Accelerated Chemical Kinetics in the EMAC
Chemistry—Climate Model

Theodoros Christoudias
The Cyprus Institute
PO Box 27456
1645 Nicosia
Cyprus
Email: christoudias@cyi.ac.cy

Abstract—The global climate model ECHAM/MESSy Atmo-
spheric Chemistry (EMAC) is used to study climate change
and air quality scenarios. The EMAC model is constituted
by a nonlocal dynamical part with low scalability, and local
physical/chemical processes with high scalability,. The EMAC
chemistry—climate model does not benefit from the support of
accelerators which are nowadays installed in many HPC systems.
We study strategies to offload the calculation of the atmospheric
chemistry to accelerator technologies (GPU and Intel MIC), as
in typical model configurations this is the most computational
resource-demanding subtask. The proposed solutions extend
the Kinetic Pre Processor (KPP) general purpose open-source
software tool used in atmospheric chemistry.

I. INTRODUCTION

The ECHAM/MESSy Atmospheric Chemistry (EMAC)
model is a numerical chemistry and climate simulation system
that includes sub-models describing tropospheric and middle
atmosphere processes and their interaction with oceans, land
and human influences [1]. It uses the second version of the
Modular Earth Submodel System (MESSy2) to link multi-
institutional computer codes.

EMAC is a distributed memory application exclusively
relying on the Message Passing Interface (MPI) for paralleli-
sation. The EMAC model runs on several platforms, but it is
currently unsuitable for massively parallel computers, due to
its scalability limitations and large memory requirements per
core.

Several trends in the usage of EMAC will push this concept
to its limit and require to exploit new technologies:

o The atmosphere is represented with increasing resolution

o The complexity of chemical and physical processes con-
sidered is increased

o Ensembles of model configurations are run in parallel,
multiplying the required computational resources

The EMAC model comprises two parts, the dynamical base
model ECHAM, using a nonlocal, spectral algorithm with low
scalability, and the modular framework MESSy, linking local
physical and chemical processes to the base model, with higher
scalability. While the number of processors used for the base
model is limited by the non-local spectral representation of
global physical processes, some local physical and chemical

Michail Alvanos
The Cyprus Institute
PO Box 27456
1645 Nicosia
Cyprus
Email: m.alvanos@cyi.ac.cy

processes described by framework submodels run indepen-
dently from their neighbours and present very high scalability.
It is, however, currently not possible to delegate the whole
MESSy subsystem to full multi- threaded execution as some
physical processes are naturally modelled in a column-based
approach, and are strongly dependent on the system states at
their vertically adjacent grid points. Describing homogeneous
gas phase chemical kinetics, the MESSy submodel MECCA
executes independently of its physical neighbours and is not
limited by vertical adjacency relations. For the benachmark
model scenario, using the EMAC 2.42 E5M2/02b_gctm
standard namelist over one month, after restart to avoid spinup
effects, more than half of the total run-time is spent in MECCA
(Fig. 1a), and up to 90% for some configurations (Fig. 1b).
The chemical mechanism is compiled by the Kinetic Pre-
processor (KPP) [2] implementing a domain-specific language
for chemical kinetics. KPP is an open-source software tool
used in atmospheric chemistry. Taking a set of chemical
reactions and their rate coefficients as input, KPP generates
code of the resulting ordinary differential equations (ODEs).
Solving the ODEs allows the temporal integration of the
kinetic system. Efficiency is obtained by exploiting the sparsity
structures of the Jacobian and of the Hessian. A comprehensive
suite of stiff numerical integrators is also provided.
Therefore, at first we concentrate the effort to support
accelerator technologies on the MECCA kernel with strong
algorithmic locality and small communication volume per task.

II. SCALABILITY CONSIDERATIONS

In the existing distributed-memory parallel decomposition,
the three-dimensional model grid is split horizontally using
two run-time parameters, setting the number of processes in
latitudinal and longitudinal direction, to obtain a rectangular
decomposition. A physical load-imbalance, caused by photo-
chemical processes in the lower stratosphere and natural and
anthropogenic emissions, appears in the run time spent for
each grid point.

