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Abstract—This paper presents main concepts and issues con-
cerned with the simulation of Internet of Things (IoT). The
heterogeneity of possible scenarios, arising from the massive de-
ployment of an enormous amount of sensors and devices, imposes
the use of sophisticated modeling and simulation techniques. In
fact, the simulation of IoT introduces several issues from both
quantitative and qualitative aspects. We discuss novel simulation
techniques to enhance scalability and to permit the real-time
execution of massively populated IoT environments (e.g., large-
scale smart cities). In particular, we claim that agent-based,
adaptive Parallel and Distributed Simulation (PADS) approaches
are needed, together with multi-level simulation, which provide
means to perform highly detailed simulations, on demand. We
present a use case concerned with the simulation of smart
territories.

Index Terms—Internet of Things; Simulation; Wireless; Par-
allel and Distributed Simulation; Smart Cities

I. I NTRODUCTION

An unprecedented number of connected devices will soon
be added to the Internet. A multitude of sensors and mobile
users’ terminals are designed to interact in order to offer
novel services in smart cities and territories in general. These
devices, in the so-called Internet of Things (IoT), have very
specific characteristics both in terms of hardware (in many
cases, these devices are equipped with a very little amount of
memory and computational power), software (specific OSes)
and management (little or no administration utilities, fewsys-
tem updates). Being able to understand and to simulate the IoT
will soon become essential. The complex networks obtained
by the interaction of IoT devices are hard to design and to
manage. In real deployment scenarios, many possible config-
urations of IoT networks are possible. Devices’ connectivity is
influenced by their geographical location, communication and
network capabilities, device distribution.

The modeling of a general IoT environment to build ef-
fective and smart services can be quite difficult, due to the
heterogeneous possible scenarios. Thus, IoT simulation is
necessary for both quantitative and qualitative aspects. To
name a few issues: capacity planning, what-if simulation and
analysis, proactive management and support for many specific
security-related evaluations. The scale of the IoT is the main
problem in the usage of existing simulation tools. Traditional
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approaches (that are single CPU-based) are often unable to
scale to the number of nodes (and level of detail) required by
the IoT.

The main goal of this paper is to introduce the main
aspects of the simulation of IoT, discussing a new combination
of techniques to enhance scalability and to permit the real-
time execution of massively populated IoT environments (e.g.,
large-scale smart cities). For example: parallel and distributed
simulation, adaptive computational and communication load-
balancing, self-clustering, multi-level modeling and simula-
tion.

To demonstrate the validity of the proposed approach, an
application scenario of “smart shires” is analyzed [18], [19].
This is a novel view of devising smart, cheap and sustainable
services in decentralized geographical spaces, without the
need of costly (communication) infrastructures. Such services
would make good use of a deployment of cheap sensors in
these areas, together with ad-hoc configurations of mobile
devices. We show that the design and configuration of smart
services in (decentralized) territories impose the simulation
of wide area networks; however, in certain cases a highly
detailed simulation is required. This need for scalabilityand
high level of detail can be reached only through properly
configured multi-level simulation techniques. An advantage
of this approach is that the detailed (and thus, more costly)
simulation can be performed only when needed, in a limited
simulated area, only for the needed time interval of the
simulation.

The remainder of this paper is organized as follows. Section
II describes the background about IoT/Smart-Territories and
the Simulation Techniques. In Section III the state of the art
related to IoT simulation is discussed. The proposed approach,
based on adaptive parallel/distributed simulation and multi-
level simulation, is introduced in Section IV. In Section V,
this approach is applied to a “smart shires” case study. Finally,
Section VI provides some concluding remarks.

II. BACKGROUND

A. Internet of Things and Smart-Territories

As already mentioned, there is an important trend towards
the design of novel services, built by interconnecting various
heterogeneous devices deployed in geographical areas [43].
Data sensed by the sensors’ devices can be disseminated
and collected by some information processing system, treated
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as open data and managed through a context-aware data
distribution service, to be used by applications [6].

Sensors are relatively cheap in terms of costs. Thus, their
massive deployment is feasible both in populated centres and
in more decentralized areas [18]. Such sensors can be inter-
connected to form a sensor network. In turn, such information
gathered through this network can be passed to services placed
within cloud (or fog) computing architectures. These smart
services can integrate such data with crowd-sensed and crowd-
sourced data coming from mobile terminals. The approach of
exploiting any kind of information coming from the cloud of
things available in the territory is now referred as Sensingas
a Service (SaaS) model [30], [35], [41].

