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Abstract

Distributed systems that consist of workstations connected by high performance
interconnects offer computational power comparable to moderate size parallel
machines. Middleware like Distributed Shared Memory (DSM) or Distributed
Shared Objects (DSO) attempts to improve the programmability of such hard-
ware by presenting to application programmers interfaces similar to those offered
by shared memory machines. This paper presents the portable Indigo commu-
nications library which provides a small set of primitives with which arbitrary
shared abstractions are easily and efficiently implemented across distributed hard-
ware platforms. Sample shared abstractions implemented with Indigo include
DSM and a variety of DSM protocols as well as fragmented objects, where object
state is split across different machines and where fragment communications may
be customized to application-specific consistency needs. The Indigo library’s de-
sign and implementation are evaluated on two different target platforms, a work-
station cluster and an IBM SP-2 machine. As part of this evaluation, a novel DSM
system and consistency protocol are implemented and evaluated with several high
performance applications. Application performance attained with the DSM sys-
tem is compared to the performance experienced when utilizing the underlying
basic message passing facilities or when employing Indigo to construct customized
fragmented objects implementing the application’s shared state. Such experimen-
tation results in insights concerning the efficient implementation of DSM systems
(e.g., how to deal with false sharing). It also leads to the conclusion that Indigo
provides a sufficiently rich set of abstractions for efficient implementation of the
next generation of parallel programming models for high performance machines.
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1 Introduction

Recent hardware developments include the application of HPCC interconnects to net-
worked computers and the construction of loosely coupled ‘parallel machines’ from sets
of workstations linked over the network. In addition, parallel machines of moderate
sizes are becoming ubiquitous, ranging from SMP nodes in distributed memory ar-
chitectures to workstations using multiple processors for increased throughput. The
resulting availability of such heterogeneous architectures has led to user demands that
it should be possible to program both shared and distributed memory machines in a
similar fashion.

Demands for increased programmability of distributed memory machines have given
rise to research efforts resulting in Distributed Shared Memory (DSM) libraries layered
on top of the networking and virtual memory systems [6,7,14,19,23]. They have also re-
sulted in the development of distributed object-oriented systems offering user programs
network-wide access to shared services [12,18,32] as well as object-oriented concurrent
programming layers on top of shared and distributed memory machines [10,21,33,36].

Our contribution to the emerging field of heterogeneous parallel programming is the
development of the Indigo communication library. Using the small set of calls offered
by Indigo, developers can implement efficient, network-wide distributed shared abstrac-
tions (DSA) of any size or type, ranging from memory objects (DSM), to fragmented
shared objects (FSO) in which object state and functionality may be fragmented across
multiple machines’ memory units [10]. This breadth of support distinguishes Indigo
from communication libraries like active messages [37] that do not offer the specific
functionality required by DSM or FSO implementations. Similarly, in comparison with
the Nexus library developed for concurrent C++ [14] and with the lower RPC-like layers
of distributed object systems like Spring [32], Chorus [27], and distributed objects [33],
Indigo attempts to combine both the functionality required by distributed objects and
by distributed shared memory. Indigo’s goals are similar to those of the Tempest li-
brary [19] but it differs from Tempest in its additional support for objects and in its
exclusion of constructs required only for DSM implementations (e.g., read-write access
detection). Such DSM-specific support is implemented above Indigo’s level of abstrac-
tion. Our hope is that libraries like Indigo may provide one basis for the development
of standard, lower level interfaces, perhaps even supported by operating systems or
hardware, based on which the next generation of parallel programming models may be
implemented.

Using implementations of Indigo on a set of workstations and on the IBM supercom-
puter SP2, this paper also addresses several specific research issues of general interest
to parallel and distributed system developers and end users:

1. Consistency mismatch: one critical cause of performance problems in parallel and
distributed systems is the potential mismatch in the state consistency required
by application programs versus the one created by communications in underlying
DSM or object systems. This mismatch can cause additional communications,
expensive buffering and copying of message data [13], and increased communica-
tion latencies compared to equivalent implementations directly layered on mes-



sage passing systems using only the ‘minimal’ set of required communications.
For example, on a write to a shared data item, some DSM systems invalidate
or update copies of the data at other nodes. This may be unnecessary because
the write is done inside a critical section and processes at other nodes will not
be able to access the modified data item until control of the critical section is

released [7,20,23].

2. Granularity mismatch: in many DSM systems, consistency for shared data is
provided at the level of a page. This implies that an update to a small amount
of shared data may result in the transfer of an entire page. It also introduces
the problem of false sharing; multiple unrelated data items may be stored in the
same page and consistency actions for one item may interfere with accesses to
another item because both items reside on the same page. Solutions to the false
sharing problem like the diff mechanism [6] can introduce additional copying and
processing overheads.

3. Structure of shared state: DSM systems treat all shared information as an array
of shared bytes, but these bytes are used to store information that has struc-
ture or type (e.g., fragmented objects like shared work queues). It should be
possible to exploit such structural information both to communicate object state
changes only to those object fragments affected by them and to permit object
programmers to implement object-specific consistency- and granularity-correct
consistency protocols [33].

The Indigo library described in this paper is used to address each of the three
problems listed above. This is possible because rather than providing a single notion
of consistency, Indigo instead provides a small set of programming constructs with
which application-specific consistency protocols may be implemented for DSM or FSO.
For example, using Indigo, we implement an extended causal memory model. This
model makes use of synchronization interactions with consistency maintenance as is
done in Treadmarks [22]. It differs from Treadmarks in two ways: (1) coherence is not
provided at page level but at the level of user defined shared data objects and (2) several
methods of handling false sharing are explored, including one method that imposes zero
overhead when the program does not actually exhibit false sharing. In addition, we
explore how type information may be used to reduce communication overhead in sample
distributed shared abstractions considered as FSOs compared to their performance with
their message-based and DSM-based implementations.

In the remainder of this paper, we first describe the interface and implementation
of the Indigo library. For portability across the various target architectures addressed
by our current and future research, Indigo’s implementation is layered on the PVM
heterogeneous programming system, such that both PVM and non-PVM underlying
communication layers may be employed by Indigo calls. Indigo’s performance with
PVM is assessed with several application programs. These programs also serve in
the evaluation of user-level causal memory and distributed shared abstractions imple-
mented on Indigo. Specifically, we quantify the gains made possible by (1) consistency
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operations performed for user defined objects rather than pages, (2) various techniques
for handling false sharing, and (3) the exploitation of type or structure of shared state.

