS limits the number of databases
managed. Considering the database size, in the case of MySQL
a table can grow up to the maximum file size (4 TB on ext3
file systems) and there are partitioning techniques to manage
tables exceeding this limit. For SQLite the actual database size
limit is fixed by the file system maximum file size.

C. Performance Measurements

To show that the proposed database solution is effective
when analyzing data over several dimensions, we present



in this section some performance results. The DBMS used
is SQLite. We use synthetic traces, where different event
producers and event types are uniformly distributed over time.
The workstation used has a 3.30GHz x 12 CPU, a 256 GB
SSD and 16 GB of DDR3 RAM.

1) Importing Traces of Various Sizes Into the System:
We imported traces of different sizes, ranging from 5.5 MB
(100 thousands of events) to 2.75 GB (50 millions of events),
measuring the import time with and without indexing. Import
time (Figure 2) grows linearly with trace size in both cases,
as proved with a linear regression showing a coefficient of
determination R? of 1 — 10~*. Import times keep reasonable
values even for huge traces (without indexes about 7.5 minutes
for a 2.75 GB trace). Using indexes, the import times grow by
about 75%.
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Fig. 2. Import time for traces of various sizes, with and without indexing.

2) Querying a Given Trace over Different Dimensions:

A great advantage of using a database for storing traces is
the flexibility it offers when performing requests in various
dimensions. Using a synthetic trace of 2 million events, we
performed requests to retrieve events respectively in a given
time interval (a), from a given producer (b), of a given type
(c), or having a given value for a parameter (d). For each
request, the result set has the same size (20000 events). No
indexing has been used in databases. The time needed to
filter trace events using each of the four different dimensions
(Figure 3) remains in the same order of magnitude. This
confirms that the joint use of a well designed data-model
and database technology lets trace analysts explore a given
trace from different perspectives at a comparable cost. On the
contrary, a structured-file trace format as OTF [6] optimizes
only producers and time dimensions.
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Fig. 3. Time to retrieve 20000 events from a 2 million events trace, using

various dimensions for filtering.

3) Evaluation of Trace Size on Request Time: One of
the interests of putting huge trace data in the database is
information retrieval, limiting the effects of trace size. For this
reason we retrieved a fixed number of events (10000) contained
in a time interval from traces of different size (from 5.5 MB
to 2.75 GB), measuring the request time (Figure 4). Ideally,
we would like the retrieval time to be constant, given that

the result set size is fixed; however, without any indexing, the
retrieval time grows linearly with trace size (from less than 1s
to 60s), as confirmed with a linear regression showing an R?
of 1—1075. Performing careful indexing at the database level,
we actually managed to get near constant retrieval time (less
than 0.1s), paying only at import time the indexing price.
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Fig. 4. Time to retrieve 10000 events from traces of various sizes, using

indexed or non-indexed databases.

4) Dealing with Gigantic Traces: To test the limit of our
system, we imported a gigantic trace of 110 GB, containing
almost 2 billions of events. For reasons of disk space, we used
a standard hard disk drive of 1 TB for our experiments. Table I
shows the whole trace import time and the request time to
retrieve 10000 events contained in a given time interval. We
use both indexed and non-indexed databases. For comparison,
we tried to do the same kind of filtering also directly on the
raw trace file (event log) using the awk program. Database
import time is significant given the trace volume, especially
with indexing. The results are however still linear with the ones
obtained in the first experiment (the small increment in time
is due to magnetic disk performance). The interesting point is
that, even for this gigantic trace, we manage to filter the events:
without indexing the time is huge, but using indexes, filtering
time is extremely small and similar to the results obtained for
traces of smaller size (third experiment). On the contrary, the
manual filtering on the raw trace file has a duration not suitable
for interactive analysis.

Non-indexed DB Indexed DB Raw trace file
Import the trace (hours) 5.9 9.9 -
Filter 10000 events (seconds) 42232 0.12 875
TABLE 1. GIGANTIC TRACE RESULTS

This test shows that our framework, taking advantage of
database features, enables fast access to trace data for analysis
purposes even when dealing with gigantic traces.