The complexity of the possible scenarios coming from this
picture suggests that effective simulation tools are needed.
These simulation tools must take into consideration issues
concerned with complex networks, aspects typical of per-
vasive computing, low-level details concerned with wireless
communications. In the next sections, we will discuss on
existing methods and viable strategies to ensure scalability
of the simulation, without introducing oversimplifications and
inaccuracies, due to the lack of the level of detail.

B. Discrete Event Simulation

In a computer simulation, a process models the behavior of
some other system over time [21]. In some cases, the simulated
system is real but more often it has yet to be designed or
implemented. In practice, simulation is about methodologies
and techniques that are needed for the performance evaluation
of complex systems.

The motivations behind the use of simulation are many.
To name a few: cost reasons, testing on the real system is
too dangerous, many different solutions must to be evaluated
to support the system design (i.e. dimensioning and tuning).
Due to the increasing complexity in the systems to be built,
simulation is used more and more often.

Discrete Event Simulation (DES) [34] is one of the many
simulation paradigms that have been proposed. With respectto
other approaches, it is has good expressiveness and it is quite
easy to use. A DES is represented by a simulated model (that
is implemented using a set of state variables) and its evolution
(that is represented by a sequence of events processed in
chronological order). Each event occurs at a given instant in
time and represents a change in the simulated model state.
This means that the whole evolution of the simulated system
is obtained through the execution of an ordered sequence of
events that are: created, stored and processed. For example,
the events in the simulation of Vehicular Ad Hoc Networks
are the updates of the cars positions and the transmission
of data packets. At the basics, a DES is a set of state
variables (i.e. describing the modeled system), an event list
(i.e. the pending events that will be processed for evolving
the simulated state) and global clock (i.e. the simulation
time) [34]. Each event is tagged by a timestamp that specifies
the simulated time at which it has to be processed.

In a sequential (i.e. monolithic) simulation, a single Physical
Execution Unit (PEU), for example a CPU core, is in charge
of creating new events, updating the pending event list and
processing the events in timestamp order. In other words, a
single CPU core manages the whole simulated model and its
evolution. This approach is simple and easy to implement butit
has some drawbacks. Among others, the simulation scalability
both in terms of execution time (to complete the simulations
runs) and size of the system that can be represented [15].

C. Parallel DES and PADS

As an alternative, the tasks described above can be paral-
lelized using a set of interconnected PEUs (e.g. CPU cores,
CPUs or hosts). This approach is called Parallel Discrete
Event Simulation (PDES) [22]. In this case, very large and
complex models can be represented and executed since each
PEU is only in charge of a part of the simulation model. That
is, each PEU manages a local pending events list and some
events are delivered by means of messages to remote PEUs.
In addition, the PEUs must run a synchronization algorithm
to guarantee the correct simulation execution. In many cases,
a PDES approach can speedup the simulation execution, at
the cost of a more complex implementation and setup of the
simulator.

A Parallel and Distributed Simulation (PADS) is a simula-
tion that is run on more than one processor [42]. There many
good reasons to rely on this approach, among them: execution
speed, model scalability, interoperability and composability
purposes (e.g. to integrate different off-the-shelf simulators
and to compose many already existing simulation models in a
new simulator) [21].

With respect to a monolithic simulation, a PADS lacks of
a global model state. That is, a single representation of the
simulated model is missing. In fact, each PEU in the PADS
manages only a part of the simulated model. Following the
PADS terminology, the model components executed on top of
each PEU are called Logical Processes (LPs) [12]. As shown in
Figure 1, a PADS is obtained through the interaction among
LPs, each one of which, deals with the evolution of a part
of the simulated model and interacts with the other LPs (for
synchronization and data distribution) [21].

The performance of the network that interconnects the LPs
has a strong effect on the PADS design and the simulator ex-
ecution speed. When the LPs are run on PEUs interconnected
by a shared memory, then it is called parallel simulation.
Conversely, loosely coupled LPs are referred as distributed
simulation. More often, the execution architecture used torun
PADS are a mix of parallel and distributed PEUs [14].

In short, the main issues in a PADS are:

• the simulated model is partitioned in a set of LPs [50].
The partitioning is a complex task given that it must be
done considering both the minimization of the network
communication (among LPs) and the load balancing in
the parallel/distributed execution architecture;

• the results obtained by the PADS are correct only if they
are exactly the same given by the sequential simulator.



Fig. 1. Parallel and Distributed Simulation: model partitioning.

