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Abstract—This paper presents main concepts and issues con-approaches (that are single CPU-based) are often unable to

cerned with the simulation of Internet of Things (loT). The scale to the number of nodes (and level of detail) required by
heterogeneity of possible scenarios, arising from the mase de- the loT.

ployment of an enormous amount of sensors and devices, impss . . . . .
the use of sophisticated modeling and simulation technigse In The main goal of this paper is to introduce the main
fact, the simulation of IoT introduces several issues from bth ~aspects of the simulation of 10T, discussing a new combbnati
quantitative and qualitative aspects. We discuss novel sinfation  of techniques to enhance scalability and to permit the real-
techniques to enhance scalability and to permit the real-the time execution of massively populated loT environmentg.(e.

execution of massively populated 0T environments (e.g.alge- 500 scale smart cities). For example: parallel and idisted
scale smart cities). In particular, we claim that agent-basd, ) )

adaptive Parallel and Distributed Simulation (PADS) apprcaches Simulation, adaptive computational and communicatioriioa
are needed, together with multi-level simulation, which povide balancing, self-clustering, multi-level modeling and slez
means to perform highly detailed simulations, on demand. We tion.

present a use case concerned with the simulation of smart Tq demonstrate the validity of the proposed approach, an

territories. s . u o
Index Terms—Internet of Things; Simulation; Wireless; Par- application scenario of “smart shires” is analyzed| [1BH[1

allel and Distributed Simulation: Smart Cities This is a novel view of devising smart, cheap and sustainable
services in decentralized geographical spaces, withogt th
. INTRODUCTION need of costly (communication) infrastructures. Suchisess

uld make good use of a deployment of cheap sensors in
be added to the Internet. A multitude of sensors and mob} ese areas, together with ad.-hoc configuration; of mobile
users’ terminals are designed to interact in order to off puIces. We show tha_t the deS|_gn_and. conflguratlon. c.)f smart
novel services in smart cities and territories in generakse services in (decentralized) territories impose the sitinda

devices, in the so-called Internet of Things (IoT), haveyvelOf tW'IIdZ a_real nt_etwqus; h(_)wgvgrrh_m cer;a]in caselsb; highly
specific characteristics both in terms of hardware (in ma ailed simulation is required. This need for scalabiityd

cases, these devices are equipped with a very little amdun bgh. level of d?ta" can be r_eached o-nly through properly
memory and computational power), software (specific OSeCS?nf'gured multl-l_evel S|mulat|on_techn|ques. An advastag
and management (little or no administration utilities, feys- o this approach Is that the detailed (and thus, more f:o_stly)
tem updates). Being able to understand and to simulate The %mulatmn can be performed only when _need_ed, in a limited
will soon become essential. The complex networks obtaingﬁnmat_ed area, only for the needed time interval of the
by the interaction of 10T devices are hard to design and §6mulat|on.

manage. In real deployment scenarios, many possible config- h inder of th ) 7ed as foll Secti
urations of 10T networks are possible. Devices’ conneigtig The remainder of this paper is organized as follows. Section

influenced by their geographical location, communicatiod a[[[] despribes_ the back_ground about.IoT/Smart-Territoriad a
network capabilities, device distribution. the Simulation Techniques. In Sectibnl Il the state of the ar

The modeling of a general IoT environment to build ef[elated to loT simulation is discussed. The proposed ajghroa

fective and smart services can be quite difficult, due to tpgsed on a(japtiye _parallel/distlributed-simulation an(_jtimul
heterogeneous possible scenarios. Thus, loT simulationlqgel S|mulat|o.n, IS "_‘”Oduc‘id n SeC.tIIV. In Sect| Vs
necessary for both quantitative and qualitative aspeats. tF'S gpproach |s.applled toa smart. shires” case studyllfina
name a few issues: capacity planning, what-if simulatiod aﬁectlorm provides some concluding remarks.

analysis, proactive management and support for many specifi
security-related evaluations. The scale of the 10T is thenma

problem in the usage of existing simulation tools. Tradi&ib A. Internet of Things and Smart-Territories

