
Management of an Academic HPC Cluster
The UL Experience

Sébastien Varrette∗ and Pascal Bouvry∗ and Hyacinthe Cartiaux∗ and Fotis Georgatos†
∗ Computer Science and Communications (CSC) Research Unit

† Luxembourg Centre for Systems Biomedicine (LCSB)
University of Luxembourg, 16, rue Richard Coudenhove-Kalergi

L-1359 Luxembourg, Luxembourg

Abstract—The intensive growth of processing power, data
storage and transmission capabilities has revolutionized many
aspects of science. These resources are essential to achieve high-
quality results in many application areas. In this context, the
University of Luxembourg (UL) operates since 2007 an High
Performance Computing (HPC) facility and the related storage
by a very small team. The aspect of bridging computing and
storage is a requirement of UL service – the reasons are both legal
(certain data may not move) and performance related. Nowadays,
people from the three faculties and/or the two Interdisciplinary
centers within the UL, are users of this facility. More specifically,
key research priorities such as Systems Bio-medicine (by LCSB)
and Security, Reliability & Trust (by SnT) require access to such
HPC facilities in order to function in an adequate environment.
The management of HPC solutions is a complex enterprise and
a constant area for discussion and improvement. The UL HPC
facility and the derived deployed services is a complex computing
system to manage by its scale: at the moment of writing, it consists
of 150 servers, 368 nodes (3880 computing cores) and 1996 TB of
shared storage which are all configured, monitored and operated
by only three persons using advanced IT automation solutions
based on Puppet [1], FAI [2] and Capistrano [3]. This paper
covers all the aspects in relation to the management of such a
complex infrastructure, whether technical or administrative. Most
design choices or implemented approaches have been motivated
by several years of experience in addressing research needs,
mainly in the HPC area but also in complementary services
(typically Web-based). In this context, we tried to answer in
a flexible and convenient way many technological issues. This
experience report may be of interest for other research centers
and universities belonging either to the public or the private
sector looking for good if not best practices in cluster architecture
and management.

Keywords—HPC, Puppet, Xen, Capistrano

I. INTRODUCTION

Many organizations have departments and workgroups that
could benefit from High Performance Computing (HPC) re-
sources to analyze, model, and visualize the growing volumes
of data they need to conduct business. This also applies to
academic institutes such as the University of Luxembourg (UL)
where high-quality results and/or models could be achieved in
many application areas thanks to the use of an HPC platform.
Unfortunately, these groups often do not have sufficient IT
support and may lack the specialized IT skills required to run
their own HPC clusters. Our objective in this paper is not
to contradict the fact that running such a complex platform

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

2006 2007 2008 2009 2010 2011 2012 2013

C
o
m

p
u
ti
n
g
 c

a
p
a
c
it
y

 [
T

F
lo

p
s
]

Evolution of UL HPC computing capacity

Chaos cluster
Granduc cluster

Gaia cluster
Nyx cluster

0.11 0.63 2.04 2.04
7.24

14.26

28.74

43.204

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

2006 2007 2008 2009 2010 2011 2012 2013

R
a
w

 S
to

ra
g
e
 c

a
p
a
c
it
y

 [
T

B
]

Evolution of UL HPC storage capacity

Storage (NFS)
Storage (Lustre)

0 4.2 7.2 7.2 31

511

1052

1996

Fig. 1. Evolution of the computing and storage capacity within the UL HPC
platform.

requires strong skills and serious investment in man-hours, but
rather to share the tools, practices, and more generally our
experience in the systems administration of an heterogeneous
HPC facility, also in association to complementary services
in relation to researchers’ accessibility needs (typically Web-
based). Indeed, since 2007, the UL has invested in the hard-
ware acquisition and the running of a modest HPC facility at
the disposal of the research units. As of now, the cumulative
hardware investment has been upwards of 5.7 million euros and
leaded to the evolution both in terms of computing power and
storage capacity depicted in the Figures 1. The platform now
reached a descent size, featuring 368 nodes (3880 computing
CPU cores) and a raw shared storage capacity of 1996 TB. It’s
concrete usage (as measured in CPU-Hours i.e. the work done
by a CPU in one hour of wall clock time) is exponentially
growing, as illustrated in the Fig.2. Being operated by 3
persons, it forced us to refine the collaborative workflow of IT
operations to make them easily distributed among the systems
administration team. With the reinforcement and the automa-
tion of the IT management strategy, a complementary service
has been offered to the research units and interdisciplinary
centers present within the UL. Indeed, the basic deployment
(bootstrapping) and configuration of servers is proposed, in
such a way, that currently manage more than 150 servers which
address various needs within the research units (typically web
services, database hosting or code repositories) in addition

TABLE I. CHARACTERISTICS OF THE UL HPC COMPUTING NODES.

Date Vendor Proc. Description #N #C Rpeak

ch
ao

s

2010 HP Intel Xeon L5640@2.26GHz 2× 6C,24GB 32 384 3.472 TFlops
2011 Dell Intel Xeon L5640@2.26GHz 2× 6C,24GB 16 192 1.736 TFlops
2012 Dell Intel Xeon X7560@2,26GHz 4× 6C, 1TB 1 32 0.289 TFlops
2012 Dell Intel Xeon E5-2660@2.2GHz 2× 8C,32GB 16 256 4.506 TFlops
2012 HP Intel Xeon E5-2660@2.2GHz 2× 8C,32GB 16 256 4.506 TFlops

chaos TOTAL: 81 1120 17.026 TFlops

ga
ia

2011 Bull Intel Xeon L5640@2.26GHz 2× 6C,48GB 72 864 7.811 TFlops
2012 Dell Intel Xeon E5-4640@2.4GHz 4× 8C, 1TB 1 32 0.307 TFlops
2012 Bull Intel Xeon E7-4850@2GHz 16× 10C,1TB 1 160 1.280 TFLops
2013 Dell Intel Xeon E5-2660@2.2GHz 2× 8C,64GB 5 80 1.408 TFlops
2013 Bull Intel Xeon X5670@2.93GHz 2× 6C,48GB 40 480 5.626 TFlops
2013 Bull Intel Xeon X5675@3.07GHz 2× 6C,48GB 32 384 4.746 TFlops