This can happen only if there is asynchronization
algorithm that properly coordinates the LPs evolution;

• each LP generates updates (events) that are possibly
relevant for parts of the simulated model in other LPs.
For performance reasons, broadcasting all events is not
feasible.Data distribution is about the efficient delivery
of state updates and it is often based on a publish-
subscribe approach [27].

Implementing a PDES using PADS is obtained encapsu-
lating the events in messages for their inter-LP delivery. As
defined by Lamport: “two events are in causal order if one
of them can have some consequences on the other” [33].
Clearly, to get a correct simulation execution, the causal
order of events must not being violated. This is easy in
a monolithic simulation but it is complex in parallel and
distributed architectures due to the different execution speeds
of each PEU and the network delays. In a PADS, to guarantee
that all events are executed in in non-decreasing timestamp
order, the LPs have to run a synchronization algorithm. The
synchronization can be handled in many ways but the main
approaches are the following:

• time-stepped: the simulated time is divided in timesteps
of fixed-size. The simulation model is updated at every
timestep and the lower bound to the flight time for
interactions between the model components is the size
of the timestep. When a LP completes the tasks for the
current timestep, it broadcasts to all the other LPs an
End-Of-Step (EOS) message and then waits the EOS
messages from all other LPs before proceeding to the
next timestep [47];

• conservative: in this approach the causality errors are
prevented. That is, before processing each event, it is
checked if the event is “safe” or not (with respect to
the causality constraint). If the event is tagged as safe by
the synchronization algorithm then it can be processed.
Otherwise, the LP must stop processing while waiting
for more events (or better information about the safety of
events). This safety check can be implemented in many
different ways, a widely used is algorithm is the Chandy-
Misra-Briant [40];

• optimistic: in this case the events are processed by the
LPs in receiving order. This means that, very likely, the
causality order will be violated. In fact, when a violation

is found by the synchronization algorithm, the LP that
has found it implements a roll-back to the (most recent)
previous state that is correct. Furthermore, it propagates
the roll-back to all the other LPs that have been affected
by the violation [26]. In this way, the whole PADS goes
back to the most recent globally correct simulation state
and it starts again processing the events.

D. Adaptive PADS

Ad described before, in PADS the partitioning of the sim-
ulated model is a complex task. In [14], we have proposed
an approach in which the simulated model is represented by
a multi-agent system. The simulated model is partitioned in
small model components (also said Simulated Entities, SEs)
and the model evolution is obtained through the exchange of
interactions among SEs. In this way, the LPs are containers
of SEs and it is possible to move (migrate) a SE from a LP
to another. This permits to avoid the static partitioning ofthe
simulated model and to adaptively reallocate the SEs for better
computational and communication load balancing. In many
cases, this lead to a speed up in the simulation execution and
enhanced scalability.

This adaptive PADS approach is implemented in the
GAIA/ARTÌS simulator [5] and, in the current version, it is
based on a time-stepped synchronization. That, as described in
the follow of this paper, is also at the basis of the multi-level
modeling that we propose for the simulation of IoT models.

III. STATE OF THE ART

A. Simulation of the Internet of Things

The design of complex IoT setups requires the support of
large scale testbeds or the usage of scalable simulation tools.
In the case of simulation, the number of nodes in the scenario
and the level of detail required by the interaction among nodes
are key elements for the scalability of the simulator.

In [24], the authors identify the requirements for the next
generation of IoT experimental facilities, they discuss some
drawbacks of simulation-based approaches and provide a
survey of existing testbeds (some of them also supporting co-
simulation). An approach based on the federation of testbeds
is possible but it has many drawbacks. In many cases, an
on simulation would be preferred but the existing network
simulators are inadequate for the scale and level of detail
required by IoT models.

SimIoT is a new simulator described in [46] in which the
back-end operations are executed in a cloud environment for
better performance. The use case proposed in the paper is a
health monitoring system for emergency situations in which
short range and wireless communication devices are used to
monitor the health of patients. The preliminary performance
evaluation is based on 160 identical jobs submitted by 16 IoT
devices.

In [36] the massive-scale of many IoT deployments is
considered. In this case, the authors firstly present a survey
of large-scale simulators and emulators and then they propose
MAMMotH, a software architecture based on emulation. To



the best of our knowledge the development of MAMMotH has
stopped in 2013.

Brambilla et al. propose to integrate the DEUS general-
purpose discrete event simulation with the domain specific
simulators Cooja and ns-3 for the study of large-scale IoT
scenarios in urban environments [10]. In this case, the perfor-
mance evaluation is based on 6 scenarios with up to200000

sensors,400 hubs and25000 vehicles. The execution time with
respect to the number of events shows a quite good scalability.
On the other hand, to the best of own knowledge, the DEUS
simulator has a monolithic architecture and it is implemented
in Java.