An unprecedented number of connected devices will so

Il. BACKGROUND

OThe publisher version of this paper is avallable at AS already mentioned, there is an important trend towards
http://dx.doi.org/10.1109/HPCSim.2016.756830Blease cite this paper the design of novel services, built by interconnecting masi
as: “Gabriele D’Angelo, Stefano Ferretti, Vittorio Ghini. Simulation heterogeneous devices deployed in geographical areas [43]
of the Internet of Things. Proceedings of the IEEE 2016 Intenational g . . .
Conference on High Performance Computing and Simulation (HPCS Data sensed by the sensors’ devices can be disseminated
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as open data and managed through a context-aware datim a sequential (i.e. monolithic) simulation, a single Rbgk
distribution service, to be used by application’s [6]. Execution Unit (PEU), for example a CPU core, is in charge
Sensors are relatively cheap in terms of costs. Thus, thefrcreating new events, updating the pending event list and
massive deployment is feasible both in populated centrds grocessing the events in timestamp order. In other words, a
in more decentralized areds [18]. Such sensors can be ingingle CPU core manages the whole simulated model and its
connected to form a sensor network. In turn, such informati@volution. This approach is simple and easy to implemenit but
gathered through this network can be passed to serviceslaltas some drawbacks. Among others, the simulation scajabili
within cloud (or fog) computing architectures. These smalpoth in terms of execution time (to complete the simulations
services can integrate such data with crowd-sensed andlerowns) and size of the system that can be represented [15].
sourc_e_d data coming f_rom mo_blle termlnals. The approach ef Parallel DES and PADS
exploiting any kind of information coming from the cloud of

things available in the territory is now referred as Sensing AS an alternative, the tasks described above can be paral-
a Service (SaaS) modél [30], [35]. [41]. lelized using a set of interconnected PEUs (e.g. CPU cores,

The complexity of the possible scenarios coming from thfgPUS or hosts). This app’r)oach is called Parallel Discrete
picture suggests that effective simulation tools are néed&Vent Simulation (PDES) [22]. In this case, very large and
These simulation tools must take into consideration issu€dMPlex models can be represented and executed since each
concerned with complex networks, aspects typical of pé_:r’-EU is only in charge of a part of the_3|mulat|0n model. That
vasive computing, low-level details concerned with wissle IS €ach PEU manages a local pending events list and some
communications. In the next sections, we will discuss divents are delivered by means of messages to remote PEUs.
existing methods and viable strategies to ensure scayabili? 2ddition, the PEUs must run a synchronization algorithm

of the simulation, without introducing oversimplificatioand {© guarantee the correct simulation execution. In manys;ase
inaccuracies, due to the lack of the level of detail. a PDES approach can speedup the simulation execution, at

the cost of a more complex implementation and setup of the
simulator.
A Parallel and Distributed Simulation (PADS) is a simula-

In a computer simulation, a process models the behaviortain that is run on more than one processor [42]. There many
some other system over tine [21]. In some cases, the sindulag®od reasons to rely on this approach, among them: execution
system is real but more often it has yet to be designed gpeed, model scalability, interoperability and compdgsbi
implemented. In practice, simulation is about methoda@sgipurposes (e.g. to integrate different off-the-shelf sibars
and techniques that are needed for the performance evamluatind to compose many already existing simulation models in a
of complex systems. new simulator)[[21].

The motivations behind the use of simulation are many. With respect to a monolithic simulation, a PADS lacks of
To name a few: cost reasons, testing on the real systemaiglobal model state. That is, a single representation of the
too dangerous, many different solutions must to be evaduat®mulated model is missing. In fact, each PEU in the PADS
to support the system design (i.e. dimensioning and tuning)anages only a part of the simulated model. Following the
Due to the increasing complexity in the systems to be buiPADS terminology, the model components executed on top of
simulation is used more and more often. each PEU are called Logical Processes (LIPS) [12]. As shown in