As can be seen in Fig. 2, the maximum MECCA kernel
execution wall-time for one grid point in each column differs
by up to a factor of four. The load imbalance is caused
by the adaptive time-step integrator solving the differential



Impact on run time of each phase

100000
- 10000 [ |
) \ \ T
=
§ \ =
$ 1000
<
: N
£ 100
= |
3
= 10 ‘ ‘
1 T T T |
1 2 4 8 16 32
# of nodes
mECHAM m MESSy m MECCA
(a) Run Time
Percentage of run time of each phase
100%
90%
80%
70%
0
@ 50%
£
g 50%
g 40% |
-9
30% ’»
20% ’7
10%
= B B . B |
8 32

1 2 4
# of nodes

16

B ECHAM ®MESSy = MECCA

(b) Run Time Percentage

Fig. 1. Scaling of impact on run time and percentage of total run time
for each phase of EMAC. Results obtained for climate-chemistry benchmark
month with E5M2/02b_gctm standard namelist on the MareNostrum 3
supercomputer.

equations that describe the chemical equations computed in
the MECCA submodel. The strongly varying light intensity
at sunrise and sunset and night-time emissions lead to stiff
differential equations that require more intermediate time steps
for derivative function evaluations and increase the local
computational load by up to one order of magnitude.

The major factor leading to dynamic load imbalance is
abrupt change in light intensity (sunrise, sunset) combined
with concentrations of precursors and gases (such as NO,,
0O3) undergoing photochemical reactions (mostly in the strato-
sphere over mid-latitudes) that heavily alter the stiffness of the
chemical kinetics ODEs.

The ECHAM+MESSy phases only scale up to approxi-
mately a few hundred cores (blue line in Fig. 5 minimum at 8
nodes), due to the heavy all-to-all communication overhead of
the spectral decomposition. At higher levels of parallelism, at
or beyond approximately 1000 cores (magenta line flattening
at 32 nodes in Fig. 5), the MECCA load imbalance due to the
photochemistry also becomes a limiting factor.

III. NODE-LEVEL HETEROGENEITY

We have developed a source-to-source compiler that gener-
ates a CUDA [6] solver, compatible with NVIDIA GPUs, by

LATTUDE

1
1&05% BN £0°C 140°E
LONGTUDE

Fig. 2. Column maximum MECCA kernel execution wall-time in microsec-
onds. The adaptive time-step integrator shows a non-uniform run time caused
by stratospheric photochemistry and natural and anthropogenic emissions.

parsing the auto-generated FORTRAN code that is produced
from the KPP domain specific language. Thus, the compiler
is applicable on any and all presently available and future
chemical mechanisms as specified by the users for each
application. The CUDA compiler parses the produced source
code and the FORTRAN compiler links the object file with
the rest of the application.

As in the default implementation, the computation is subdi-
vided in runtime-specified arrays of columns, with the memory
of each array transferred to the GPU global memory and
each grid box calculated on each GPU core. The global GPU
memory size suffices for offloading the full dataset, and it
is not a limiting factor for the present and future foreseen
chemistry mechanism complexity. The performance is also not
limited by the overuse of any function unit. Global shared
memory is used to store all required data, and local register
memory is used for each gridbox during computation, with
cache transfers and misses being the current performance
limiting factor. Each Streaming Multiprocessor (SM) contains
a small amount of memory that can be used as shared or
for L1. Thus, the application sets the configuration to use the
most of the on-chip memory as cache rather shared memory
(cudaFuncCachePreferLl). There is a small utilisation
of GPU constant memory to store the concentrations of
chemical species that remain unchanged by chemical kinetics.

Two challenges that limit the performance must be ad-
dressed. First, the naive implementation does not allow more
than two CPU cores (MPI processes) from one node to
offloaded to the node GPUs, thus limiting the attainable
performance. The programmer either rewrite the application
to achieve better scheduling and usage of the GPUs either use
the MULTI-PROCESS SERVICE [7] that allows concurrent
execution of kernels and memory transfers from different
processes on the same node. Unfortunately, the last approach
requires a GPU accelerator with computation capability 3.5 or
higher that was not available during the experiments.



Grid Points
Data

Exchange
voc
.

NO < )NO; lOVOC

%

Atmospheric Chemistry

BOOSTER

I

Base Model

CLUSTER

Fig. 3. Distribution of the Earth System Model components on the Cluster-
Booster architecture.