2 The Indigo Library

One issue now being addressed by computing researchers and vendors is the support for
both threaded and message passing models of parallel programming within a system
consisting of shared memory and distributed memory multicomputers. The approach
taken by Indigo is that such support should be layered on a small set of underlying
hardware and operating system independent primitives, with which arbitrary shared
abstractions may be built. Toward this end, Indigo views the underlying hardware as
a cluster of logical processors (processes), which may or may not be physically dis-
tributed, each with its own local memory. Such memory may be private and therefore,
not directly accessed by Indigo or shared, in which case it is treated as a cache of shared
abstractions residing in it. The implications of this approach are that: (1) shared ab-
stractions must be defined in terms of program-level rather than hardware-defined units
like pages and (2) such abstractions must be able to range from memory units providing
fixed operations and different degrees of consistency to typed objects with user-defined
operations. In addition, (3) it should be straightforward to associate execution threads
with any operation on those abstractions.

In the remainder of this section, we explain Indigo’s basic functionality using several
shared abstractions. The first abstraction is a single shared variable manipulated with
‘read’ and ‘write” operations performed by threads residing on different machines. The
second abstraction is a slight variation of the first in which a single shared variable
is accessed in a consumer-producer fashion by reader and writer threads. The third
abstraction is a shared queue that must be manipulated with type-specific operations.
With these examples, it is straightforward to explain how Indigo’s basic functions
provide for implementation of higher level DSM and FSO functionalities.

2.1 Indigo Primitives
2.1.1 Naming

With Indigo, two processes in an application share a variable if they call it by the
same name. Therefore, within each application, all shared abstractions must be named
uniquely across all of their cached copies. Toward this end, Indigo maintains tables
that list for each item its name, local address (i.e., address of the cached copy), and
meta-information (e.g., size). The item’s name is its unique identifier.

Naming as well as space allocation for shared abstractions are achieved with In-
digo’s share call. All processors sharing a certain variable use this call to “register”
it with Indigo. Such registration returns an address pointer and also provides Indigo
with information concerning the variable’s size. In response, Indigo allocates appro-
priate amounts of cache space at each participating site, and it also keeps track of the
abstraction’s local addresses (which may differ across sites). The use of share calls is
illustrated in the next subsection.



2.1.2 Data Movement Calls in Indigo

Indigo’s main tasks are derived from its charge to maintain caches in which shared
abstractions’ state is stored. As a result, its basic functionality is comprised of the
naming support identified in the previous section and of calls with which cache contents
are manipulated via accesses to shared abstractions. Specifically, the put and get calls
provided by Indigo permit access to abstractions stored in remote caches. (Local caches
are accessed via read and write operations.) The purge call invalidates remote cache
entries, and events with event handlers permit the association of user-defined operations
with basic Indigo actions. Moreover, variants of put and get may be used to synchronize
accesses to shared abstractions.
Using put to access a shared variable. Consider the manipulation of a single vari-
able, say ¢, in a shared memory program running on some SMP machine. Concurrent
access to this variable by two processes P, and P, requires the use of a critical section,
typically implemented with lock and unlock calls, as shown by the pseudo-code on the
left hand side of Figure 1. The corresponding Indigo code performing the same task
is shown on the right hand side of the figure. In this code, a shared variable sh_i is
declared by each process, followed by a share call to Indigo indicating these processes’
joint use of sh_i (and providing to Indigo the name and size of the shared object).
Henceforth, sh_: is used in place of 7, where each process continues to use locks to en-
sure correct access to sh_i. However, whenever a new value is computed for sh_i, each
process also performs a sync_put operation in which it passes to Indigo a pointer to the
shared variable and the sender and recipient ids!. The effect of sync_put is to place
the updated value into the appropriate remote cache. This call is performed inside
the critical section, thereby guaranteeing that remote copies are updated before exiting
the critical section. In this example, we use a refinement of put, called sync_put (for
synchronous put), which guarantees that the update has been performed on the remote
cache before the call returns.
Using get to access a shared variable. Consider another example where the two
processes have a producer-consumer relationship. That is, instead of two processes
updating a shared variable simultaneously, one of them updates it and the other reads
it after being signaled when the update is complete. In a distributed system, either
of two possible strategies may be implemented to achieve this. Either the producer
pushes the data continuously to the consumer, or the consumer continuously pulls the
data from the producer. The former can be accomplished using the put call discussed
above. For the latter, an equivalent get call is used. It takes the same parameters as
put and results in fetching the named data item from the remote cache to the local one.
The Indigo code for the consumer is given in Figure 2. The producer makes no special
Indigo calls except to declare its shared data.
Using purge to manipulate a shared variable. Indigo’s purge call is used to in-
validate the named data item at the remote location. Validation of an item implies
setting a valid bit on that item, which means that the local cache has a good copy of
the object data, and invalidation turns this bit off.

The full list of Indigo calls falls into the three broad categories mentioned above -
get, put and purge. As stated previously, each call takes three parameters in this form:

!These ids are PVM process identifiers which are unique systemwide.
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Shared Memory Code:

Code with Indigo calls:

Process 1:
int i;
lock(x);
=1+ 1;
unlock(x);

Process 2:
int i;
lock(x);

t =1+ 2;
unlock(x);

Process 1:

int *1;

struct item sh_i;
strcpy(sh_i.name, "i");

share(&sh.i);

i = (int *) sh_i.addr;
lock(x);

*1 = %1 + 1;

unlock(x) ;

sh_i.size = sizeof(int);

Process 2:

int *i;

struct item sh_i;
strcpy(sh_i.name, "i");
sh_i.size = sizeof(int);
share(&sh_i);

i = (int *) sh_i.addr;
lock(x);

%1 = %t + 2;

sync_put (&sh_i,id p2,id pl) ;sync put(&sh_ i,id p1,id p2);

unlock(x);

Figure 1: Indigo Code Sample

Consumer:
Wait for data to be produced;
sync_get(&sh_i, producer, consumer);

f(@) =sin(x (float *) );

Figure 2: Using sync_get

call(char *shared_obj, int destination, int source).

1. put: Copies a data item value to a remote location. It is refined into the following

categories:

e async_put: initiates a send of a data item to some destination and returns.

This may be used in chaotic programs which do not require synchronization

at every step and thus a process need not make sure that the data has

reached the remote node before carrying on with its execution.

e sync_put: sends a data item to a destination cache and returns only when

it has been placed in that cache. This is most useful when some form of

synchronization needs to be performed, like in RC (Release Consistent)

memory [16], where one needs to place some data at another node before

transferring a lock.