gaia TOTAL: 151 2000 21.178 TFlops

g5
k 2008 Dell Intel Xeon L5335@2GHz 2× 4C,16GB 22 176 1.408 TFlops

2012 Dell Intel Xeon E5-2630L@2GHz 2× 6C,24GB 16 192 1.536 TFlops
granduc/petitprince TOTAL: 38 368 4.48 TFlops

Testing cluster:
nyx 2012 Dell Intel Xeon E5-2420@1.9GHz 1× 6C,32GB 2 12 0.091 TFlops
viridis 2013 Viridis ARM A9 Cortex@1.1GHz 1× 4C,4GB 96 384 0.422 TFlops

nyx/viridis TOTAL: 98 392 0.52 TFlops

to HPC services. In this context, this article presents the
strategy put in place to operate these resources either from a
technical or an administrative (cost analysis etc.) point of view.
Most design choices or implemented approaches have been
motivated by several years of experience to address research
needs.
This article is organized as follows: Section II presents an
overview of the current facility operated within the University,
together with the virtualization infrastructure based on the Xen
hypervisor that has been put in production. The section III
review the network architecture put in place to address in
a secure and isolated way the services described in this
article. At this level, we also detail our advanced SSH ”tricks”
used to facilitate the daily maintenance of our server. The
Sysadmin Warrior (SaW) toolkit is also presented. It imple-
ments a distributed workflow based on Git and Capistrano to
pilot and maintain the full platform operational manageable
from the controlling terminals of the systems administrators.
Section IV details the distributed Puppet infrastructure put in
place to handle in an automated way the deployment and
the configuration of all the critical servers operated by the
UL HPC systems administration team. Section V reviews the
other components put in place to handle the HPC facility,
whether from an administrator (Fully Automatic Installation
(FAI), OAR, Monitoring tools etc.) or a user point of view

 0

 200

 400

 600

 800

 1000

 1200

2008 2009 2010 2011 2012 2013

C
P

U
 Y

e
a
rs

Evolution of the UL HPC resources usage (in CPU−Hour)

Used resources

4 13 56

378

612

1067

Fig. 2. Evolution of the used resources (total: 2482 CPU-years) of the UL
HPC platform.

(Environment Modules, EasyBuild, HPCBIOS etc.). Finally,
the section VI concludes the paper by reviewing the main
lessons learned from this infrastructure.

II. OVERVIEW OF THE MANAGED IT INFRASTRUCTURE

Founded in 2003, the UL is the first and only university of
the Grand Duchy of Luxembourg, a small country located at
the heart of Western Europe, close to the European institutions
and Luxembourg’s financial centre. Multilingual, international
and research-oriented, the UL is composed of about 190
professors, assistant professors and lecturers, supported by 650
professional experts in various domains. Among them, the UL
HPC management team, i.e. 3 system administrators experts
headed by a full professor, handles two types of equipment
and services within the University:

• The UL HPC facility. At the time of writing, it consists
of 4 clusters spread on 2 geographic sites featuring a
total of 368 computing nodes (for 3880 cores) and a
cumulative shared storage capacity of 1996 TB.

• A set of servers serving dedicated needs within the
research units (mainly web-based).

On total, it is more than 150 servers in addition to 368 com-
puting nodes (detailed in table I) that are managed. Obviously,
it would be time consuming to handle such a number of
machines in a pure manual way and over the years, we put
in place a management infrastructure based on cutting-edge
IT automation and deployment tools that are detailed in this
article. Note that for now 3 years, we make an intensive usage
of the Xen virtualization framework [4] to improve the general
usage of our physical servers. For instance, over the above
mentioned 150 servers, 101 are in practice Virtual Machines
(VMs) (domU in Xen terminology) Also, it greatly facilitates
the setup of newly servers for specific services within the
research units of the university that generally consumes not so
much resources (whether at the level of the CPU or the network

TABLE II. CONFIGURED VLANS.

prod production network containing all servers 10GbE
interfaces and all nodes, servers and virtual machines
primary ethernet interfaces

mgmt management network containing all management
card (BMC, DRAC, ILO, MGMT SAN, etc.)

IPoIB non routed network for IP over IB serving fast
filesystems (NFS,Lustre), with its low-latency high-
throughput properties

access entry point on the HPC isolated network.

bandwidth) such that it would be both time consuming and
cost-ineffective to acquire a fresh new physical server (to be
placed in a generally overcrowded server room) just to serve
a web site. As we will see in the Section IV, we are able
to bootstrap ”from scratch” and setup such a server in about
6 minutes. Another nice feature offered by our virtualized
environment is the configuration of the servers on top of LVM.
Logical Volume Manager (LVM) is part of the Linux kernel
and manages disk drives and similar mass-storage devices in
a flexible way. In particular, it permits to dynamically re-
size partitions (Logical Volumes (LV) in LVM’s terminology)
online by concatenating extents which permits to easily extend
VM disk image on demand. Also, LVM permits to create read-
write snapshots of logical volumes, thus providing a flexible
and reversible container able to test without harm and in real
condition the effect of applying a Puppet configuration.

III. THE NETWORK INFRASTRUCTURE

A. The Network Backbone and the VLAN configurations

As mentioned in the previous section, the UL HPC sys-
tem is scattered between two geographically distributed sites,
separated by a distance of 40 km. The network backbone
between the two campuses is operated by RESTENA [5]
which offer to the UL a dedicated lambda on a DWDM
infrastructure to establish a 10Gbps link between the two sites.
Then inside each campus, a classical network environment
features a 1GbE wired interconnection, in particular to the
equipment we manage. The network equipment of the clusters
is independent of the University network and implements a
set of rules detailed in the sequel. Additional fast interconnect
elements (based on Cisco 10GbE or Mellanox InfiniBand (IB)
QDR 40Gbps switches) are present as we will see in the
section V.
We have defined consistent network rules to be followed for a
sane network infrastructure and an easier global administration
of our HPC infrastructure. The aim was to have a network
organization which is a) easily understandable b) designed for
risk containment, as regards security aspects and, c) sufficiently
safe and flexible for daily systems operations. In particular, the
VLANs defined in table II are implemented on each campus
via a Layer 3 extension. The Access Control Rules among
the network segments & systems follow the onion approach:
outgoing traffic is allowed from higher security level to lower.
The number of entry points must remain as low as possible, in
order to reduce the vulnerability surface. The main idea of our
security plan is to minimize & harden the user entry points,
and be less strict on the internal network, so that HPC traffic
is unhampered. In accordance with this plan, the traffic is not
filtered within each VLAN.