Discrete Event Simulation (DES) [34] is one of the manfigure[l, a PADS is obtained through the interaction among
simulation paradigms that have been proposed. With respectPs, each one of which, deals with the evolution of a part
other approaches, it is has good expressiveness and ittis q@f the simulated model and interacts with the other LPs (for
easy to use. A DES is represented by a simulated model (tR#fchronization and data distribution) [21].
is implemented using a set of state variables) and its éeolut  The performance of the network that interconnects the LPs
(that is represented by a sequence of events processedid a strong effect on the PADS design and the simulator ex-
chronological order). Each event occurs at a given instantgcution speed. When the LPs are run on PEUs interconnected
time and represents a change in the simulated model st&¢.a shared memory, then it is called parallel simulation.
This means that the whole evolution of the simulated systeég@nversely, loosely coupled LPs are referred as distribute
is obtained through the execution of an ordered sequencestnulation. More often, the execution architecture usedito
events that are: created, stored and processed. For exanfp?®S are a mix of parallel and distributed PEUsI[14].
the events in the simulation of Vehicular Ad Hoc Networks In short, the main issues in a PADS are:
are the updates of the cars positions and the transmissiom the simulated model is partitioned in a set of LPs|[50].
of data packets. At the basics, a DES is a set of state The partitioning is a complex task given that it must be
variables (i.e. describing the modeled system), an eveht li  done considering both the minimization of the network
(i.e. the pending events that will be processed for evolving communication (among LPs) and the load balancing in
the simulated state) and global clock (i.e. the simulation the parallel/distributed execution architecture;
time) [34]. Each event is tagged by a timestamp that specifiess the results obtained by the PADS are correct only if they
the simulated time at which it has to be processed. are exactly the same given by the sequential simulator.

B. Discrete Event Simulation



is found by the synchronization algorithm, the LP that

2 %-B has found it implements a roll-back to the (most recent)
D Paey previous state that is correct. Furthermore, it propagates
- o ﬂ iﬂ the roll-back to all the other LPs that have been affected

A : : by the violation [26]. In this way, the whole PADS goes

Q . . back to the most recent globally correct simulation state

oY and it starts again processing the events.
(L (> @ |
\_Hostl/ ‘__ JN_  Host2 D. Adaptive PADS
Ad described before, in PADS the partitioning of the sim-
Fig. 1. Parallel and Distributed Simulation: model patiing. ulated model is a complex task. In_[14], we have proposed

an approach in which the simulated model is represented by
. . . o a multi-agent system. The simulated model is partitioned in
This can happen only if th_ere IS aynchronlzatlc_)n ~small model components (also said Simulated Entities, SES)
algorithm that properly coordinates the LPs evolution; %nd the model evolution is obtained through the exchange of

each LP generates updates (events) that are POSS| %ractions among SEs. In this way, the LPs are containers

relevant for parts of the simulated model in other LP%.]c SEs and it is possible to move (migrate) a SE from a LP

For _performan(_:e reasons, broadcastmg_a_ll evenFs 'S R8%nother. This permits to avoid the static partitioning o
feasible.Data distribution is about the efficient delivery

¢ stat dat d it is often based bii Eimulated model and to adaptively reallocate the SEs faebet
0 bsa'i updates Ian[27l IS often based on a publis omputational and communication load balancing. In many
subscribe approach [7]. cases, this lead to a speed up in the simulation execution and

Implementing a PDES using PADS is obtained encapsgnhanced scalability.
lating the events in messages for their inter-LP delivery. A This adaptive PADS approach is implemented in the
defined by Lamport: “two events are in causal order if ongAIA/ARTIS simulator [5] and, in the current version, it is
of them can have some consequences on the othei” [3ghsed on a time-stepped synchronization. That, as deddribe
Clearly, to get a correct simulation execution, the causgle follow of this paper, is also at the basis of the multielev
order of events must not being violated. This is easy iodeling that we propose for the simulation of IoT models.
a monolithic simulation but it is complex in parallel and
distributed architectures due to the different executioeesls IIl. STATE OF THEART
of each PEU and the network delays. In a PADS, to guarant&e Simulation of the Internet of Things

that all events are executed in in non-decreasing timestamprpe design of complex loT setups requires the support of

order, the LPs have to run a synchronization algorithm. Thege scale testbeds or the usage of scalable simulatids. too

synchronization can be handled in many ways but the majithe case of simulation, the number of nodes in the scenario

approaches are the following: and the level of detail required by the interaction amongasod
« time-steppedthe simulated time is divided in timestepsare key elements for the scalability of the simulator.