(There also exists a sync_put_validate call that is similar to sync_put except

that it also turns on the valid bit remotely. An async_put_validate has not

been found necessary in the applications we have seen till now.)



2. get: Copies the data item value from a remote location to the caller’s memory
space. This also is of various types:

e async_get: requests an item from a process and continues without block-
ing. It also sets the invalid bit for the data item at the remote location.
This is similar to prefetch and in that capacity, it may be used to overlap
communication with computation.

e async_get_copy: similar to async_get, except that the remote item’s invalid
bit is not set.

e sync_get: a blocking operation which also sets the invalid bit for the data
item at the remote location. This, the most commonly used get command,
may be utilized for data pulling operations.

e sync_get_copy: similar to sync_get, except that the remote item’s invalid bit
is not set.

e sync_get_if valid: similar to sync_get, except that it will get a value only if
it was valid at the remote location. This is useful for implementing servers,
where one wishes to pull a value only if it is valid at the remote location.

e async_get_if valid: the non-blocking version of sync_get_if_valid.

3. purge: invalidates a data item remotely (sets invalid bit). This can be made to
act like remote invalidation.

2.1.3 Events and Event Handlers

Our third example motivates the second set of calls provided by Indigo- those that allow
the active handling of data movement messages generated by the functions discussed
above. Consider a shared ‘work queue’ abstraction fragmented across the processors
that share it. Each processor dequeues and performs jobs from its local queue fragment
until there are no more jobs available locally. Since the queue is logically shared, to
ensure that a processor is able to remove work from remote fragments, our queue
implementation creates a ring-communication structure between the processors. A
processor completes all of the jobs in its own queue fragment and, subsequently, makes
a request to a neighbour for more jobs. If such jobs exist, the latter passes them on,
else the request is forwarded to the next node in the ring.

When this abstraction is implemented, we realize that, besides providing simple
data movement calls, some notion of active messages [37] is needed. In other words,
we need the ability to asynchronously invoke handlers for events such as a put or a get
when one process performs these operations on another process’s shared memory cache.
For this purpose, Indigo defines a list of events that correspond to each data movement
call defined above. At the same time, it also provides the ability to associate an event
handler with each such event, which is a subroutine that is invoked at the time the
specified event occurs. Now, using its data movement and event handling facilities, the
Indigo library can be used to implement an abstraction like the ‘work queue’ illustrated
in Figure 3.
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/* Application process using the work queue. Shared variables are “req” and “jobs” which are used to send
and fulfill requests. “lower” and “upper” outline the two limits of the local unprocessed fragment of the

queue, and are shared between the event handler and the process. Local synchronization has not been shown

*/
while(1)
{jobid = lower;
if (jobid < 0) {echo done; break;} /* No more jobs. Done. */
if (jobid < upper) /* Process the next job */
{lower++; break;}
if (jobid == upper) /* We are starting on the last job, so request */
{lower++; /* more jobs from the next node for next time */
async_put(&req, next_in_ring(myid) , myid) ; /* Send control data “req” (reg.name = “reqg_name”
break; to request jobs */
}
if (jobid > upper) /* The reqgested queue fragment has not yet arrived,
sleep(2) ; so wait for it */

/* Event handler for this application. Handles remote requests for queue fragments as well as the replies to such

requests made locally */

void put_handler(arg)

{if (arg—name == 'req_name") /* A remote request for a local queue fragment */
if (arg—requester == arg—myid) /* My request has returned empty-handed
lower = -1; to me, so no more jobs to do. */
else
if (upper - lower > 2) /* If more than two unprocessed elements locally,

fulfill request, else forward to the next node */

{Place half of local unprocessed jobs
in shared object ‘jobs’; /* jobs.name = “job_name” */
async_put(&jobs, arg—requester, arg—myid); /*... and send it back */

}

else async_put(&req, next_in ring(arg—myid), arg—requester); /* Forward...*/

else if (arg—name == "job_name") /* Request made locally has been fulfilled */

{Unpack data and update local queue pointers (‘lower’ and ‘upper’); }

Figure 3: Shared Work Queue Abstraction using Indigo calls



The first part of the figure shows the application code for a process that performs
jobs dequeued from the shared queue. In each iteration of the while loop, it checks to
see if the next job available is the last one (if jobid < 0) in the local fragment of the
work queue. In that case, it sends a request to the next node (via async_put()) and
completes the last job while its request is getting processed. Indigo calls are used to
exchange such requests. Specifically, puts are performed on control data that defines
commands rather than on the queue data itself.

The ‘shared queue’ event handler is shown in the second part of the figure. Invoked
as a result of a put, it checks its argument each time to figure out which action to
perform. If a queue part is requested (a dequeue remotely invoked on the local queue
fragment), this request is fulfilled by sending half of the locally available jobs. If such
jobs are not available, the request is forwarded. All these actions are performed via
async_puts. If the incoming put contains jobs requested previously, the event handler
places them in the appropriate location.

Besides providing message handling independent of the local process, event han-

dlers also facilitate the overlap of computation and communication as there is always
a concurrent handler thread running at each node which can handle incoming mes-
sages. Handlers can also be used to implement arbitrary shared abstractions. Alter-
natively, for complex abstraction-specific computations, handlers may simply trigger
application-level threads which can perform abstraction-specific operations of arbitrary
complexity. Such association of a handler with incoming messages provides a form of
active messages, the use of which has been shown to improve program performance and
modularity [33,37].
Event types. The following different types of events are recognized by Indigo (and
can thus be “captured”). Each such event has an associated per-process handler that is
executed when the event occurs in that process’s domain. For example, if some remote
process performs a put on a local process’s address space (i.e., on one of its shared
variables), then the local handler associated with put_recvd is invoked.

1. Put-related events:
e put_recvd: the associated handler, if any, is called when (after) a put is
performed on a data item in the process’s shared address space.
e put_done: the associated handler is executed when a put has been acknowl-
edged by the remote destination.
2. Get-related events:

e get_recvd: similar to put_recvd (the associated handler is called when some
remote process tries to get a data item from the process’s shared address
space, before the data is copied into the outgoing buffer).

e get_done: similar to put_done (if present, the handler is executed when a get
call returns).

e get_cp_recvd: associated handler executed when a get_copy is performed on
the specified data item.
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3. Purge-related events:

e purge_recvd: associated handler executed when the data item is purged.

e purge_done: associated handler executed when the purge has been performed
remotely.