In [45] the authors propose an IoT-based smart home system
in which the performance evaluation is based on different
simulation methods such as Monte Carlo.

DPWSim is a simulation toolkit that supports the modeling
of the OASIS standard “Devices Profile for Web Services”
(DPWS) [25]. Its main goal of is to provide a cross-platform
and easy-to-use assessment of DPWS devices and protocols.
In other words, it is not designed for very large-scale setups.

The approach followed in [11] is to use a model-driven sim-
ulation (based on the standard language SDL) to describe the
IoT scenario. Starting from this, an automatic code generation
transforms the description into an executable simulation model
for the ns-3 network simulator.

Finally, an interesting approach is proposed in [31]. The
author proposes a hybrid simulation environment in which the
Cooja-based simulations (i.e. system level) are integrated with
a domain specific network simulator (i.e. OMNeT++).

B. Internet of Things and Smart-Territories

As concerns the use of IoT to build efficient services for
making “smarter” territories, from a simulation point of view
there are many requirements that the simulation tool must
provide. Above all, the main issue is scalability, both in terms
of amount of modeled entities and granularity of events. Even
a small size smart territory will be composed by thousands of
interconnected devices. Many of them will be mobile and each
with very specific behavior and technical characteristics [18].
If a proactive approach is needed (e.g. simulation in the loop),
in order to perform “what-if analysis” during the management
of the deployed architecture, then the simulator should be able
to run in (almost) real-time, at least with average size model
instances.

We claim that a multi-level simulation is needed in order
to simulate a smart territory scenario with a reasonable IoT
model. In fact, running the whole model at the highest level
of detail is unfeasible. A better approach is to bind different
simulators together, each one running at its appropriate level
of detail and with specific characteristics of the domain to be
simulated (e.g. mobility models, wireless/wired communica-
tions and so on). We will discuss this approach in the next
section.

Agent-based simulation is a perfect tool to create models
that mimic urban systems in general [28]. Agent-based simu-
lation, together with land-use transport interaction model and

cellular automata are applicable in planning support systems.
These models can be applied at different time scales, such as
short-term modeling, e.g. diurnal patterns in cities, and long-
term models for exploring change through strategic planning.
Tools such as MASON [37] and SUMO [32] allow simulating
moving entities (e.g. mobile users of vehicles) that can interact
with static ones. These tools have been successfully exploited
to study intelligent traffic control systems [7], [29], [48], [51],
mobile applications that resort to crowdsensed data [44] and
so on. The main problem of these approaches is that, due to
their nature, they do not allow creating massive scenarios,with
many interconnections.

CupCarbon is a multi-agent and discrete event, smart-
city and Internet of Things Wireless Sensor Network (SCI-
WSN) simulator [39]. Its allows designing, visualizing and
validating distributed algorithms in a network. It employsthe
OpenStreetMap framework to deploy sensors directly on the
map. The main goal of this tool is to help trainers to explain
the basic concepts and how sensor networks work and it can
help scientists to test their wireless topologies, protocols, etc.
The main problem of scalability remains.

Moreover, it is worth mentioning that there is a number
of image and 3D based simulators, such as CanVis, Sec-
ond Life, Suicidator City Generator, Blended Cities. Among
them, UrbanSim is a software-based simulation for urban
areas, with tools for examining the interplay between land
use, transportation, and policy [4]. It is intended for use by
Metropolitan Planning Organizations and others needing to
interface existing travel models with new land use forecasting
and analysis capabilities. UrbanSim does not focus on sce-
nario development, as most of these tools do, but rather on
understanding the consequences of certain scenarios on urban
communities. However, typically such a kind of tools do not
cope with issues concerned with wireless communications and
pervasive computing, which are the keywords related to the
IoT world.

IV. M ULTI -LEVEL SIMULATION

Since many IoT models are composed of a very large
number of nodes, the usage of fine grained simulation models
leads to scalability problems in the performance evaluation.
In other words, a monolithic simulator that handles all the
nodes in the IoT and implements a fine grained level of detail
is unable to provide the simulation results in an acceptable
amount of time. Even using a PADS approach, the massively
populated setups are difficult to handle. This can be overcome
by: i) employing High Performance Computing execution
platforms or ii) reducing the level of detail in the simulation
model. Both these solutions are not feasible since the first
is very costly and the second often leads to misleading (or
wrong) simulation results due to the excessive amount of
details removed from the simulated model.