III. ANALYSIS FLOW MANAGEMENT WITH FRAMESOC
A. Existing Solutions for Tool and Flow Management

The need for differentiated analysis of traces forces the
analyst to face a situation of extreme tool heterogeneity, with
consequent compatibility issues, since specific tools tend to
work with specific formats [14], [15]. In the field of parallel-
systems, different solutions have been proposed to address this
problem. The visualization tool Pajé [4] adopts a modular
structure, where different modules can be plugged to the
analysis flow by using semantic-agnostic interfaces. However
the creation of a new analysis flow is static and requires
reassembling the different modules in a new program. Score-
P [16] measurement infrastructure tackles tool heterogeneity



by multiplexing/demultiplexing different instrumentation types
to different output formats, without the notion of shared
data-model, neither for trace data nor for analysis results.
With the same philosophy, Tau [17] provides a trace analysis
environment where the interaction among different tools is
obtained via trace translators. A shared data-model exists only
for trace profiles. In the domain of embedded systems, existing
frameworks for trace analysis are even more specific to given
formats or hardware platforms, so that no actual support for
generic tool interaction exists. Proprietary solutions (e.g., [18])
typically offer a closed set of functionalities tailored to specific
hardware. Even open source solutions (e.g., [19]) do not easily
enable the plugging of new tools and do not support tool
interaction through a shared data-model for analysis results.

B. FrameSoC Tool Management and Workflow Support
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Fig. 5. FrameSoC GUI based on Eclipse. On the left: a trace explorer, along
with a related detailed view. On the right: an event density chart, a statistics
pie-chart and a searchable table of events.

With FrameSoC, we propose a framework for trace anal-
ysis, where tool management and tool cooperation are central
points. FrameSoC is based on the Eclipse platform! and has
been designed to be easily extensible and suitable for building
rich analysis flows. The integration and cooperation of tools
within FrameSoC is made possible by two elements of our
framework: the expressivity of our data-model and the plugin
mechanism we propose. As anticipated in Section II, the
generic data-model enables to represent both trace data and
some predefined (but strongly customizable) analysis results.
More in details, the model provides the following analysis
result types: searching/filtering results, custom files with tool-
dependent semantics, grouping results to model patterns of
events or event types, generic trace annotations and processed
traces obtained by enriching or adding levels of abstraction to
raw traces. With these types of results, the idea is to provide
a well-defined data format to store the results of different
analysis, in order to avoid time-consuming recomputations and
enable tool cooperation. Indeed, a tool can easily retrieve the
result of another tool and use it to perform its analysis, since
the results are stored with a well-known format. The support
provided by FrameSoC to tool enchainment is semantically
agnostic and all the analysis logic remains within the tools.

Thttp://www.eclipse.org/whitepapers/eclipse-overview.pdf

FrameSoC helps the contribution of new tools to the frame-
work with a clean plugin mechanism based on the Eclipse one.
Indeed, a preferred way to add a tool to FrameSoC is to provide
an Eclipse plugin that implements the interface we defined
through an extension-point. This extension point defines the
metadata and the class the tool plugin should provide in order
to be integrated in FrameSoC. However, our infrastructure also
supports the possibility to integrate external back-box tools. In
both cases, tools deal with the same data-model for trace and
result storage, and are launched using the same interface.

The prototype implementation of FrameSoC itself pro-
vides some framework tools, to enable basic trace analysis
(Figure 5): a structured trace explorer with details on trace
metadata, an event-density chart to easily identify trace hot
spots, a pie-chart gathering some statistics about the trace
and a form for event querying using regular expressions.
The infrastructure explicitly supports the plugging of trace
importers, trace exporters and more general analysis tools. At
this time, we plugged tools able to import real traces (KPTrace,
Pajé formats) and to export into Pajé format. As for analysis
tools, we integrated a tool able to perform simple sequence-
search with result saving and a filter for event producers,
able to find and save the subset of producers being active (or
idle) during a given time interval. Finally, we also propose
an innovative visualization tool, Ocelotl, able to perform
aggregation (Section IV).

IV. OCELOTL: TRACE OVERVIEW MODULE

This section describes Ocelotl, an innovative visualization
tool plugged into FrameSoC. This tool is used to highlight
FrameSoC ability of helping the analysis flow. Ocelot aims
at showing a trace overview, answering to both time and
space scalability issues. The trace is cut into time slices and
represented as a sequence of representative elements. This
sequence is constructed using an aggregation algorithm that
identifies consecutive parts of the trace showing a similar
behavior, and aggregates them.