Mapping particular events to appropriate handlers allows us to associate execution
threads with (local or remote) operations on distributed abstractions. Remote object
invocations, for example, are asynchronously handled at the remote processor by simply
providing the event handler code that must be run when the said invocation arrives.
This functionality is useful in developing various FSOs as well as DSMs, as will be
shown later.

We should note here that many DSMs need some way of detecting accesses to shared
data (e.g., write to shared data). Several techniques exist for access detection [11,38].
Due to that reason and also due to the fact that many DSAs do not need such mech-
anisms, access detection techniques are not part of Indigo. Our DSM implementation
programs its own access detection, as discussed in a later section.

3 Building DSM and FSOs on Indigo

Indigo’s operations are sufficient for programming a wide range of Distributed Shared
Abstractions (DSAs), including DSMs. In this section, we demonstrate this fact by
implementing a DSM on top of the Indigo library and also by programming a number
of non-DSM abstractions. The efficiency of the library is the topic of the next section.

One of the contributions of this paper is an innovative implementation of Extended
Causal Memory (ECM) [20] using the Indigo library. This implementation takes ad-
vantage of Indigo’s ability to provide arbitrary consistency for user-defined objects.
We also explore how the calls provided by Indigo can be explicitly used to implement
application-specific DSAs. This will help us demonstrate how structure and type in-
formation can be easily utilized to obtain performance that is close to or even better
than message passing implementations of the applications. The specific DSAs imple-
mented in our work are Fragmented Shared Objects (FSOs), similar to the ‘topology’
objects described in [33]. Topologies are event-trigger-able fragmented shared objects
(on a network in our case) where the events are generally associated with the arrival of
remote invocations on local fragments. This in turn implies that all such invocations
(or messages sent by the user and/or on the behalf of the user) are active in the sense
that they are capable of triggering additional messages and/or computation upon their
arrival, in addition to updating the state of the local process.

3.1 Extended Causal Memory

As a way of avoiding the unnecessary communication costs that are incurred in strongly
consistent DSM systems, a number of memory systems with weaker consistency have
been explored and implemented [1,2,3,4,6,7,15,16,17,20,22,24,29,30]. We claim that any
one or a combination of these can easily be constructed with Indigo. We illustrate this
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Figure 4: A causal execution history

by exploring the implementation of one memory system — Extended Causal Memory
(ECM) [20]. ECM provides benefits similar to other systems such as Treadmarks. It
can be defined for all types of programs including ones with data races, and it exploits
both weak-consistency and weak-ordering approaches to improve performance.

ECM definition. In a strong memory model like Sequential Consistency (SC) [26],
the memory system performs all operations of all processors so that they appear to
be executed in some sequence respecting program order. This ordered set of opera-
tions constitutes the view of each processor (i.e., how it perceives the operation of the
memory system). Different memory systems offer different sets of views to the pro-
cessors. In memories weaker than SC, a processor view may not include all accesses
of all processors. For example, in ECM, the view of each processor includes all of its
own accesses (reads and writes) but only the writes of other processors all of which are
constrained to be placed in a causal order [25]. ECM thus places weaker constraints
on the consistency of shared variables. Consider the example in Figure 4. Processes P;
and P, first each write to location x or y, respectively, and then each read the location
written by the other processor. This execution is not possible with SC because there
exists no legal sequential execution (thus, an SC view) that includes all four operations
and maintains the program order dependencies between the operations. However, this
execution is possible with ECM, because in P;’s view, w(y)1 is placed after its read of
y and a similar view exists for F;.

ECM also considers orderings between memory operations that are introduced by
synchronization operations like lock, unlock and barrier and incorporates them into the
causal order. For example, a memory operation that precedes an unlock or a barrier in
program order is ordered before memory operations that follow the matching lock or
barrier call.

3.2 Implementation of ECM on Indigo

ECM system components. As shown in Figure 5, the implementation of ECM on
Indigo utilizes (1) a per-machine daemon process created for all Indigo applications,
(2) synchronization servers, and (3) data servers. The daemon process captures all
Indigo messages addressed to that node and posts them as required. The synchroniza-
tion servers handle all lock, unlock as well as barrier requests. Data servers act as a
storehouse for shared data. Namely, when a process faults on some item that is not
available locally, it communicates with a data server to retrieve it.

All communication between the daemon and the local application processes is
through Unix shared memory (allocated using shmget calls). In addition, all ECM
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memory is allocated in the memory shared between the daemon and the application
process, so that user processes can simply read or write ECM’s shared objects. Such
read and write accesses may trigger get and put operations which in turn result in
messages being sent to the data servers. Finally, the daemon at the data server node
can respond to many such messages using ECM-specific handlers without involving the
actual data server process. For example, ECM handlers perform version maintainence
and also assist in operations required for false sharing (see Figure 5).

Synchronization Server | Data Server Process |

Process ‘
\
Message Handler Message Handler
Daemon Daemon
Event Handlers Event Handlers

Message Handler
Daemon

Event Handlers

Message Handler
Daemon

Event Handlers

User Process User Process

Figure 5: System Layout for ECM

A data server may handle any number of ECM objects. By allocating unique pages

for each shared item (when share is called), ECM can track reads and writes to an
object via page traps using the Unix mprotect call.? Writing to an object for the first
time in a critical section sets a dirty bit for that object. Any access to an unavailable
object (i.e., the page containing the object has protection set to NULL) results in
communication with the data server and a fetch of the current value of the object via
the sync_get call provided by Indigo. Notice that page traps are only used to detect
writes and the unavailability of the object in the local cache. Data transfers are done
only for the object data and not for pages.
ECM consistency algorithm. In our implementation of ECM, all consistency-
related actions for cached objects take place at synchronization points. Such con-
sistency of shared objects relies on vector timestamps (VT'5) [31] stored with each
object. These timestamps are read from vector clocks that have one entry for each
process in the application. A process increments its entry in its vector clock (V7 is
p’s clock) when a write dirties a cached object. The sequence of steps taken at such
points that affect the value of the clock are enumerated in Figure 6 and are explained
below.