B. SSH Configuration

Our servers are connected to different networks and
VLANs, typically behind the University firewall over which
we have little or no direct control. Also, we obviously need
to operate all our remote servers from abroad. For the very
few cases (14) where the server is configured with a public
IP, this is not an issue. For all the others, we configured a
special entry point from the outside called the ”bastion”. This
is a special host reserved to the system administrators and
separated from the user-accessible part of the infrastructure.
This bastion benefits from specific network ACLs and allows
us to reach nearly all points of our network. If not, we use
a specific feature offered by SSH called ProxyCommand in
combination with the netcat utility to setup a transparent
multi-hop connections framework which allow us to reach any
of our managed hosts in a single command. Here is an example
for configuring an entry for internal-server.ext_ul,
where %h is automatically replaced by the hostname, and %p
by the port:
Host internal −server. ext ul

Hostname 10.1.2.3
Port 8022
ProxyCommand ssh bastion ”nc −q 0 %h %p”

Coupled with the bastion host, it greatly ease our daily
system administration duties while offering several key ad-
vantages compared to the ”regular” SSH tunnelling approach:
(1) there is no need to explicitly initiate the intermediate
SSH tunnels that compose the connection path toward the
target host; (2) it is sufficient to configure our set of SSH
public keys on each server (which we have to do in all cases,
anyhow), automatized by Puppet (see §IV); (3) Using the
ControlMaster feature, we can configure SSH to reuse
an existing connection (typically to the bastion) by sharing
the same tcp connection. This means subsequent connections
are much faster to open. The SaW toolkit presented in the
next section not only configure in an automated way these
configurations, it also benefit from this setup in the tasks that
run remote commands and we will see with the experiment
presented in the Figure 3.

C. SAW: the Sysadmin Warrior toolkit

To facilitate the definition and the efficient deployment of
commands on the servers we manage, the Sysadmin Warrior
(SaW) toolkit has been developed. To permit a collaborative
work on the server definition and status, the configuration
piloted by SaW is hosted on a Git repository. When dealing
with the problem of running and storing in an automated way
information associated to IT equipment, we have to face the
following questions:
(1) how to organize the files and data such that they can
be easily accessed in a human-readable way, typically over
a command-line terminal; (2) how to automatically generate
configuration files (SSH, Puppet manifests etc.) that match
the system configuration of each managed host; (3) how to
effectively group and run remote commands (system upgrade,
FAI or Puppet deployment etc.) on all or, a subset of the
configured hosts?
In this context, several design choices have been made in
the implementation of SaW. For instance, instead of relying
on a complex relational database system such as MySQL

TABLE III. MAIN SAW TASKS CURRENTLY IMPLEMENTED.

Task name Description
User management
accounts:user:new Create a new HPC user (ldap entry,nfs dirs and welcome mail)
accounts:project:new Create a new HPC project (ldap entry, nfs dirs)
Site/server management
site:[host:]add Add a new site/host
site:[host:]mod Modify an existing site/host
Cluster management
cluster:{add,mod} Add / modify a cluster
cluster:{server,node,network,storage}:add Add a new server/computing node/interconnect/storage equipment
cluster:{server,node,network,storage}:mod Modify (add invoice, alter configuration etc.) of one of the above element
cluster:fai:deploy:{devel,prod,testing} Run FAI on the computing node in the {devel,prod,testing} environ-

ment
Puppet infrastructure management
puppet:bootstrap Bootstrap a new node to later on use puppet
puppet:env:update:{devel,prod,testing} Update the {devel,prod,testing} environment on the Puppet servers

(either via git pull or rsync --delete operations)
puppet:deploy:{devel,prod,testing} Run puppet in the {devel,prod,testing} environment
puppet:on_snapshot:{devel,prod,testing} As above, yet on a LVM snapshot of the VM to permit system rollback
puppet:vault:{open,close,deploy} Open, close or deploy the content of the EncFS vault
Useful system administrator commands
conf:list:by:{cluster,site,dom0,ip} List the managed hosts, grouped by cluster/site/Xen Dom0/IP
conf:ssh Generate the SSH configuration file ˜/.ssh/config
cmd:{uptime,reboot...} Run the command uptime/reboot etc.
sys:upgrade Upgrade the target system(s) (by yum upgrade or apt-get upgrade)

or PostgreSQL that would add an unnecessary dependency
on an external software while rendering difficult the inter-
action with the data stored in a command-line, SaW stores
the information in independent YAML [6] files. YAML is
a human friendly data serialization standard evenly suitable
for all programming languages. Developed in Ruby, SaW is
based on Capistrano [3], a utility and framework for executing
commands in parallel on multiple remote machines, via SSH. It
uses a simple Domain-Specific Language (DSL) (borrowed in
part from Rake, a simple ruby build program with capabilities
similar to GNU make) that allows to define tasks, which may
be applied to machines in certain roles. It also supports tunnel-
ing connections via some gateway machine to allow operations
to be performed behind VPN’s and firewalls. Capistrano was
originally designed to simplify and automate deployment of
web applications to distributed environments, and originally
came bundled with a set of tasks designed for deploying Rails
applications. Up to now, 87 tasks have been implemented. A
subset of them which permits to pilot the most useful tasks
are detailed in the Table III.