For these reasons, we propose a multi-level modeling and
simulation [23] approach for large scale IoT setups. That is,
a simulation in which multiple simulation models are glued



Fig. 2. Multi-level simulation.

together [38]. Each one with a specific task and working with
at a different level of detail.

Under the implementation viewpoint, this means a “high
level” adaptive PADS simulator (i.e. GAIA/ART̀IS) that works
at a coarse grained level of detail and that coordinates the
execution of a set of domain specific “middle” or “low level”
simulators that are used only when a fine grained level of
detail is necessary (e.g. OMNeT++ [2], ns-3 [1], SUMO [3]).
The switch between coarse and fine grained models can
be automatic or triggered by the simulation modeler. For
example, if a given simulated area is populated by too many
wireless devices then a detailed simulation model could assess
network capacity or congestion problems. The main issues
with this multi-level approach are the interoperability among
the simulators and the design of the inter-model interactions
(e.g. synchronization and state exchanges at runtime between
model components).

More specifically, as shown in Figure 2, at the simulation
bootstrap the whole scenario is executed at level 0 (that
is, with a minimal details). Hence, the high level simulator
(e.g. GAIA/ART̀IS) manages the evolution of all the model
components and their interactions following a time-stepped
synchronization approach [9]. At timestept2, it is found that
a part of the simulated scenario (for example a specific zone
in the simulated area or a specific group of modeled nodes)
has to be simulated with more details. This means that, in the
figure, a part of the simulated area is still modeled at level 0
while a specific zone is now managed by the level 1 model. If
necessary, in the following of the simulation, a specific area
can be further detailed using a level 2 model (and simulator).
To simplify this discussion, if we consider only two levels
then that all the model components managed by the level
0 simulator are evolved usingt-sized timesteps and all the
others uset′-sized timesteps. Timestept2 (that is the same
of t′1 for level 1) is the moment in which a part of the model
components is transferred from the coarse grained simulator to
the finer one. In the following, the components at level 0 will
jump from t2 to t3 while the components simulated at level 1
will be updated att′

2
, t′

3
andt′

4
(that is the same oft3 for level

0) but since there is no more need for such a level of detail,
all the components simulated at level 1 are transferred again
to the level 0 simulator. Following the constraints imposedby
the time-stepped synchronization algorithm, all the interactions
among level 0 simulated components can happen at every
coarse grained timestep while the interactions at level 1 can
happen at every fine grained timestep. Finally, the interaction
between components managed at different levels can happen
only at the coarse grained timesteps. That is, when there is a
match between the timesteps at the different levels.

Using this approach the total number of nodes handled by
the simulator does not changes but the level of detail used
in the simulation evolution is adapted to the needs of the
simulation model at runtime. In other words, this means that
the simulation model is not run at the lowest level of detail for
the whole duration of the simulation. Hence, it is possible to
obtain a better scalability with respect to traditional simulation
(monolithic or PADS) approaches. On the other side, it is
clear that the multi-level modeling (as as every kind of model
approximation) introduces a some amount of error in every
analysis. As in every simulation, appropriate verificationand
validation techniques need to be used.

At the time of writing, we are finalizing the design of the
multi-level simulator and we are working on a prototype im-
plementation [18], [19] that includes the case study described
in the following section.

V. CASE STUDY

As an application scenario, we consider a main use case
concerned with the need to provide smart services to ter-
ritories, being them cities or more decentralized areas. In
particular, we focus on “smart shires”, a novel view of decen-
tralized geographical spaces able to manage resources (natural,
human, equipment, buildings and infrastructure) in a way that
is sustainable and not harmful to the environment [18], [19].
The idea is to create novel, smart and cheap services, easily
deployable without the need of costly infrastructures, that
would improve the life of citizens and tourists.



The need for cheap solutions forces the use of crowd-
sensed and crowd-sourced data coming from the IoT. Sensors
are relatively cheap in terms of costs. Thus, their deploy-
ment in a countryside is feasible. These sensors need to
be interconnected through the use of smart communication
approaches [43]. Data sensed by the sensors’ devices are ma-
naged by a distributed information processing system, hence
enabling a context-aware data distribution [8].

A wide range of application scenarios are possible, ranging
from proximity-based applications (e.g. proximity-basedsocial
networking, advertisements for by-passers, smart communica-
tion between vehicles, etc.), security and public safety support,
services related to the production chain in rural environments
(smart agriculture, smart animal farming), smart traffic man-
agement systems.