The algorithm shown in the figure assumes that data-race free programs access
shared objects stored in ECM. It has been shown that in such a case, consistency
actions need to be performed when synchronization operations are executed [20,22].
In particular, vector timestamps received with synchronization variables are used to
detect objects in the processor cache which may potentially be overwritten. Such

2We chose the page-based approach because it is simpler to implement as compared to the compiler-
based approaches used elsewhere. Moreover, the latter tag each write to shared variables and thus
perform extra processing on all such writes rather than on just the first write to an object in a critical
section.
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At Lock Time, process p, lock x:

lock_req(sync_server, z);

Y shared variables d, /* On gelting the lock */
if (VTS(d) < VTS(z)) /* Compare timestamps: smaller */
OR (VT'S(d) X VTS(x)) /* or concurrent */

then mark_invalid(d);
if dirty(d) then sync_put(&d, data_server, p);
VT, := max(VT,, VI'S(z)); /* Update local timestamp */

return;

At unlock time, process p, lock x:

V shared variables d, if dirty(d),
sync_put(&d, data_server, p);

mark _clean(d); /* Unset dirty bit */
VTS(x) = VT, /* Update timestamp of lock to local timestamp */
release lock(sync_server, z); /* Release lock */
return;

Write fault handler for object d, process p:

/* Entered only when a write is attempted on an
object which was marked invalid or clean */
if invalid(d) sync_get(&d, data_server, p);
mark _dirty(d);
Increment pth component of V7T,;
VTS(d) := VT,

return;

Read fault handler for object d, process p:

/* Entered only when a read ts attempted on an
object which was marked invalid */
sync_get(&d, data_server, p);
return;

Figure 6: Implementation of ECM
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objects, which have lower timestamps, are locally invalidated. Our algorithm performs
invalidations differently because of the way false sharing is handled by us. We allow
multiple writers to write an object concurrently. As as result, an object may have
to be invalidated even when its timestamp is concurrent with the timestamp received
with a lock. We explain why this is necessary in the next section. If a dirty object
is invalidated, it is sent to the data server using a sync_put call so the server can
merge the modifications to the object with the copy that it maintains. This is done
even for objects for which the process holds the lock as false sharing might be present
(Section 3.3). Thus, when a lock variable is acquired, all objects in the cache that
have an older or concurrent timestamp relative to the timestamp of the lock are locally
invalidated after dirty copies are sent to the data servers.

At unlock time, as the figure shows, all dirtied data items are sent to the server,
again via a sync_put call, before the unlock message is sent. This ensures that when
another process acquires the lock and requests the data, it will receive the current copy
of the object. The sent data is again marked clean. The unlock message simply sends
a timestamp read from the local clock to the synchronization server as part of the lock.
In our implementation, at a barrier, the same actions are performed as would be in the
case of an unlock followed by lock. The only difference is that the synchronization server
waits for all processes that were to synchronize before sending the release message with
a timestamp that is the component-wise maximum of the incoming timestamps.
Algorithm optimizations. We have optimized the algorithm in several ways. First,
as shown in Figure 6, the sync_puts of the dirty data take place inside the critical
section (CS). This results in an increase in the length of the CS, which can potentially
increase the execution time of applications. We have thus moved the sending of the
dirty data outside the CS as shown in Figure 7. This results in the same number of
puts as before but is likely to reduce lock contention. Furthermore, dirty data is pushed
to the server at lock time only when there is nesting of lock calls, that is, when a lock
command is issued before the previous lock has been released. If there is no nesting,
then all dirty data would already have been pushed to the server at unlock time and
marked clean and no extra work would be performed on a lock.

The second optimization of ECM’s consistency algorithm concerns reducing the
amount of communication. Let us assume that the algorithm stated previously (see
Figure 6) is used to execute the code shown in Figure 8. There are two data items d
and dy, with corresponding locks « and y. Let us assume no false sharing (the next
section considers false sharing). After the unlocks of @ and y by processes P, and P,
respectively, the timestamp of = and d; at P is {10} and that of y is {01}. Thus,
when P; acquires y, d; is marked as invalid (see the algorithm in Figure 6). So is d;
(with timestamp {00}) of course, which results in the process faulting and thus going
to the server and getting the new value of d; before incrementing it. Lock y is then
released and z is acquired. Assuming no one else has acquired z in the meantime, it
will still have the timestamp {10}. On comparing it with the timestamp of d;, since
the two are equal, a sync_get of d; is performed even though P; still has the correct
value in its cache. We need to detect that d; is current by using timestamps. When
the test to mark shared objects wvalid or invalid is performed, if the two timestamps
being compared are equal (see Figure 7), then the object is remarked as valid. (The
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At Lock Time, process p, lock x:

v shared variables d, if dirty(d),
sync_put(&d, server, p);

mark _clean(d); /% Unset dirty bit */
lock_req(server, x);
Y shared variables d, /* On gelting the lock */

it (VT'S(d) > VTS(a
then mark_valid(d);

else mark_invalid(d);

VT, = max(VT,, VT S(z)); /* Update local timestamp */

return;

) /* Compare timestamps */
)

Figure 7: Optimized Code at Lock time

Py: Lock(z); dy =1; Unlock(z); Lock(y); dy =dz+1; Unlock(y);
Lock(z); dy =dy +1; Unlock(z);
Py Lock(y); dy=dy+1; Unlock(y);

Figure 8: Timestamps and False Sharing

case where the data timestamp is greater than the lock timestamp is considered in the
next section.) This revalidation process avoids unnecessary message transfers even in
the absence of any information about the presence of false sharing in the program. For
instance, in the example being discussed, when P; re-acquires lock = with timestamp
{10} and compares it with the timestamp of d;, since the two are equal, d; is re-marked
as valid which makes sure that the process reads the local (and correct) value rather
than ask the server for the new value unnecessarily.

The invalidation done on acquiring a lock is similar to the consistency actions of
Treadmarks and the implicit invalidate protocol of Distributed Filaments [15]. However,
compared to the latter, in the case when the data is indeed good, we are able to
revalidate it using the timestamps.

We have thus demonstrated how Indigo facilitates DSM implementations with the
variety and power of its calls. Its data movement calls which fetch data from or place
it in remote caches, as well as the event handler functionality via which consistency-
related actions can be executed both locally and remotely, help greatly in implementing
a DSM system. The above implementation can now be used to explore various issues
that are of concern to DSM builders and programmers. One such issue is that of false
sharing, which is the topic of our next section.
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3.3 False Sharing and its Handling in ECM

We demonstrated above how we were able to implement ECM using the infrastructure
provided by Indigo. Although false sharing (FS) is expected to be rare because consis-
tency is provided at the level of user-defined objects, it may not always be possible to
eliminate it completely [8]. In this section, we use the Indigo-based ECM implemen-
tation to investigate some of the issues involved in FS and also explore several ways
of handling it. Moreover, an innovative approach for FS handling is implemented that
incurs the overheads associated with FS only when actual FS exists.