A. Trace Overview Existing Approaches

Existing analysis tools use different approaches to provide
a trace overview. Statistics representation, such as graph or
bar charts, may represent metrics over time. These kinds
of representations are proposed by KPTrace [15] with its
Outline View, and are convenient to distinguish CPU activity,
for instance. However, the notion of software and hardware
hierarchy is totally missing, so the space dimension cannot be
studied with this technique. On the contrary, other KPTrace
statistic techniques [15] or those provided by LTTng Eclipse
Viewer [19], show activity time proportion for each event
producer. But here, the drawback is the lack of time dimension
representation (aggregation is done on the full trace), and the
analyst cannot observe the process behavior over time.

Another approach is based on time views, like Gantt
chart representation [20]. It is classically used to visualize
application behavior over time, thanks to its ability to rep-
resent causality relations. However, because of the amount
of information to visualize (due to the events granularity, the
platform heterogeneity or the execution duration), an analyst
may be forced to zoom out or to pane, thus losing either



the execution context or the representation fidelity. A partial
solution to this problem is proposed by Pajé [4] and LTTng
Eclipse Viewer [19]. Both tools highlight the events that are
too small to be correctly represented using pixels. They use a
specific shape/color to represent an aggregation of these groups
of events. However, even if such technique shows the possible
information loss, it lacks associated semantics that would help
the analyst to understand the trace.

Another major issue in providing trace overviews is the
hierarchy representation. The space axis in Gantt charts, for
example, may be used for this purpose, but the user may
scroll and lose the context. In KPTrace Gantt chart [15], the
hierarchy associated with a given core can be collapsed and
represented as part of the root of the hierarchy. Unfortunately,
it is not possible to distinguish which child an event belongs
to, which may be confusing. In the Vampir [14] task profile
view, event producers are clustered using a proximity metric,
like the function duration. This representation, however, fails
in showing causality relations. Triva [21] treemap view uses
multiple axes for hierarchy representation and show the evo-
Iution of the execution over time by using animations. This
visualization highlights network bottlenecks and unbalanced
workloads, but is not suited to identify problems related to
synchronization (deadlock) or scheduling.

B. Build a Macroscopic Description of a Trace

The contribution we propose is a temporal view, where
trace areas having a “close” behavior are aggregated. This
aggregation is materialized by a rectangle area of a given
color. Theoretical background comes from Lamarche-Perrin’s
works [22], dedicated to the Multi-Agent System macroscopic
analysis. From a microscopic view, the analyst gets a macro-
scopic representation that has its own semantic and enables
to analyze the system with a different point of view. The
way to generate this system macroscopic description is the
data aggregation. This process involves three concepts: infor-
mation loss, complexity reduction and macroscopic semantic.
Information loss is useful to determine element proximity. It
is calculated from Kullback-Leibler divergence [23] (Eq. 1),
which is a metric that represents logical information lost by
using an aggregated description instead of the microscopic
description. Entropy reduction (Eq. 2), calculated from Shan-
non entropy [24], represents logical information saved by
encoding the aggregated description instead of the microscopic
description.

loss(A) = Zv(e) x log, <;)((Z)) X |A|) (1)
ecA

gain(4) = (v(A)logy v(A)) = Y (v(e)logy v(e)) ()
ecA

The knowledge of these two metrics enables to compute a
data aggregation, controlling information loss and complexity
reduction. More the aggregation is strong (i.e., more elements
are aggregated), more the information loss grows and the com-
plexity reduces. On the contrary, a weak aggregation keeps the
amount of information but also increases the complexity. What
is interesting is to find a compromise between information loss
and complexity reduction to build a meaningful macroscopic
description. This compromise can be explicitly defined by

using parametrized Information Criterion (Eq. 3) to find the
desired aggregation (the one having the higher pIC).

pIC(A) = p x gain(A) — (1 — p) x loss(A) 3)

To adapt these concepts to trace analysis, we need do define
a microscopic description. We chose to perform a time slicing
of the trace. We generate an array whose index is associated
to the temporal position. Each element of the array is a vector,
whose elements correspond to the event producers of the trace.
The vector values are computed using a particular metric,
for instance, the activity time ratio of the associated event
producers. However the analyst may be interested by metrics
with a richer semantic. For this case, we provide a cubic matrix
to perform time-slicing. One dimension is related to the time
slice number, the second one to the event producers, and the
last one is associated to a chosen metric, as for example the
activity time ratio of each state type (e.g., read, write, idle).