of fixed-size. The simulation model is updated at every In [24], the authors identify the requirements for the next
timestep and the lower bound to the flight time fogeneration of 0T experimental facilities, they discussneo
interactions between the model components is the sidemwbacks of simulation-based approaches and provide a
of the timestep. When a LP completes the tasks for tiseirvey of existing testbeds (some of them also supporting co
current timestep, it broadcasts to all the other LPs aimulation). An approach based on the federation of testbed
End-Of-Step (EOS) message and then waits the E@Spossible but it has many drawbacks. In many cases, an
messages from all other LPs before proceeding to tbe simulation would be preferred but the existing network
next timestep([47]; simulators are inadequate for the scale and level of detall
conservative in this approach the causality errors areequired by loT models.

prevented. That is, before processing each event, it isSimloT is a new simulator described in_[46] in which the
checked if the event is “safe” or not (with respect tdack-end operations are executed in a cloud environment for
the causality constraint). If the event is tagged as safe bgtter performance. The use case proposed in the paper is a
the synchronization algorithm then it can be processdukalth monitoring system for emergency situations in which
Otherwise, the LP must stop processing while waitinghort range and wireless communication devices are used to
for more events (or better information about the safety afionitor the health of patients. The preliminary performanc
events). This safety check can be implemented in mamyaluation is based on 160 identical jobs submitted by 16 loT
different ways, a widely used is algorithm is the Chandydevices.

Misra-Briant [40]; In [36] the massive-scale of many IoT deployments is
optimistic in this case the events are processed by tleensidered. In this case, the authors firstly present a gurve
LPs in receiving order. This means that, very likely, thef large-scale simulators and emulators and then they gmpo
causality order will be violated. In fact, when a violatiorMAMMOotH, a software architecture based on emulation. To



the best of our knowledge the development of MAMMotH hasellular automata are applicable in planning support syste
stopped in 2013. These models can be applied at different time scales, such as

Brambilla et al. propose to integrate the DEUS generadhort-term modeling, e.g. diurnal patterns in cities, aonmg}
purpose discrete event simulation with the domain specifierm models for exploring change through strategic plagnin
simulators Cooja and ns-3 for the study of large-scale Iolools such as MASON [37] and SUMO [32] allow simulating
scenarios in urban environmenits [10]. In this case, theoperfmoving entities (e.g. mobile users of vehicles) that caeramtt
mance evaluation is based on 6 scenarios with up0fil00 with static ones. These tools have been successfully éggloi
sensors400 hubs and5000 vehicles. The execution time with to study intelligent traffic control systemis [7], [29], [4451],
respect to the number of events shows a quite good scajabilinobile applications that resort to crowdsensed data [4d] an
On the other hand, to the best of own knowledge, the DEWS® on. The main problem of these approaches is that, due to
simulator has a monolithic architecture and it is implersdnt their nature, they do not allow creating massive scenariitls,
in Java. many interconnections.

In [45] the authors propose an loT-based smart home systenCupCarbon is a multi-agent and discrete event, smart-
in which the performance evaluation is based on differenity and Internet of Things Wireless Sensor Network (SCI-
simulation methods such as Monte Carlo. WSN) simulator [[39]. Its allows designing, visualizing and

DPWSim is a simulation toolkit that supports the modelingalidating distributed algorithms in a network. It empldye
of the OASIS standard “Devices Profile for Web Service<OpenStreetMap framework to deploy sensors directly on the
(DPWS) [25]. Its main goal of is to provide a cross-platfornmap. The main goal of this tool is to help trainers to explain
and easy-to-use assessment of DPWS devices and protoahls.basic concepts and how sensor networks work and it can
In other words, it is not designed for very large-scale setuphelp scientists to test their wireless topologies, prosoetc.