Second, the high register pressure limits the occupancy, the
number of concurrent threads per Streaming Multiprocessor
(SM), and increases the overall execution time of the kernel.
To address this challenge we limit the number of registers
per thread to 128. Unfortunately, this approach increases the
usage of the stack for spill loads and stores, creating additional
and possible off-chip memory traffic. Thus, the application
execution time is dominated from the global memory access
latency.

Work is underway to optimise the performance through task
subdivision, by tiling the domain for each MPI sub-domain,
and splitting the work of each gridbox to multiple GPU
cores, to limit cache misses and paging and take advantage
of shared memory and the specifics of the memory hierarchy
on GPUs. The FORTRAN to CUDA code-to-code compiler is
developed in C and Python and will be contributed upstream
to the EMAC model development consortium under an open
license, to be made available to the developer community.
It automatically parses the automatically generated MECCA
KPP solver code and produces a CUDA library that can
be linked to and called directly from within the MESSy
FORTRAN code at the time of compilation.

IV. SYSTEM-LEVEL HETEROGENEITY

We examine an alternative approach to heterogeneous
cluster-computing in the many-core era for Earth System
models on the Dynamical Exascale Entry Platform (DEEP).
A set of autonomous Intel MIC coprocessors interconnected
together, called Booster, complements a conventional HPC
Cluster and increases its performance, offering extra flexibility
to expose multiple levels of parallelism and achieve better
scalability (Fig. 3).

In the same EMAC model used for the GPU case, in the
MECCA submodel an integrator kernel has been created that
can be offloaded onto worker threads running on the main
processor or hardware accelerators [3].

A. Intranode taskification

MECCA was taskified using OmpSs [4] directives. The
OmpSs Programming Model extends OpenMP with new direc-
tives to support asynchronous parallelism and heterogeneity.

Performance of OmpSs threading

/./4'

//‘\‘

T T
4 8 16 32 64
#of nodes

2.
o N

r second

el
I
i

Lo I
oo kN

Minutes simulated p:

k=]
o N

[N]

~4—Pure MP| —li=MPI+OmpSs

Fig. 4. Performance of OmpSs threading in the DEEP Cluster (8 MPI tasks
per node instantiated and 3 threads per MPI task).

However, it can also be understood as new directives extending
other accelerator based APIs like CUDA or OpenCL. The
DEEP OmpSs environment is built on top of the Mercurium
compiler and the Nanos++ runtime system.

The MECCA submodel was refactored through the creation
of computational kernels for intranode parallelisation with
shared-memory tasks. The new version of EMAC, running
ECHAM with MPI processes and MECCA with shared-
memory OmpSs tasks outperforms the old EMAC using pure
MPI, and continues to scale beyond the region where the
original implementation scaling performance plateaus. This
can be seen in Fig. 4, which shows the performance using
multi-threading on the DEEP Cluster (with 8 MPI tasks
per node instantiated and 3 threads per MPI task). Since
in MECCA each gridpoint is completely independent of its
neighbours, this part of the code is in principle embarrassingly
parallel, with no communication or inter-task dependencies
involved.

The code continues to scale beyond 32 nodes because extra
threads are utilised in the gridpoint embarrassingly parallel re-
gion, without increasing the spectral component (inter-process)
communication overhead.

B. Internode taskification

In the DEEP prototype hardware system, OmpSs has been
extended to support offloading tasks to remote nodes [5].
Using the Booster as a pool of coprocessors, and dynamically
offloading to any Booster node with enough free cores enables
to eliminate the load-imbalance caused by sunlight gradients
in MECCA.

The grid point arrays are rearranged in each time step to
implement data locality at the gridpoint level. and minimise the
memory footprint for offloaded tasks. All of the KPP integrator
component of MECCA is offloaded. The time needed tranfer
memory is folded in the time to launch and execute Booster
tasks.