The macroscopic description is then generated by applying
the Best Cut Partition algorithm [22] on the array. The principle
is to aggregate only the temporally contiguous parts, by taking
the values of each dimension into account. The first step
consists in computing the quality measures (information loss
and complexity reduction) for each combination of consecutive
cuts. As an example, assume that, at the beginning, there are
4 slices (0, 1, 2 and 3). The algorithm computes a quality
measure between 0 and 1 (i.e. aggregate 01), between 1 and 2
(12), between 2 and 3 (23) but also between 01 and 2, between
0 and 12, etc.

As the original algorithm works with scalar arrays, we
need to adapt it to vector arrays. The gain and loss metrics
associated to an aggregation in n dimensions are respectively
the sum of aggregation gains and losses in each dimension.
Hence, the new formula, where quality(A) corresponds to
gain(A) or loss(A):

quality(A) = Z quality (A[7]) 4)

The principle is the same for matrix arrays:

quality(A) = > ) " quality(A[i][j]) (5)

1EN JEM

The second step requires to provide the gain/loss parameter p
to compute the parametrized Information Criterion, and then,
get the corresponding aggregation. For p = 0, maximizing
the pIC is equivalent to minimizing the loss: a null loss will
result in no aggregation, except for strictly identical contiguous
vectors. For p = 1, the output array will be fully aggregated,
resulting in a total loss of information. When p is between
these extrema, different aggregation configurations will emerge
according to the input vectors values. A list of relevant
values of p is computed using a search by bisection, that
finds successive parameters that give a different configuration.
The objective is then to find the right aggregation parameter
corresponding to a meaningful macroscopic description. An
example of aggregation applied on random vector data is
shown in Table II. Vectors that are aggregated for a given
p are represented with a similar number.



TABLE II. EXAMPLE OF AGGREGATION APPLIED TO A VECTOR ARRAY

DEPENDING ON THE GAIN-LOSS PARAMETER P

Vector array with randomly generated values
367 [635[629[ 1,270,593

Gain-loss parameter Corresponding parts (aggregated if same number)
0 : no aggregation 0 1 4
0.035 : 4 aggregates | 0 1 1 3
0.052 : 3 aggregates 0 0 0 1

0.078 : 2 aggregates 0 0 0 0 1
0.223 : 1 aggregate 0 0 0 0 0

C. Interaction to Find the Best Aggregation

The methodology we propose with Ocelotl implies to find
the aggregation whose semantic is meaningful in regard to the
analyst objectives. To do that, we propose several interaction
mechanisms. First, the user selects the number of time-slices.
This number should be chosen according to the screen res-
olution, but also adapted to the Best Cut Partition algorithm
complexity. In fact, the original algorithm complexity is o(n?).
By taking account of the vector and matrix adaptation, it
becomes o((n x m x 1)) where m and [ are the new added
dimensions. Empiric measures show that n x m x [ should
not be superior to 10000 to avoid memory saturation (6 GB
required for 10000 elements). After determining the number
of time-slices and getting a list of relevant values for the
parameter p, the user starts by progressively disaggregating
the representation, from the most aggregated to the least one.
We provide the two quality curves in function of the parameter
value, which the user can interact with. By clicking, he gets the
corresponding parameter and thus the related aggregated rep-
resentation. The aim is to determine the information quantity a
new representation brings, compared to the previous one. This
feature is interesting to spot disruptions apparition during the
disaggregation process. Indeed, a disruption is often related to
a jump in the complexity and an information quantity curves.
After spotting an interesting trace part, the user can zoom and
generate a new aggregation, until the provided representation
is quite precise to determine the exact area to focus on with
another tool.