A new approach to handle FS. Various software-based DSMs ([6,7]) have used
client-based diff approaches, where the user process accessing shared objects computes
the diff. However, since they make copies for all objects that could potentially be
written, they actually introduce copying overhead even when there is no actual false
sharing. In our approach, which we call server-diff, if there is actual false sharing, diff
operations are performed by the server node. The server keeps track of all the objects
that have been sent out and to whom using copy sets and also maintains their versions.
At each put, if the sender was the only process with a copy of the object, the server’s
event handler overwrites its copy. If two or more processes have copies of the object,
then the first put creates a new version of the object and places the incoming data there.
Each subsequent put results in a diff being performed between the incoming object and
the version that was sent to the process earlier. That is, if O was the object whose copy
had been requested by more than one process, and the first process returns with the
updated version Oy, then O is stored along with O. If a second process subsequently
returns with another updated version, O,, a diff is performed between O and O, and
the changes are applied to O;. A put also removes the sender from the copy set of the
object. If the putting process is not in the copy set of any version of the object, the
changes are applied to all versions that exist at that time. Requests for the object are
satisfied with the most recent version of the object.

For a program free of data races and exhibiting no FS, in the server-based diff
approach, the data server will not create additional copies of an object as more than
one processor will never write the object concurrently. The copy creation and diff
operations will be performed only when the server detects that two or more processors
have changed the object at the same time (only dirty copies of the object are sent back
to the server) thus implying false sharing. Programs with no false sharing therefore do
not incur any overhead due to false sharing which is not the case with client diffs since
client nodes do need to make copies and compute diffs in the latter case.

Let us now consider the previous example (Figure 8) when there is false sharing
present, that is, when d; and d; are components of the same object. As a result of F'S,
though the program is data-race free, two processes might be writing concurrently to
the same object, i.e., write-write false sharing exists. Specifically, when P; acquires y
(which has already been released by P,), it still invalidates d; which means that it also
invalidates dy, since both d; and d; are part of the same object. Thus, when P, tries
to read the value of dy inside its critical section, it faults and fetches the new value
from the data server which has merged the updates of both P, and P; to create a new
copy. The timestamp of the object that contains dy is set to {21} after P, writes it.
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Py: Lock(z); dy =1; Lock(y); dy=d;+dy+1; Unlock(y); Unlock(z);
Py Lock(y); dy=dy+1; Unlock(y);

Figure 9: Nested Lock Calls

y is unlocked and z is acquired again. Since d; is in the object that has timestamp
{21}, when we compare it with @’s timestamp ({10}), the object in which d; resides is
re-marked as wvalid, which is fine as the correct value of d; still resides in the cache.

Invalidating objects and pushing dirty data. We can now also understand why
objects with timestamps concurrent with the lock timestamp still need to be invalidated
and dirty data needs to be pushed back to the server at lock time. Consider the
execution in Figure 9. Let us assume as before that d; and d; are part of the same
object. P; obtains the lock z and increments d;. Concurrently, P, obtains and releases
y after incrementing dy. P; then tries to acquire lock y. Although y’s timestamp is
concurrent to the timestamp of the object on which d; and d; reside, it is necessary to
invalidate the object. This will ensure that when P, accesses d; later, it will fault and get
it again from the server. If we did not invalidate objects with concurrent timestamps,
then on receiving y, the new value of dy will not be received by P; which will lead to
an incorrect execution. Moreover, if (the dirty) dy is not pushed back at the time of
locking y, then when the new value of dy arrives, it will overwrite the modification in
dy, as they are both part of the same object. This shows why false sharing requires
pushing the dirty data back as well as marking objects with concurrent timestamps
invalid at lock time.

The client-based-diff approach would work better for programs which may have false
sharing but the amount of the object that is actually “dirtied” in an object in some
critical section is small compared to the object size. In this case, only the changed data
is sent over the network, which may result in considerable savings. The data server
performs only a small amount of work, involving the incorporation of the diffs into the
previously present object copy, as compared to the server-based approach case where
the data server also performs the diff computation. However, in applications where a
large fraction of shared data is dirtied, client-diff could perform worse as the message
sizes will actually increase in this implementation thus leading to larger communication
times.

We have argued that in the no-false-sharing case, which should be the common one,
processes do not incur any overhead for handling false-sharing. Moreover, false sharing
is handled by the system itself and the programmer does not need to provide any hints
to the system.

Indigo’s facilities were used extensively in the implementation of server-diff. Specif-
ically, it provided event handlers, which consisted of the above functions at the server
node and captured all the puts and gets that were performed there by application
processes. A comparative implementation of client-diff was quite straightforward too,
essentially involving put and get event handlers at the client nodes as well as diff pack-
ing at synchronization time. This thus demonstrates that Indigo can be used to explore
various issues that arise in implementing DSM systems.
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3.4 Distributed Shared Abstractions

Several concepts in Indigo exist for the purpose of supporting arbitrary distributed
shared objects. Specifically, event handlers are useful not only for computing diffs in
DSM objects but also for a more general implementation of active object methods.
This section demonstrates how fragmented shared objects (FSOs) can be implemented
using Indigo’s active message functionality. It was mentioned earlier that shared mem-
ory is used to store typed data items that are shared between processes. ECM does
not exploit this type information and only cares about read/write accesses by user
processes. In contrast, with Fragmented Shared Objects (FSOs), the state of shared
objects is distributed across different processors, and the consistency of such fragments
is maintained using code customized for each shared object. In general, the code imple-
menting fragment communication is supplied by the application programmer and can
implement a wide variety of functions, including the exchange of data or control infor-
mation relevant to the executing processes and/or the communications required for task
synchronization, message forwarding/filtering under program control, etc. Such com-
munications may also utilize object-specific logical communication structures defined
between participating processes. For example, a shared queue might be represented as
an FSO where fragments on which user processes call object methods like enqueue and
dequeue are organized in a ring structure.

Since DSM is one example of an FSO, both kinds of shared abstractions use the
same underlying Indigo functionality. For instance, shared data is declared in the
same fashion in both and asynchronous remote invocations on object fragments are
accomplished using Indigo event handlers, as explained below (also see Figure 10).