Additionally, the distributed-memory offloading code was
redesigned to exploit shared memory within the Xeon Phi
many-core processors, by nesting an OmpSs shared-memory



# of Booster nodes

1 2 4 8 16 32 64 128 256
32768
16384
8192 Using 8 Cluster nodes to run ECHAM
+MESSy at its optimal performance,
and varying number of Booster
ﬁ 4096 nodes for MECCA
]
]
w2048
1024
512 S e,
256
1 2 4 8 16 32 64 128 256
# of Cluster nodes
=#~=Pure MPI| =>=MECCA

ECHAM+MESSy (without MECCA) Theoretical MPI + OmpSs offload

Fig. 5. Time per simulated day using a pure MPI approach, and a theoretical
performance with offloading to Xeon Phi, based on the metrics collected in
MareNostrum 3. The theoretical MPI + OmpSs offload data (green) is based
on a fixed configuration on the Cluster using 8 nodes, combined with a number
of Booster nodes between 1-256.

region within Cluster-to-Booster tasks with a variable number
of individual gridpoint calculations, defined at runtime. Thus,
the number of tasks to be sent to the Booster can be controlled
and optimised for each architecture, based on bandwidth, to
reduce task communication overheads.

C. Performance Evaluation

The DEEP Booster is in the bring-up phase, and not
available to users. In order to project the performance on a
full system, Xeon-based measurements on the DEEP Cluster
can be combined with Xeon Phi-based measurements on
MareNostrum 3. The DEEP Cluster reference data weighted
by the relative factors for each phase derived from the metrics
measurements exhibit a performance maximum for the base
model (ECHAM) and MESSy (excluding MECCA) at 8 nodes,
representing a good estimate for the optimal parallelisation of
that phase on the Cluster.

The projected DEEP performance scales beyond the op-
timal performance achieved so far. The projected attainable
performance outperforms the pure-MPI conventional cluster
paradigm at high core counts (number of Booster nodes) while
keeping the ECHAM/MESSy MPI part on 8 Cluster nodes for
optimal performance (Fig. 5).

V. CONCLUSION

The global climate model ECHAM/MESSy Atmospheric
Chemistry (EMAC) is used to study climate change and
air quality scenarios. The EMAC model is constituted by
a nonlocal dynamical part with low scalability, and local
physical/chemical processes with high scalability.

We have developed different approaches to enable acceler-
ation (GPU and MIC) of the KPP chemical kinetics solver in
the EMAC chemistry-climate model.

The EMAC atmospheric chemistry global climate model is
well suited to exploit a system-level heterogeneous architec-
ture, benefiting considerably from hardware acceleration.

In the long term, when the optimal speedup of the chemi-
cal kinetics computation is approached , the overall parallel
speedup of EMAC will be limited by the remaining non-
accelerated submodels. To achieve further speedup (going
beyond the scope of the present project), additional com-
putationally expensive submodels like the aerosol submodels
SCAV and GMXe could be addressed similarly.

The major performance bottleneck stemming from the
spectral part of the model, and the increasing cost of inter-
node communications can be alleviated by substitution of the
dynamical core model.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant Agreement No 287530
and from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 675121.

REFERENCES

[1] P, Jockel, A., Kerkweg, A., Pozzer, R., Sander, H., Tost, H., Riede,
A., Baumgaertner, S., Gromov and B., Kern, “Development cycle 2 of
the Modular Earth Submodel System (MESSy2)”, Geoscientific Model
Development 3, 717-752, 2010.

[2] V., Damian, A., Sandu, M., Damian, F., Potra and G.R., Carmichael, “The
Kinetic PreProcessor KPPA Software Environment for Solving Chemical
Kinetics”, Computers and Chemical Engineering 26, 11, 1567-1579,
2002.

[3] M., Christou, T., Christoudias, J., Morillo, D.A., Mallon and H., Merx,
“ Earth System Modelling on System-level Heterogeneous Architec-
tures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform
(DEEP)”, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2015-262, in
review, 2016.

[4] S., Florentino, S., Mateo, V., Beltran, J.L., Bosque, X., Martorell and E.,
Ayguadé, “Leveraging OmpSs to Exploit Hardware Accelerators”, Inter-
national Symposium on Computer Architecture and High Performance
Computing, 112-119., 2014.

[S] V. Beltran, J., Labarta and F., Sainz, “Collective Offload for Hetero-
geneous Clusters”, 1EEE International High Performance Computing
(HiPC), Bangalore, India, 2015.

[6] Programming guide, Nvidia, CUDA, 2015

[7] Multi-Process Service, Nvidia, 2015