The approach followed i [11] is to use a model-driven sinffhe main problem of scalability remains.
ulation (based on the standard language SDL) to describe th@oreover, it is worth mentioning that there is a number
loT scenario. Starting from this, an automatic code gemm@rat of image and 3D based simulators, such as CanVis, Sec-
transforms the description into an executable simulatiod@h ond Life, Suicidator City Generator, Blended Cities. Among
for the ns-3 network simulator. them, UrbanSim is a software-based simulation for urban

Finally, an interesting approach is proposed [in] [31]. Thareas, with tools for examining the interplay between land
author proposes a hybrid simulation environment in whieh thyse, transportation, and policyl[4]. It is intended for use b
Cooja-based simulations (i.e. system level) are intedraith Metropolitan Planning Organizations and others needing to
a domain specific network simulator (i.e. OMNeT++). interface existing travel models with new land use fordngst
. . and analysis capabilities. UrbanSim does not focus on sce-
B. Internet of Things and Smart-Territories nario development, as most of these tools do, but rather on

As concerns the use of 10T to build efficient services fainderstanding the consequences of certain scenarios an urb
making “smarter” territories, from a simulation point olew communities. However, typically such a kind of tools do not
there are many requirements that the simulation tool musipe with issues concerned with wireless communicatiods an

provide. Above all, the main issue is scalability, both imie pervasive computing, which are the keywords related to the
of amount of modeled entities and granularity of events.rEvegT world.

a small size smart territory will be composed by thousands of
interconnected devices. Many of them will be mobile and each IV. MULTI-LEVEL SIMULATION
with very specific behavior and technical characteristid.[
If a proactive approach is needed (e.g. simulation in the)loo Since many IoT models are composed of a very large
in order to perform “what-if analysis” during the managememumber of nodes, the usage of fine grained simulation models
of the deployed architecture, then the simulator shoulddie aleads to scalability problems in the performance evalumatio
to run in (almost) real-time, at least with average size rhodé@ other words, a monolithic simulator that handles all the
instances. nodes in the loT and implements a fine grained level of detail
We claim that a multi-level simulation is needed in ordes unable to provide the simulation results in an acceptable
to simulate a smart territory scenario with a reasonable I@mount of time. Even using a PADS approach, the massively
model. In fact, running the whole model at the highest levpbpulated setups are difficult to handle. This can be oveecom
of detail is unfeasible. A better approach is to bind différe by: i) employing High Performance Computing execution
simulators together, each one running at its appropriat leplatforms or ii) reducing the level of detail in the simudati
of detail and with specific characteristics of the domain ¢o bmodel. Both these solutions are not feasible since the first
simulated (e.g. mobility models, wireless/wired commanicis very costly and the second often leads to misleading (or
tions and so on). We will discuss this approach in the newtrong) simulation results due to the excessive amount of
section. details removed from the simulated model.
Agent-based simulation is a perfect tool to create modelsFor these reasons, we propose a multi-level modeling and
that mimic urban systems in generial [28]. Agent-based simsimulation [23] approach for large scale IoT setups. That is
lation, together with land-use transport interaction miadal a simulation in which multiple simulation models are glued
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Fig. 2. Multi-level simulation.