User Process

Handler Daemon

Event Handlers
Handler Daemon Handler Daemon
Event Handlers Event Handlers

User Process User Process

Figure 10: System Layout for FSO

In Indigo, the required communications and the associated type-specific operations
are implemented using FSO-specific event-handlers. These are functions that are as-
sociated with events described in Section 2 and are called when the associated event
takes place locally. For example, in the work queue shown in Figure 3, an application
process can send some of its jobs to another process by executing a put call. At the
other process, the put_recvd handler is executed when the put is done in its cache. These
handlers are executed by the daemon process and are thus independent of the user pro-
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cess (the queue fragment is sent independently to the requesting process while the local
process is performing its own computation). Since the programmer knows what kind
of invocations are being sent, he can then incorporate that information in the event
handlers, as well as use Indigo calls to send invocations to other processes (for example,
to either reply to or forward the request in the queue implementation). Thus, event
handlers are executed by a thread separate from the user application thread. These
handlers can access all items in the process’s shared item cache, make Indigo calls on
its behalf and intercept all incoming accesses to the process’s cache. This concurrency
allows us to overlap computation with communication for many applications.

We presented a sample implementation of the work queue FSO in Section 2.1.3 (see
Figure 3). Since an FSO implementation is customized for the particular application
being programmed, we discuss it in the next section for each of our applications.

4 Performance of Indigo

We have demonstrated that Indigo can support different paradigms of distributed state
sharing. The purpose of this section is to show that the flexibility provided by Indigo
does not have an adverse impact on the performance of shared abstractions built with
it. To demonstrate this, Indigo has been implemented on two different platforms. The
first one is a cluster of Sparc2 workstations and the second one is an 8-processor IBM
SP2. We measured the raw cost of Indigo primitives on each of these platforms as well
as the performance of four different applications on two systems built on Indigo - ECM
and FSOs, and their message passing (MP) implementations on PVM. This permits
quantification of the overheads induced by Indigo as well as evaluation of the costs of
DSM and FSO implementations, and the evaluation of their dependence on the nature
of the underlying platforms.

We picked four applications that have different characteristics and exercise different
parts of the Indigo framework, and are thus helpful in exploring the problems that this
paper set out to address. Each of them, when implemented on DSM, as an FSO and
MP, will provide reference numbers that quantify the cost of mismatch in consistency
and granularity and the effect of type and structure information utilization. Moreover,
the size of messages range from a few bytes to kilobytes, and synchronization methods
vary from lock-based to barrier-based. We also introduce and observe the effects of
false-sharing in one of these applications.

These applications are straightforward to program with ECM because data-race
free applications can be programmed on ECM assuming the memory is sequentially-
consistent. For FSOs, shared state fragments and their placement, as well as the
logical communication structure between object fragments, have to be defined in an
application-specific manner.

4.1 Applications

The four applications used to evaluate Indigo are listed below along with their data
access patterns. Fach of them interacts differently with the system thus providing us
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some useful insights. We also describe how the applications are programmed in the

three systems: ECM, FSO and MP.

1. The Traveling Salesperson Problem (TSP):

Lock-based, small message size, data-dependent execution. The TSP
algorithm is similar to the one used by Bal et al. [5] and uses a branch-and-bound
method. It creates a statically defined job queue which is shared between the
worker processes. The initial queue is built by unraveling all possible paths for
the tour to a fixed depth. On ECM, locks are used to dequeue jobs from the
queue as well for updates to the value of the best tour. Thus, there are two
shared structures - the job queue and the best tour. Read accesses to the best
tour are allowed without acquiring a lock and hence can have data races; however,
updates to it are protected by a lock.

Shared work queue FSO. We use the work queue abstraction defined earlier
to implement this TSP algorithm as an FSO. As we explained before (see Fig-
ure 3), the handling and forwarding of requests is done by event handlers. The
programmer informs Indigo about which functions to call when the various events
occur. The event handlers also handle the propagation of better tour values to
other nodes. This is done by updating the local copy of this variable and then
passing it to the next node in the ring (by performing a put of that value, which
then invokes the latter’s put_recvd handler). Again, a user process never needs
to execute a “receive” to update its local best tour value because the handlers
take care of the local update and onward propagation. In MP, a master process
stores the queue and best tour value and worker processes send messages to it to
request the next job and the best tour value. The execution in each case is data
dependent.

In TSP, the message sizes are small, but quite a few messages are sent. On ECM,
there is a (read-write) data race for the best tour value. The problem was solved
for 17 cities.

2. Linear Solver (LIN):
Barrier-based, large messages. In this application, an iterative algorithm
solves a system of equations Ax = b, where x is the set of unknowns. The
processes split the z vector equally among themselves and each computes the part
(z,) assigned to it. Calculating z; requires the values of z;,j7 = 1,2, ..., n, from the
immediately preceding iteration. On ECM, all synchronization is barrier-based.
There is one barrier per iteration. For each iteration, all values that were updated
in the last stage are required. FSO and MP use a similar algorithm and thus the
communication there is akin to broadcast. For FSO, the local event handlers take
care of signaling the user process on the arrival of all required values from the
previous iteration. There is no explicit synchronization in FSO since the arrival
of data values allows the processor to start the next iteration. Message sizes are
large, and all communication occurs at the end of an iteration. The algorithm
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was run for an z-vector size of 2048 floats on the workstation cluster and 4096

floats on the SP2.

3. Successive Over-Relazation (SOR):

Barrier-based, large messages, write-write false sharing. SOR is another
iteration-based application that is frequently a kernel in many mathematical pack-
ages. The program is based on the parallel red /black SOR algorithm as described
by Chase et al. [9]. At each iteration, a process writes some value into a set of lo-
cations in a matrix, the value being computed from the values of the four nearest
neighbours in the grid. The communication is thus neighbour to neighbour. The
grid is horizontally partitioned and only the rows at the boundary of each region
are shared. Thus, each processor has two shared data items (in addition to the
shared locks and barriers of course), one at each boundary of its grid partition.
Each of them is shared with the corresponding neighbour. Although other im-
plementations of SOR that have no false sharing or only read-write false sharing
are possible on Indigo, we defined objects so the application has write-write false
sharing. This allowed us to determine what effect a high degree of false sharing
had on the performance of the application. Read-write conflicts are avoided by
using a color-based algorithm that makes alternate processes compute odd and
even positions in the matrix. All synchronization is barrier-based. The matrix
in our problem was of the size 512 x 512 floats on the workstation cluster and

2048 x 2048 on the SP2.