As a specific use-case example, recently the “km 0” phe-
nomenon gained a lot of interests in Italian and European
foodie circles. This abbreviation for “zero kilometers” signifies
local, low impact primary food ingredients. The idea is to
prioritize the use of local and seasonal foods, avoid the useof
genetically modified organisms so as to improve the quality of
provided products and promote sustainable cooking. In spite
of the growing interest in local products, there are relatively
few places where one can buy these products directly from the
producer. Thus, customers have to look for specialized week-
end famers’s markets or for farm direct purchases. Customers
might be single users, ethical purchasing groups, restaurant
owners. And quite often, this products research reveals to be
not a simple task for customers. Thus, smarter scenarios are
possible.

Let imagine a service that allows consumers subscribing
to the availability of a certain product. Upon availability
of such a product by a producer (e.g. the farmer), he can
publish a notification, which can inform subscribers of product
availability plus other related information such as, for instance,
his presence in next, near markets or other possible purchasing
opportunities. In view of such details, the consumer can plan
to visit the market (so as to have the opportunity to select the
products directly), book some specific items, quantities and so
on. So far so good, there is plenty of publish-subscribe mecha-
nisms that might help these producer/consumer interactions in
order to build smarter services. However, more sophisticated
services are possible. The market could be crowded with sev-
eral (apparently similar) producers, the customer might donot
know the location, he might have some physical disabilities,
and thus he might need to be guided to the exact location of
the producer, that is dynamically determined (hence, without
the possibility of knowing the position in advance). Then,
once there, he might be interested in finding other possible
interesting products.

To cope with these issues, producers can provide informa-
tion on the fly, thanks to proximity-based services that may
guide customers in a smart and effective market tour. Based
on the available technologies of the market, such services
can be deployed in different ways. For instance, if a wireless
infrastructure is available, then all the communications can

pass through this network. Otherwise, some ad-hoc solution
should be dynamically built, with producers that exploit their
smart devices (e.g. smartphones) to build multihop wireless
communication and information dissemination strategies [19].
Moreover, in case of intermittent connections, seamless com-
munication strategies should be employed, that for instance
might employ multihoming [20]. Being partly composed of
advertisements, general information on the market, publish
messages looking for their subscribers, such message dis-
semination might be viably performed using some kind of
epidemic dissemination protocol over a dynamic, opportunistic
ad-hoc overlay, used in conjunction with application filtering
techniques [16], [17], [49].

The efficient simulation of such a wide scenario in a smart
territory is not an easy task, since it involves several activi-
ties involving different domains and requiring very different
levels of granularity. In this case, multi-level simulation can
come into the picture. One can imagine different levels of
granularity, as shown in Figure 3. The coarse level (level
0) simulates the whole smart territory, where different actors
produce products, subscribe their interests, move towards
different geographical areas. This can be implemented using
some kind of classic agent-based simulator, maybe equipped
with PADS capabilities [13].

Then, once there is the need to simulate the specific interac-
tions within the a specific area (e.g. the “smart market”), then
more simulation details (and probably a different simulator)
are needed to consider wireless communication issues, fine-
grained interactions and movements. Thus, a more detailed
level of simulation (based on a domain specific simulator)
is triggered (i.e. level 1 in the figure). In this case, each
simulation step of the coarse grained simulation layer (e.g.,
t3, t4 of the level 0 in Figure 3) is decomposed into multiple
substeps at the fine grained layer (level 1). Following this
approach, the level 1 simulator is able to notify level 0 with
its simulation advancements.

Fig. 3. Smart Territory/Market multilevel simulation.

VI. CONCLUSIONS

In this paper, we discussed on main issues to cope with, in
order to properly simulate the Internet of Things. Scalability
and high level of details are the two main, and quite often
counterposed, goals. We overviewed some existing techniques,
reaching the conclusion that the use of adaptive, agent-based,
Parallel and Distributed Simulation (PADS), coupled with
multilevel simulation is a good strategy to employ in this
context.



The analysis of the use case, related to the design of smart
services for smart cities and decentralized areas, shows that
multi-level simulation techniques provide means to simulate
wide geographical areas, with a multitude of simulation enti-
ties (agents). However, when needed it is possible to trigger
a more detailed, fine grained simulation, so as to consider as-
pects which could not be simulated otherwise. The interesting
aspect of this approach is that the detailed (and more costly)
simulation can be performed in a specific, limited simulated
area, only for the needed time interval of the simulation.
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