There are many features offered by SaW (EncFS vault man-
agement, automatic doc extraction etc.) that we do not describe
here in detail due to page restrictions. Yet the main objectives
of interest fulfilled by SaW for the scope of this article are
(1) the automatic generation of the SSH configuration (in
˜/.ssh/config) to permit direct and transparent connec-
tions to any of the configured hosts, whether inside or outside
the UL network (see §III-B):

$> ssh name # inside the UL network
OR publicly reachable host

$> ssh name.ext ul # outside the UL

(2) permits the parallel run over the Capistrano framework of
a set of predefined commands, typically to pilot an Operating
System (OS) upgrade, a Puppet or a FAI deployment:

 0

 10

 20

 30

 0 10 20 30 40 50 60 70

C
o

m
p

le
ti
o

n
 T

im
e

 [
s
]

Number of simultaneously connected servers. Command: ’uptime’

SAW deployment − std. dev.
SAW deployment

SSH loop deployment

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

C
o

m
p

le
ti
o

n
 T

im
e

 [
s
]

Number of simultaneously connected servers. Command: ’apt−get upgrade’

SAW deployment − std. dev.
SAW deployment

SSH loop deployment

Fig. 3. Performances of SaW in the parallel execution of commands
on an increasing number of managed servers.

$> saw sys:upgrade # upgrade ALL configured hosts
idem yet limited to gaia cluster servers

$> saw sys:upgrade CLUSTER=gaia
similar , yet restricted to CSC hosts

$> saw sys:upgrade SITE=CSC
run on a single host

$> saw sys:upgrade HOST=dns.chaos

One advantage of the above approach is that it normalizes
the access to the configured hosts and the operations performed
in a given context among the system administrator. Also, while
automating daily tasks, SaW also permits to conduct them in
an efficient way. To demonstrate it, we have performed the
following experiment: for two typical commands – a simple
uptime (which displays the length of time the system has

been up and running) and an OS upgrade via apt-get
upgrade on Debian host (yet in --no-op mode to facilitate
the reproducibility of the experiment). These commands have
been performed by SaW on an increasing number of hosts and
the completion time has been compared to the one required
by a SSH loop command repeated sequentially. Each test has
been reproduced 100 times and the results are depicted in the
figure 3. We can see that SaW permits to reduce the completion
time on 70 hosts by 48.7% for a simple command (uptime)
and up to 61.9% for a more complex one (the system upgrade,
involving around 22 package updates).

IV. THE PUPPET INFRASTRUCTURE

The configuration of the UL HPC platform is piloted
by Puppet [1]. Puppet is a mature IT automation software
based on a master/slave approach that helps system adminis-
trators to manage their infrastructure throughout its life cycle,
from provisioning and configuration to patch management and
compliance. Using Puppet, it is easy to automate repetitive
tasks, quickly deploy critical applications, and pro-actively
manage change in a scalable way: at the moment of writing,
the UL Puppet infrastructure manages around 150 servers
configuration, while the one of the Grid’5000 grid handles
more than 400 servers.
In practice, Puppet uses a declarative, model-based approach
to IT automation. In particular, the desired state of the in-
frastructure’s configuration is defined using Puppet’s declara-
tive configuration language. At this level, one can combine
the interfaces provided by Puppet modules which are self-
contained bundles of code and data that can eventually be
shared with other users by publishing the module on Open-
source collaborative platforms such as GitHub. Up to now,
we have implemented more than 55 original modules. After a
Puppet configuration is deployed, a Puppet agent is run on
each node to automatically enforce the desired node state,
correcting any configuration drift. The Puppet agent of a node
sends Facts, or data about its state, to the Puppet Master which
compiles a Catalog, or detailed data about how the node should
be configured, and sends this back to the Puppet agent. After
making any changes to return to the desired state, the Puppet
agent sends a complete Report back to the Puppet Master.
Detailing the implemented modules is clearly out of the scope
of this paper. We simply briefly review now the hierarchical
approach put in place to define the Puppet manifests of the
configured nodes and servers. These manifests contain classes
instances and chunks of code that configure a specific aspect or
feature of the machine. In practice, all the servers we manage
are configured by inheriting from at least two other generic
node definitions.

node ’basenode’ {
This install the basic packages/ services

3 class{ ’ generic ’ : }
class { ’exim4’: # mail notifications

configtype => ’ satellite ’ ,
6 smarthost => ’xxx.uxx’

}
class{ ’ssh :: server ’ :

9 port => ’8022’,
permitrootlogin => ’no’,
passwordauthentication => ’no’,

12 }
Configure the local system administrator
$sysadmin login = ’localadmin’

15 class { ’sysadmin’: ensure => ’present’ }
include ’user admin1’
include ’user admin2’

18 include ’user admin3’
}

Then for each cluster, we define another generic definition
derived from this basenode definition:

node ’ generic gaia ’ inherits ’basenode’ {
include network

3 # Define default network setup
network :: interface { ’eth0’ :

comment => ”Prod network (10.xx.0.0/16)−VLAN xxx”,
6 netmask => ’255.255.0.0’ ,

network => ’10.xxx.0.0’ ,
broadcast => ’10.xxx.255.255’,

9 gateway => ’10.xxx.0.1’ ,
dns nameservers => ’10.xx.xx.xx,
dns search => ’gaia−cluster.uxx’

12 }
configure resolv .conf
bind :: resolver { ’ gaia−cluster .uxx’:

15 nameserver => [’10.xx.xx.xx’ , ’10.yy.yy.yy’],
}
class { ’ntp’ : server list => [’10.xx.xx.xx’] }

18 class { ’puppet :: agent’ :
server => ’puppet−csc.uxx’,
ca server => ’puppetca.uxx’

21 }
}

Finally, a new server manifest is written on the following basis
(a DHCP server in the below example):

node ’dhcp.gaia−cluster .uxx’ inherits ’ generic gaianode ’ {
Specialization of the IP for eth0

3 Network:: Interface [’eth0’] {
address => ’10.xx.xx.ZZ’,

}
6 # The DHCP server may serve IP for some BMC cards

network :: interface { ’eth1’ :
comment => ”Mgmt network (10.yy.0.0/16)−VLAN yyy”,

9 address => ’10.yy.yy.ZZ’,
netmask => ’255.255.0.0’ ,
network => ’10.yyy.0.0’ ,

12 broadcast => ’10.yyy.255.255’,
gateway => ’10.yyy.0.1’

}
15 include ’dhcp:: server ’
}

Many other elements have been put in place at the level of our
Puppet infrastructure - eg. hierarchical Certificate Authority
(CA), distributed workflow based on Git, Puppet environments
etc. We have depicted the complete layout of this architecture
in figure 4. To illustrate its efficiency, the following experiment
has been performed. The objective was to setup a working
server in four typical scenarios met in our environment. Each
of them corresponded to a desired running configuration on
the deployed server summarized in the Table IV.