together[[38]. Each one with a specific task and working with) but since there is no more need for such a level of detalil,
at a different level of detail. all the components simulated at level 1 are transferrednagai
Under the implementation viewpoint, this means a “higto the level 0 simulator. Following the constraints impobgd
level” adaptive PADS simulator (i.e. GAIA/AIiB) that works the time-stepped synchronization algorithm, all the it&ions
at a coarse grained level of detail and that coordinates theong level 0 simulated components can happen at every
execution of a set of domain specific “middle” or “low level’coarse grained timestep while the interactions at levelrl ca
simulators that are used only when a fine grained level béppen at every fine grained timestep. Finally, the intevact
detail is necessary (e.g. OMNeT+4 [2], nst3 [1], SUMO [3])between components managed at different levels can happen
The switch between coarse and fine grained models canly at the coarse grained timesteps. That is, when there is a
be automatic or triggered by the simulation modeler. Fonatch between the timesteps at the different levels.
example, if a given simulated area is populated by too manyUsing this approach the total number of nodes handled by
wireless devices then a detailed simulation model couldssssthe simulator does not changes but the level of detail used
network capacity or congestion problems. The main issusthe simulation evolution is adapted to the needs of the
with this multi-level approach are the interoperability@my simulation model at runtime. In other words, this means that
the simulators and the design of the inter-model interastiothe simulation model is not run at the lowest level of detail f
(e.g. synchronization and state exchanges at runtime batwéhe whole duration of the simulation. Hence, it is possilole t
model components). obtain a better scalability with respect to traditional siation
More specifically, as shown in Figufé 2, at the simulatiotmonolithic or PADS) approaches. On the other side, it is
bootstrap the whole scenario is executed at level 0 (thelear that the multi-level modeling (as as every kind of niode
is, with a minimal details). Hence, the high level simulatoapproximation) introduces a some amount of error in every
(e.g. GAIA/ARTIS) manages the evolution of all the modenalysis. As in every simulation, appropriate verificatan
components and their interactions following a time-steppalidation techniques need to be used.
synchronization approachl[9]. At timestep it is found that At the time of writing, we are finalizing the design of the
a part of the simulated scenario (for example a specific zomailti-level simulator and we are working on a prototype im-
in the simulated area or a specific group of modeled nodgg¢mentation[[18],[[19] that includes the case study dbsci
has to be simulated with more details. This means that, in timethe following section.
figure, a part of the simulated area is still modeled at level 0
while a specific zone is now managed by the level 1 model. If V. CASE STUDY
necessary, in the following of the simulation, a specificaare
can be further detailed using a level 2 model (and simulator) As an application scenario, we consider a main use case
To simplify this discussion, if we consider only two levelsoncerned with the need to provide smart services to ter-
then that all the model components managed by the leviabries, being them cities or more decentralized areas. In
0 simulator are evolved usingsized timesteps and all theparticular, we focus on “smart shires”, a novel view of decen
others uset’-sized timesteps. Timestep (that is the same tralized geographical spaces able to manage resourcesghat
of ¢} for level 1) is the moment in which a part of the modehuman, equipment, buildings and infrastructure) in a way th
components is transferred from the coarse grained simutatois sustainable and not harmful to the environment [18]] [19]
the finer one. In the following, the components at level O wilThe idea is to create novel, smart and cheap services, easily
jump fromts to t3 while the components simulated at level deployable without the need of costly infrastructurest tha
will be updated at},, t5 andt/, (that is the same aof; for level would improve the life of citizens and tourists.