D. Implementation in FrameSoC

We implement the Best Cut Algorithm in C++ for per-
formance and memory management reasons. Our vector and
matrix array management is generic as it has no associated
semantics. The code is compiled as a shared library and is
accessed through JNI. The Eclipse Java module integrated in
FrameSoC is divided in two parts. The core part is in charge
of performing queries to the database, using the FrameSoC
dedicated interface, and also acquiring the parameters provided
by the user and the best cut algorithm output from the
shared library. The user interface part provides interaction
mechanisms to set or select the different parameters for the
queries and the computation. The result is visualized in a frame
representing the trace as a one-dimensional array. The parts are
emphasized by colors, which are identical for aggregated parts.

V. EXAMPLE OF AN ANALYSIS FLOW

In this section, we present a use case (Table III) based on
a basic open-source G-Streamer video application?, displaying

Fig. 6. Ocelotl visualization showing initialization, execution, and application
termination. Complexity and information related to this aggregation are weak
(curves are shown respectively in green and in red in the bottom right, while
current parameter p position is shown by the blue line).

a mpeg video. We introduce an anomaly by using the stress
tool® in order to perturb the video streaming. The trace is then
imported into the FrameSoC database. The workstation used
for the test has a 2.40 GHz x 8 CPU, a 256 GB SSD and 8 GB
of DDR3 RAM.

The first objective is to validate Ocelotl synthetic visual-
ization by relating the trace representation to the application
perturbation timestamps. Moreover, we will compare the com-
plexity and information curve behavior with a reference case
that is not perturbed. The second aim is to find a way to reduce
the trace to the areas involved in the behavior disruption. More
precisely, we want to remove the event producers that are not
active during this moment (space dimension reduction), and fo-
cus on the perturbation timestamps (time dimension reduction).
The goal of this step is to minimize further computations, by
saving the analysis result into the trace database. This result
can then be reused by the overview tool, decreasing initial
processing time, or by another analysis tool, like a Gantt chart.

A. Overview of the Trace with Ocelotl

We start our analysis by an overview with Ocelotl. By
applying the method we evoked above (subsection IV-C),
we progressively disaggregate the trace. We first discover a
representation showing different phases: a slight initialization
phase, at the beginning (0—10s), and also a termination phase,
at the end (550-6105), corresponding to the period where the
application is still active but the video is over (Figure 6).
By continuing the process, we get an aggregation step that
corresponds to a complexity and an information jump, as
shown in the Figure 7. Curve behavior means that the represen-
tation semantics changes: we can indeed distinguish several big
aggregates (10-550s). With more disaggregation (Figure 8),
we highlight a completely disaggregated area (around 300s),
while other trace parts are still represented by big aggregates.
Actually, this area matches with perturbation timestamps,
which validates our claim to represent problematic behavior
with Ocelotl visualization. We deduce also that during the
perturbation, trace behavior becomes unstable, which leads to
a heterogeneous area.

Zhttps://code.google.com/p/gst-player/

3http://weather.ou.edu/~apw/projects/stress/



TABLE III.

G-STREAMER APPLICATION EXECUTION CONTEXTS

Use Case Perturbation: stress settings Streaming behavior Tracing duration | Trace size Event producers number Events number

Reference Not activated Normal 10 min 8.7GB 1507 30000000

Perturbed After Smin, 8 CPU workers, 8 Memory Freeze at 5min, during 12s 10 min 8.7GB 1535 29413091
workers, during 12's
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Fig. 7.  After passing complexity and information jump, we get several
aggregates. Our representation becomes more precise.

Fig. 8. More disagreggation shows an heterogeneous area around 300s,
which matches to our perturbation timestamps

I

Fig. 9. Zooming on the perturbation (280-320s). Perturbed area is the
heterogeneous part composed by multiple aggregates.

B. Comparison with the Reference Case

We compare the perturbed case with the reference case by
using the same methodology. Here, we get the same initializa-
tion and termination timestamps. We also obtain a complexity
and an information jump. However, we go from a coarsely full
aggregated trace to an heterogeneous representation, without
intermediary steps where the trace is progressively cut. This
phenomenon is related to application stable behavior: the
complexity suddenly grows but the new information brought
by new aggregates is weak, so the threshold to disaggregate
becomes very sensitive. By using both overview and quality
measure curve, we are thus able to distinguish a perturbed
behavior than a more stable execution.