TABLE IV. SERVER CONFIGURATION IN THE PUPPET
EXPERIMENT.

Name Description
base Minimal Generic yet secure configuration
www Web server (base + Apache, MySQL...)

hpcfront HPC frontend (base + {nfs,oar,ldap}-client ...)

nfs NFS server (base + nfs-server and exports, multipath...)

XM
LR

PC
 / R

EST
over SSL

UL HPC Platform

LCSB site (Belval)

(transmart) puppet agent

Files

testing
devel

production

Puppet Master LCSB
(kali) puppet agent

(lcsb-portal) puppet agent

CA

37 hosts

Puppet master

Puppet Infrastructure

Managed hosts: 124
(+26 Grid'5000 Luxembourg)

gaia cluster (Belval)

(nfs) puppet agent

Files

testing
devel

production

Puppet Master gaia cluster
(adminfront) puppet agent

(mds1) puppet agent

CA

23+16(nyx) hosts

Puppet master

Computing nodes (170+2)

FAI Infrastructure

Managed computing nodes:
330 (3512 cores)

(+38 (368 cores) Grid'5000 Luxembourg)

CSC site (Kirchberg)

Files

testing

Puppet master

devel
production

Puppet Master CSC
(shiva) puppet agent

(gforge) puppet agent

34 hosts

(urt) puppet agentCA

chaos cluster (Kirchberg)

Files

testing
devel

production

Puppet Master chaos cluster
(adminfront) puppet agent

(dhcp) puppet agent

12 hosts

(urt) puppet agentCA

Files

testing
devel

production

Modules/Manifests

Root CA

Puppet (Root) CA

Environments

Puppet master

Puppet master

Computing nodes (73)

TOTAL resources managed
150 servers (101 VMs)
368 computing nodes (3880 cores)
1996 TB raw shared storage (NFS / Lustre)
2 system administrators / 2 sites

Fig. 4. Overview of the Puppet infrastructure put in place at the UL.

These configurations have been successively deployed on a
newly created VM (a Xen DomU) configured with a minimal
OS (a Debian netinstall), and where the specialized con-
figuration inherent to our environment (NTP server, enhanced
SSH configuration, local administrator account etc...) or the
situation (Apache, NFS server etc.) has to be performed. This
typically reflects the situation of a newly arrived server where
the default system has been installed. In practice, we have ap-
plied our customized xen::domU Puppet module to generate
such a minimal system (in around 130s of time) and created a
LVM snapshot on top of it to easily revert any changes applied
by the successive Puppet runs. Then each the above mentioned
configurations has been applied by our puppet infrastructure
three times and we stored the completion time of each run.
This test has been repeated 100 times for each configuration
and the results are proposed in the Figure 5. It follows that
the first runs permit to completely bootstrap a running system
with the fully configured services. Most of the time is spent
on the many packages that have to be installed – on average
between 161s and 364s, meanwhile it still remains quite fast
to get a fully configured and running server. The remaining
runs (2 and 3) simply reapply the selected configuration thus
mainly ensuring that the packages and configuration files are
present and coherent, or that the services (apache, nfs etc.)
are indeed running. On average, these steps cost on average
between 20s and 31s and correspond to the typical time spent
on the puppet runs that are applied on a regular basis on all
the servers we manage within our infrastructure.

 10

 100

 1000

 Run 1 Run 2 Run 3

C
o

m
p

le
ti
o

n
 T

im
e

 [
s
]

L
O

G
S

C
A

L
E

Base
www − Web server

hpcfront − HPC frontend
nfs − NFS server

Fig. 5. Performances of our Puppet infrastructure in the repetitive deployment
of 4 typical configurations.

V. THE UL CLUSTERS ENVIRONMENT

Each of the computing clusters are organized in a similar
fashion illustrated on figure 6, thus features (1) an access
server used as an SSH interface for the user to the cluster that
grants the access to the cluster internals; (2) a user frontend
(eventually merged with the access node), used to reserve
nodes on the cluster etc. (3) an adminfront, a Xen Dom0
(i.e. the initial domain started by the Xen hypervisor on
boot that runs the Xen management toolstack, and has special
privileges like being able to access the hardware directly).
This node is used to host the different services (one per Xen
domU) required to manage the cluster. Among them, we can

Adminfront

Fast local interconnect
(Infiniband, 10GbE)

Site access server

Site <sitename>

1 GbE

Other Clusters
network

Local Institution
Network

10 GbE10 GbE

1 GbE

C
luster A

NFS and/or Lustre

Disk Enclosure

Site Shared Storage Area

PuppetOAR Kadeploy
supervision etc... Site Computing Nodes

C
luster B

Site router

Fig. 6. Organization of the UL clusters.

cite the FAI server, used to automatically install and deploy
the computing nodes (see §V-A); the Puppet server, used to
manage various configuration aspects on the site (see §IV),
the OpenLDAP server, which manages user authentication or
the OAR server that acts as a resource manager (and batch
scheduler) for the computing nodes of the cluster; (4) an NFS
server (eventually completed with a Lustre infrastructure), used
for data sharing (homedirs etc.) among the computing nodes
and the user frontend (see §V-B); (5) the computing nodes and
(6) the fast interconnect equipment (based on 10 GbE or IB
QDR technologies).

A. Computing node deployment strategy

FAI [2] is an operating system installation tool, which per-
mits to automate the process of installation and customizaton
of a server or a set of computing nodes. The FAI service
requires a DHCP server, a Debian Mirror, and delivers a de-
ployment system using NFS together with a TFTP server. Once
the FAI server is set up, the biggest part of the work is to write
an installation plan in order to specify the final configuration of
the node: disk partitioning, extra packages, scripts and hooks,
configuration files, which in our case consists of 329 files.
The deployment in itself is illustrated in the figure 7: The
deployment system is booted via the network card (PXE), and
applies our installation plan. In terms of performance, our FAI
infrastructure is currently able to deploy 70 nodes of each
cluster in around 30 minutes.