The need for cheap solutions forces the use of crowpass through this network. Otherwise, some ad-hoc solution
sensed and crowd-sourced data coming from the loT. Senssiisuld be dynamically built, with producers that exploiith
are relatively cheap in terms of costs. Thus, their deplogmart devices (e.g. smartphones) to build multihop wigeles
ment in a countryside is feasible. These sensors needctimmunication and information dissemination stratedlés. [
be interconnected through the use of smart communicatibloreover, in case of intermittent connections, seamless-co
approaches [43]. Data sensed by the sensors’ devices are manication strategies should be employed, that for ingtanc
naged by a distributed information processing system, énermaight employ multihoming[[20]. Being partly composed of
enabling a context-aware data distribution [8]. advertisements, general information on the market, plablis
A wide range of application scenarios are possible, rangingessages looking for their subscribers, such message dis-
from proximity-based applications (e.g. proximity-basedial semination might be viably performed using some kind of
networking, advertisements for by-passers, smart comeauniepidemic dissemination protocol over a dynamic, oppostimi
tion between vehicles, etc.), security and public safeppsut, ad-hoc overlay, used in conjunction with application filigr
services related to the production chain in rural environtsie techniques[[16],[[17], [49].
(smart agriculture, smart animal farming), smart trafficnma  The efficient simulation of such a wide scenario in a smart
agement systems. territory is not an easy task, since it involves severalvacti
As a specific use-case example, recently the “km 0” phties involving different domains and requiring very diffet
nomenon gained a lot of interests in Italian and Europe#svels of granularity. In this case, multi-level simulatican
foodie circles. This abbreviation for “zero kilometersjsifies come into the picture. One can imagine different levels of
local, low impact primary food ingredients. The idea is tgranularity, as shown in Figurigl 3. The coarse level (level
prioritize the use of local and seasonal foods, avoid theofiseQ) simulates the whole smart territory, where differenbest
genetically modified organisms so as to improve the quafity produce products, subscribe their interests, move towards
provided products and promote sustainable cooking. Irespififferent geographical areas. This can be implementedgusin
of the growing interest in local products, there are retd§iv some kind of classic agent-based simulator, maybe equipped
few places where one can buy these products directly from tiwith PADS capabilities[[13].
producer. Thus, customers have to look for specialized week Then, once there is the need to simulate the specific interac-
end famers’s markets or for farm direct purchases. Cust®mebns within the a specific area (e.g. the “smart market’@nth
might be single users, ethical purchasing groups, restaurghore simulation details (and probably a different simujpto
owners. And quite often, this products research revealto §e needed to consider wireless communication issues, fine-
not a simple task for customers. Thus, smarter scenarios gfgined interactions and movements. Thus, a more detailed
possible. level of simulation (based on a domain specific simulator)
Let imagine a service that allows consumers subscribiig triggered (i.e. level 1 in the figure). In this case, each
to the availability of a certain product. Upon availabilitysimulation step of the coarse grained simulation layer.(e.g
of such a product by a producer (e.g. the farmer), he can¢, of the level 0 in Figuré€3) is decomposed into multiple
publish a notification, which can inform subscribers of prod substeps at the fine grained layer (level 1). Following this
availability plus other related information such as, fatance, approach, the level 1 simulator is able to notify level 0 with
his presence in next, near markets or other possible punghasts simulation advancements.
opportunities. In view of such details, the consumer cam pla
to visit the market (so as to have the opportunity to seleet thgmart Territory Level:
products directly), book some specific items, quantitiebsm  wide-area movements, 1 L
. . . publish/subscribe,
on. So far so good, there is plenty of publish-subscribe mech general dissemination
nisms that might help these producer/consumer intera&iion  smart Market Level:
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order to build smarter services. However, more sophiggtat wireless communications, local area dissemination AN
services are possible. The market could be crowded with sev-
eral (apparently similar) producers, the customer mightaio Fig. 3. Smart Territory/Market multilevel simulation.

know the location, he might have some physical disabilities
and thus he might need to be guided to the exact location of
the producer, that is dynamically determined (hence, witho
the possibility of knowing the position in advance). Then,
once there, he might be interested in finding other possibleln this paper, we discussed on main issues to cope with, in
interesting products. order to properly simulate the Internet of Things. Scalgbil

To cope with these issues, producers can provide informemnd high level of details are the two main, and quite often
tion on the fly, thanks to proximity-based services that mayounterposed, goals. We overviewed some existing techajqu
guide customers in a smart and effective market tour. Basexhching the conclusion that the use of adaptive, agemtehas
on the available technologies of the market, such servicearallel and Distributed Simulation (PADS), coupled with
can be deployed in different ways. For instance, if a wirelesultilevel simulation is a good strategy to employ in this
infrastructure is available, then all the communicatioas c context.

VI. CONCLUSIONS



The analysis of the use case, related to the design of smast S. Ferretti, G. D’Angelo, and V. Ghini. Smart multihangi in smart

services for smart cities and decentralized areas, shoats th
multi-level simulation techniques provide means to sirteila
wide geographical areas, with a multitude of simulatiori-enf20]
ties (agents). However, when needed it is possible to trigge
a more detailed, fine grained simulation, so as to consider &
pects which could not be simulated otherwise. The intargstij22]
aspect of this approach is that the detailed (and more gostly
simulation can be performed in a specific, limited simulated,
area, only for the needed time interval of the simulation.
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