C. Filtering the Space Dimension

The second analysis step is to reduce event and event
producer sets (i.e., the space dimension), to improve further
analysis computation. Ocelotl view shows us that there are ini-
tialization and termination phases. FrameSoC provides statistic
views such as pie chart, which gives the event distribution
according to their event producers. In our perturbed case,

Fig. 10. Here, we focus on the perturbation start timestamps (between 298.4 s
and 299.6s) with the help of a Gantt chart. Regular patterns (end of steady
state) are followed by long events that correspond to the beginning of the
perturbation.

pie chart coarsely shows that only 20% of event producers
generate 80% of trace events. We hypothesize that the 80%
less active event producers are only active during boot and
end steps, and can be removed without changing the aggre-
gated representation behavior. We design a filter that returns
as analysis result a set of event producers that are active
during a given period. The objective is to select the event
producers being active during the behavior disruption, and
remove those being active only during the initialization and the
termination phases. So we hope to keep the 20% most active
event producers. We filter event producers between 20 and
560s. Result set contains now only 18% of event producers,
which confirms our hypothesis. By viewing the application
behavior with Ocelotl again, query time does not decrease,
because it is mainly dependent of retrieved event number
(which is almost the same here). However, our microscopic
description size (event producer dimension is now 18% of the
full event producers size) is reduced and this enables to work
with 5 times more parts than before (memory complexity of
aggregation is o((n * m)?)), which leads to more precision.
Finally, the tool produces the same aggregation behavior as
for the full trace.

D. Zooming and Filtering Time Dimension

We now focus on the perturbation part by zooming with
Ocelotl. The aim is now time dimension reduction, by de-
termining the perturbation timestamps with the best possible
precision. By doing several zoom and aggregation, we finally
chose 280 and 320s as bounds (Figure 9). Then, we use a
second filter, which saves a set of events that are present during
a time period. We now get only 93358 events that are actually
relevant to understand trace behavior, i.e., almost 300 times
less than at the beginning of the analysis.

E. More Details with Gantt Chart

The final analysis step is a detailed representation of the
trace selected area. We visualize the application behavior



between 298.4 and 299.6s with a Gantt Chart, by providing
filtering results (Figure 10). Because the event amount and the
event producer number are now reduced, the Gantt chart does
not suffer from time and space scalability issues as much as
before.

F. Analysis Conclusion

Our analysis flow provides an overview of the trace,
and then focuses on a precise trace area, with the help of
statistics views, filtering tools and result management provided
by FrameSoC. The external perturbation we introduced is
precisely detectable. The next step will be to introduce a
perturbation directly inside the program, to go further in the
analysis and, for instance, rely trace behavior to the source
code.

VI. CONCLUSION

FrameSoC manages large traces by storing them in a
relational database. Traces are represented according to a
generic data-model. The database choice enables filtering and
searching in various dimensions, while keeping reasonable
read and write performance. Experiments with huge and gigan-
tic traces support this claim. Access to the data being crucial
for analysis tools, our future research will consider specific use
case requests optimization or request partitioning. The use of
alternative storage solutions, such as temporal or non-relational
databases, is also a perspective. FrameSoC puts a strong
emphasis on analysis tool management and interoperability.
Our shared data-model is a basic block for the creation of
analysis flows, in which several tools can take part, possibly
reusing other tool results. An explicit support is given to tool
pluggability: this has been validated by the various tools we
have already added to the framework. Regarding the evolution
of our framework, we expect to enlarge the family of tools
working with FrameSoC. An other interesting perspective is
to provide to the final user a convenient interface to define
analysis chains.

The visualization module Ocelotl is used as an entry point
to the analysis, thanks to its ability to coarsely describe
the whole trace behavior over time. With the help of user
interaction and a filtering tool, we can reduce space and time
dimension elements to focus on those related to a particular
behavior, like a perturbation. The use of these different tools,
combined with statistic views and result management provided
by FrameSoC, corresponds to a coherent and complete analysis
flow. Our current work is about the extension of the aggre-
gation technique, to manage also the space representation.
Indeed, the space dimension is considered to compute the time
aggregation, but it is not represented. An other interesting point
would be the improvement of the result management: to avoid
useless and time-expensive recomputation, like retrieving the
events and generating a microscopic definition each time we
open a trace, we could save these results in the database.
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