Fully Automatic Installation

University of Cologne Thomas Lange
Email: lange@informatik.uni-koeln.de

Institute of Computer Science, Univ. of Cologne
Pohligstraße 1, 50969 Köln, Germany

What is FAI ?

• System for unattended Linux installation

• Installs and configures the whole OS and all additional software

• Centralized configuration management and administration

• Scalable and flexible rollout method for Linux migration

• Linux deployment in only a few minutes

Why use FAI ?

• Manual installation takes hours, FAI just minutes

• Recurring tasks are boring and lead to errors

• You need an infrastructure management

• You want to save time

The three steps of FAI

1 - Boot host

• Boot via network card (PXE), CD-ROM or floppy

DHCP request, send MAC address
get IP address, netmask, gateway

send TFTP request for kernel image
get install kernel and boot it

DHCP

Server

Daemon

NFS
Server

TFTP

mount nfsroot by install kernel

install server install client

• Now a complete Linux OS is running without using local hard disks

2 - Get configuration data

local
hard disk

provided via HTTP, FTP or NFS

./class

./disk_config

./package_config

./scripts

./files

Debian mirror

mounted by install kernel

NFS, CVS, svn or HTTP

install clientinstall server

./hooks

/target/

/target/var

.../fai/config/

/var

/bin

/usr

/

/target/usr

nfsroot

config space

3 - Run installation

• partition local hard disks and create filesystems

• install software using apt-get command

• configure OS and additional software

• save log files to install server, then reboot new system

Examples of installation times

CPU + RAM software time
Core i7, 3.2 GHz, 6GB 4.3 GB 7 min
Core i7, 3.2 GHz, 6GB 471 MB 77 s
Core2duo, 2 GHz, 2GB 4.3 GB 17 min
Core2duo, 2 GHz, 2GB 471 MB 165 s
Pentium 4, 3 GHz, 1GB 2200 MB 10 min
Pentium 4, 3 GHz, 1GB 1100 MB 6 min
Pentium 4, 3 GHz, 1GB 300 MB 105 s
Athlon 800 MHz, 512MB 2200 MB 32 min
Athlon 800 MHz, 512MB 300 MB 4 min

Features

• Installs Debian GNU/Linux, Ubuntu, Mandriva, Suse, Solaris,...

• Useful for XEN and Vserver host installations

• Class concept supports heterogeneous configuration and hardware

• Update running system without installation (e.g daily maintenance)

• Central configuration repository for all install clients

• Advanced disaster recovery system

• Reproducible installation

• Automatic documentation in central repository

• Automated hardware inventory

• Hooks can extend or customize the normal behavior

• Full remote control via ssh during installation process

• Shell, perl, expect and cfengine script support for customization

• FAI runs on i386, AMD64, PowerPC, Alpha, SPARC and IA64 architecture

• Fast automatic installation for Beowulf clusters

• GUI for FAI using GOsa

Plan your installation,
and FAI installs your plan.

FAI users

• Anonymous, financial industry, 32.000 hosts

• LVM insurance, 10.000 hosts

• City of Munich, 6000+, 12.000 hosts planned

• StayFriends, 300+ hosts

• Albert Einstein Institute, 1725 hosts

• Zivit, 260 hosts on two IBM z10 EC mainframes

• Archive.org, 200+ hosts

• XING AG, 300-400 hosts

• Opera Software, ∼300 hosts

• Stanford University, 450 hosts

• MIT Computer science research lab, 200 hosts

• The Welcome Trust Sanger Institute, 540 hosts

• Mobile.de, ∼600 hosts

• Thomas Krenn AG, 500 per month

• Electricité de France (EDF), 1500 hosts

• ETH Zurich, systems group, ∼300 hosts

• Trinity Centre for High Performance Computing, 356 opterons, 80 xeons

• For more see http://fai-project.org/reports/

Availability

• Homepage: http://fai-project.org

• Open source under GPL license

• Detailed documentation, mailing lists, IRC channel

• Official Debian packages, ISO images of demo CD

• Commercial support available

FAI at work

Terminals with ssh connection to an install client during an installation

Examples of FAI installations

The Centibots Project Lucidor cluster
100 autonomous robots 90 Dual Itanium2 900 MHz
funded by the DARPA 6 GB RAM per node
SRI International Artificial In-
telligence Center, USA

Center for Parallel Compu-
ters, Sweden

Genome research cluster The MERLIN cluster
168 IBM HS20 Blades 180 Dual AMD MP2200
2x2.8 GHz P4 1 GB RAM per node
The Sanger Institute Albert Einstein Institute
Cambridge, UK Golm, Germany

IITAC cluster, top500.org Computer Science lab
356 opterons, 80 xeons 308 workstations, 127 servers
Trinity Centre for High University of West Bohemia
Performance Computing, Czech Republic
University of Dublin, Ireland

Fig. 7. Overview of an FAI deployment. (Source:[2])

Bull R423 (2U)
(2*4c Intel Xeon L5630@2,13 GHz), RAM: 24GB

NFS server

Nexsan E60 + E60X (240 TB)
120 disks (2 TB SATA 7.2krpm) = 240 TB (raw)

Multipathing over 2+2 controllers (Cache mirroring)
12 RAID6 LUNs (8+2 disks) = 192 TB (lvm + xfs)

FC
8 FC

8

Fig. 8. Configuration used for each NFS server.

B. Shared Storage infrastructure

The shared storage facilities offered on the clusters are
of two types: (1) a traditional shared storage relying on the
Network File System (NFS) protocol; (2) a highly performant
Lustre [7] based storage. It has been chosen for its stability
and for simplicity, along with scalability properties that are of
interest in an HPC environment.
The choice for NFS was motivated by the well-known stability
it offers, thus being designated to host user home directories.
We decided to assign to each cluster on each site its dedicated
and independent NFS storage. It appeared indeed extremely
hazardous to authorize a File System (FS) synchronization
(even asynchronous) between sites geographically separated
by around 40 km. In practice, we have build our NFS service
as depicted in figure 8. The basic brick of our storage in-
frastructure are high density enclosures (provided by Nexsan
or NetApp) which features 60 disks (each with 2TB of raw
capacity). We organized them in 6 RAID6 Logical Unit Num-
bers (LUNs) over 8+2 disks, thus featuring an effective storage
capacity of 96TB per enclosure. Redundant Fibre Channel
(FC) links are used to connect the NFS server to the enclosure.
Also, it was crucial for us to feature high-performant redundant
controller with a cache-mirroring to guarantee both sufficient
I/O performance and fault-resilience to offer the best protection
to data loss. On top of them, LVM was configured and an xfs
File System (FS) was setup with quota operations enabled.

Lustre S
torage

Nexsan E60 (4U, 12 TB)
20 disks (600 GB SAS 15krpm)
Multipathing over 2 controllers

(Cache mirroring)
2 RAID1 LUNs (10 disks)

6 TB (lvm + lustre)

Bull R423 (2U)
(2*4c Intel Xeon L5630@2,13 GHz), RAM: 96GB

MDS1

MDS2

Bull R423 (2U)
(2*4c Intel Xeon L5630@2,13 GHz), RAM: 96GB

FC
8

FC
8

FC
8

FC
8

Bull R423 (2U)
(2*4c Intel Xeon L5630@2,13 GHz), RAM: 48GB

OSS1

2*Nexsan E60 (2*4U, 2*120 TB)
2*60 disks (2 TB SATA 7.2krpm) = 240 TB (raw)

2*Multipathing over 2 controllers (Cache mirroring)
2*6 RAID6 LUNs (8+2 disks) = 2*96 TB (lvm + lustre)

Bull R423 (2U)
(2*4c Intel Xeon L5630@2,13 GHz), RAM: 48GB

OSS2

FC
8 FC8

FC
8

Fig. 9. Configuration used for the UL Lustre storage.

To cope with the growing storage needs of the UL, es-
pecially since the advent of a Bio center with its growing
volumes of data, we had to select a complementary storage
solution based on a parallel and distributed FS that would
provide a scalable solution, whether in terms of capacity or
access efficiency. We selected Lustre [7], a highly performant
FS scaling to tens of thousands of nodes and petabytes of
storage with groundbreaking I/O and metadata throughput. The
configuration we put in place is depicted in the Figure 9. It fea-
tures two redundant Meta-Data Server (MDS) in master/slave
mode, and currently two Object Storage Serverss (OSSs) each
of them attached to a disk enclosure (an Object Storage Target
(OST) in Lustre terminology). The advantage of Lustre is that
for each pair of OSS/OST added, the global capacity of the
Lustre storage infrastructure is increased by the capacity of the
OST, and its throughput is added to the global throughput of
the system.

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000

I/
O

 b
a

n
d

w
id

th
 (

G
B

/s
) Lustre, OSS1 − read, filesize 20G

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000

I/
O

 b
a

n
d

w
id

th
 (

G
B

/s
)

Time (s)

Lustre, OSS1 − write, filesize 20G

Fig. 10. UL HPC Lustre OSS IOZone performances (R/W).

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

I/
O

 b
a

n
d

w
id

th
 (

M
iB

/s
)

Lustre, write, filesize 20G
Lustre, read, filesize 20G

Fig. 11. UL HPC Lustre I/O performances using IOR.

Of interest for the user, to evaluate the performance of
the Lustre infrastructure, we selected IOR [8] in addition to
IOZone [9] as benchmarks. All results are displayed in the
figures 10 and 11. They demonstrate sustainable performances
close to the controllers theoretical limits (1.5GB/s in read,
750MB/s in write) on each OSS (only the results of the first
one are displayed due to space constraints). Also, the IOR
benchmark results of the Fig.12 reveal a concrete performance
of 3GB/s (in read) and 1.5GB/s (in write) for the shared
storage option, which is coherent with the current sizing
of the infrastructure (which features two OSS and thus two
controllers).
We also evaluate in the Fig.12 the performance of the different
storage options available on the platform, whether local (RAM
i.e. /dev/shm, Hard Disk or SSD i.e. /tmp) or shared

(NFS or Lustre) since it appears important to advertise to
the users of the system the characteristics of each possible
approaches. Indeed privileging local solutions permits to limit
the impact of distributed workflow on the shared storage
and not all users were aware of the possibility (and the
performance) featured by the /dev/shm device for instance.
Of course, local approaches are restricted by the inherent size
of the corresponding device and suffer from the additional
synchronization work users have to take care of, which they are
generally reluctant to investigate. Nevertheless, our experience
demonstrate that continuously advertise the benefits of local
storage to reduce the load of the shared solutions drastically
improved the productivity of users and the statility of the
platform.

C. User Job Management

The job scheduler used within the UL HPC platform is
OAR [10], a versatile resource and task manager (also called
a batch scheduler) which provides a simple and flexible ex-
ploitation of a cluster. OAR manages resources of clusters as a
traditional batch scheduler (as PBS [11], Torque [12], LSF [13]
or SGE [14]). In other words, it does not really execute
users job on the resources but manages them (reservation,
access granting) in order to allow the user to connect these
resources and exploit them. Its design is based on high level
tools, more precisely a relational database engine (MySQL
or PostgreSQL), a scripting language (Perl), a confinement
system mechanism based on a feature proposed by recent
(2.6) Linux kernels called cpuset. OAR also use a scalable
administrative tool, component of the Taktuk [15] frame-
work. OAR is flexible enough to be suitable for production
clusters and research experiments and presented for us several
advantages: it is Open-source and no specific daemon is run
on nodes. Also, there is no dependence on specific computing
libraries like MPI such that all sort of parallel user applications

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 0 5 10 15

I/
O

 b
a
n
d
w

id
th

 (
M

iB
/s

)

Number of threads

SHM / Bigmem
Lustre / Gaia

NFS / Gaia
SSD / Gaia

Hard Disk / Chaos

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 0 5 10 15

I/
O

 b
a
n
d
w

id
th

 (
M

iB
/s

)

Number of threads

SHM / Bigmem
Lustre / Gaia

NFS / Gaia
SSD / Gaia

Hard Disk / Chaos

Fig. 12. UL HPC Storage Options I/O performances against the IOR
benchmarking suite (Read on top, Write on bottom).

are supported. Finally, OAR support job checkpointing and
resubmission and features best effort jobs: if another job wants
the same resources then it is deleted automatically. We use it
to propose to user a way to relax our default policy as regards
the total number of resources a user can reserve in his job.
Until now, we bounded this number to 10% of the considered
cluster for daily jobs yet using best-effort jobs, users have no
limitation. The price for them is simply that jobs submitted
that way may be kill at any moment if the resource is to be
used for a default job. The full detail of the scheduling policy
would require far more (lengthy) developments. In a few lines,
we put in place many rules to handle in a fair way the presence
of stakeholders (which have a privileged access to dedicated
paid resources), research project management and a (short)
list of resources assigned to new users to limit their impact
on the jobs run by more experimented users. These resources
are changed on a weekly basis in a round-robin way. Also,
one interesting feature of OAR fall in the area of accounting
possibilities since it easiest the measure of CPU-Hour metrics
per users and/or projects. For instance the Fig 2 was generated
from such data, aggregated on a yearly basis. Finally, OAR is
particularly robust and resilient: more than 3.8 millions jobs
have been scheduled by OAR between 2008 and early 2014
on the chaos and gaia clusters.

D. Software Tools and Development Environment

The HPC Software Development environment includes a
set of common tools which are needed for building and/or
using scientific computing software on our clusters. In practice,
we rely on three frameworks: (1) the modules environ-
ment [16] is a de facto standard in HPC systems, since it
is a mechanism that allows a structured management of the
environment variables for multiple software versions, specif-
ically well adopted for usage under UNIX platforms. (2)
The EasyBuild [17] toolkit, an open source project with
the explicit aim to automate the building of software and
modules for HPC environments. The use of such a tool is
imperative in our context, in the sense that given sufficient
time the complexity of HPC software stacks grows beyond
what an individual human mind can handle with ease and,
the related software building procedures can quickly become
convoluted and error prone. EasyBuild, at the present moment,
automatically builds more than 377 distinct applications and
can deliver over 600 modules, serving varying needs of HPC
communities. (3) The HPCBIOS [18], a project effort initiated
within the UL in order to automate and standardize the delivery
of scientific software for both the needs of local and other
collaborating HPC user communities.

VI. CONCLUSION & PERSPECTIVES

Administrating research infrastructures requires a multitude
of skills and very focused expertise in High Performance
Systems management. The experience at the UL highlights that
the selection of tools is crucial, in order to allow scaling the
infrastructure without suffering from constant need to deliver
support man-hours, which is the most common bottleneck in
such environment. Deliberate choices in both hardware (i.e.
privileging a common processor architecture and the same
network vendor solution) and software components, that permit
automation and collective remote control and monitoring are

the key to allow a systems population to grow in a super-linear
fashion, in relation to the size of a system administrators team.
The specific set of technologies that are in use now at UL, have
proven their integration capabilities and can be recommended
as best practices for an HPC infrastructure of this scale, even
with a small team of system administrators:

1) FAI, Kadeploy, Puppet, Xen - for fabric management
2) SaW - for configuration management; featuring git, Capis-

trano, YAML
3) ssh, Ganglia - remote control & monitoring featuring

RRDtool
4) OAR, NFS, Lustre - for HPC computational & storage

cluster facilities
5) environment modules, EasyBuild, HPCBIOS - for ad-

vanced complex HPC software stacks.

Certainly, the quest to advance the systems management and
its quality aspects does not end here; an advice that can
be provided to fellow sysadmins is to shop carefully their
solutions from the available open source projects, or not, and
take calculated risks as regards support effort. This mentality is
what has allowed a small team of 3 persons to deliver complex
services, that now hundreds of very expert and specialized
scientists can benefit from.

REFERENCES

[1] P. Labs, “Puppet, an automated administrative engine,” [online] http:
//projects.puppetlabs.com/projects/puppet.

[2] T. Lange, “Fully automated installation,” [online] http://fai-project.org/
features/.

[3] J. Buck, “Capistrano,” [online] https://github.com/capistrano/capistrano/
wiki.

[4] P. Barham and al., “Xen and the art of virtualization,” in Proc. of the
19th ACM symposium on Operating systems principles, ser. SOSP ’03.
ACM, 2003, pp. 164–177.

[5] “Restena,” [online] http://www.restena.lu/.
[6] C. Evans, “Yaml: Yaml ain’t markup language.”
[7] P. Schwan, “Lustre: Building a file system for 1,000-node clusters,” in

Proc. of the Linux Symposium, 2003, p. 9.
[8] “IOR HPC benchmark,” [online] http://sourceforge.net/projects/ior-sio/.
[9] “Iozone filesystem benchmark,” [online] http://www.iozone.org/.

[10] N. Capit and al., “A batch scheduler with high level components,” in
Cluster computing and Grid 2005 (CCGrid05), 2005.

[11] Altair, “PBS Professional, HPC workload management and job schedul-
ing solution,” [online] http://www.pbsworks.com/.

[12] I. Adaptive Computing, “Torque resource manager,” [online] http:
//www.adaptivecomputing.com/.

[13] IBM, “Ibm platform lsf, a workload management platform for demand-
ing, distributed hpc environments.” [online] http://www-03.ibm.com/
systems/technicalcomputing/platformcomputing/products/lsf/.

[14] Oracle, “Sun grid engine, an open source batch-queuing system
for hpc clusters,” [online] http://www.oracle.com/technetwork/oem/
grid-engine-166852.html.

[15] INRIA, “taktuk,” [online] http://taktuk.gforge.inria.fr/.
[16] J. L. Furlani and P. W. Osel, “Abstract yourself with modules,” in Proc.

of the 10th USENIX conf. on System administration, ser. LISA ’96,
1996, pp. 193–204.

[17] K. Hoste, J. Timmerman, A. Georges, and S. Deweirdt, “Easybuild:
Building software with ease,” in SC, 2012.

[18] F. Georgatos, “Hpcbios,” https://hpcbios.readthedocs.org.