As an FSO and also in the MP implementation, the updated values are sent to
the two neighbours (the communication structure used is a ring) and each process
waits until it receives the new values from its neighbours before starting the next
iteration. In the FSO, an event handler takes care of receiving the data and
informing the local process when all the required data has arrived. It also does
local buffer management, which is required as the neighbouring process might
send in the next data values before the previous ones have been read by the local
process.

. Embarrassingly Parallel (EP):

Minimal synchronization, small messages. This is a Numerical Aerody-
namic Simulation (NAS) kernel that is computation intensive. It evaluates inte-
grals by means of pseudo-random trials and is used in many Monte-carlo simula-
tions. Very little synchronization is required among the parallel processes. The
only communication is towards the very end when all the processors participate in
a reduction operation to generate a global sum, at which time, on ECM, locks are
used to protect the value and a barrier to find out when everyone has completed.
As an MP implementation, the worker processes inform a master process when
they are done which then calculates the global sum as the last step. The EP
FSO implementation is very similar to the MP one except that received values
are immediately processed by handlers in FSO whereas an explicit receive must
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be executed by processes in MP. A problem size of 33554432 was used on both
the workstation cluster and the SP2.

We chose TSP because its message sizes are quite small and it has a very dynamic
access pattern for locks. The performance of barrier-based synchronization was ob-
served using the linear solver and the SOR applications, which also provided the other
extreme of very large message sizes and predictable synchronization patterns. SOR
also exhibited write-write false sharing which allowed us to evaluate our different FS-
handling strategies. Finally, baseline performance is measured with an embarrassingly
parallel application in which there is little sharing between nodes.

The ability to execute handlers when data movement operations are executed helps
greatly in TSP, SOR and LIN implementations. For TSP, the handlers help achieve
significant overlap between communication and computation. For the other two appli-
cations, they help as they receive new data from other nodes, buffer the received data
and notify the process when all the data has been received. The local process can com-
pute its values from the previously received data while this is being done. In contrast,
in MP, receive calls are executed by the process only after the local computation is
over.

We now discuss the performance of these four applications when they are pro-
grammed with ECM and FSO on top of Indigo on two different platforms - a cluster of
Sun workstations and the IBM SP2 machine. Their performance is also measured when
they are programmed directly on PVM. The latter allows us to quantify the overheads
introduced by Indigo as well as the consistency-related activities of ECM and FSO.
The role of active messages (used by FSO implementations) in improving performance
is then discussed. Finally, there is an evaluation of the affect of the granularity of
shared objects on the results and how handling of false sharing impacts application
performance.

While performing the evaluation, it should be kept in mind that the extra cost
in ECM is due to, firstly, the consistency-related actions that must be performed,
and secondly, due to Indigo overheads. For FSO, some of the Indigo overheads are
offset by the use of active messages and the related type-specific event-handling, plus
communication-computation overlap in some cases.

4.2 Results on a Workstation Cluster

The purpose of the measurements presented in this section is to evaluate how well the
two state-sharing techniques (ECM and FSO) perform as compared to message passing.
We also need to explain the differences, if any, and to infer what effects the Indigo
system had on the performance of the applications. These measurements are done on
network of Sun Sparc2s on a 10Mbps Ethernet. The hardware page size was 4 Kbytes
and the main memory size of the nodes varied from 24-64 Mbytes. PVM [35] was used
as the underlying communication medium. Though it is not the fastest such medium
available, our aim was to understand the issues involved in building a system such as
ours and thus, the ease of programming with PVM helps. We ran the applications on
1-8 nodes.
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Raw Indigo overheads. The raw times for the commonly used Indigo primitives are
given in Table 1. These times account for the software overhead due to Indigo primi-
tives. They do not include the time that is spent inside PVM packing and unpacking
the actual data sent, the protocol processing time or the time spent on the wire. Most
of the Indigo overhead is in table lookups and buffer management. The measurements
are averaged over several hundred thousand calls to each primitive on a network of two
machines. As we see from the table, for a shared data size of 4 bytes, the Indigo layer
overhead of purge is 130 microseconds; sync_put and sync_get overheads are 210 and
250 microseconds, respectively. On the other hand, the total time needed to execute
a sync_get call, which includes a PVM message send and receive, when 4 bytes are
transferred is 8 milliseconds. Thus, the Indigo overhead is very low compared to the
communication times required for data transfers across nodes.

‘ Purge ‘ Sync_put ‘ Sync_get ‘
| 130 [ 210 | 250 |

Table 1: Indigo overhead for various primitives, in microseconds

Completion Time Breakdown. The completion time of an application is measured
at each node executing the application code and, for ECM, consists of three parts -
comp for computation time, which is the actual CPU time spent executing user code at
each node, sync for synchronization time, that is, the time spent by a process waiting to
acquire a lock or for a barrier release, and comm, the communication time, which is the
time spent in sending data or waiting to receive data if the cached data is out of date.
The latter two are upper bounds on the actual sync and comm times as the machine
load at the time of the experiment may cause some positive perturbation in their
measurement (since they are measured as the difference between the wall clock times
of message sends and receives, which would increase if other processes were running
while the application process was in the ready queue).

For the FSO and MP implementations, the partition of non-computation time into
sync and comm is difficult to classify, as both these are interwoven into one-another.
For example, in an MP implementation of LIN, the time spent waiting for the updated
x-vector to arrive from all the other nodes counts as both synchronization and com-
munication time. Hence, we measure only comp and the completion times for the MP
and FSO implementations.

4.2.1 Completion Times

Figure 11 presents completion times for the four applications implemented on ECM,
FSOs and MP. The times are per node and in seconds. The single node times are
uniprocessor times directly on top of Unix when synchronization calls are removed,
and the multi-node times for MP are implementations that directly use PVM as the
message-passing layer.
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Figure 11: Completion Times

As the the completion time curves demonstrate, for EP and TSP, which have a high
computation to communication ratio, good speedups are obtained on all implementa-
tions. In the case of the synchronous linear solver, the synchronization is barrier-based
(hence more time is needed for synchronization as the number of nodes are increased)
and message sizes are relatively large (for example, in the 4-node solution on ECM, the
message transmitting the updated z-vector from one node to the other is 2 Kb in size).
Thus, the speedup is limited by the time spent in synchronization and communication.
The same holds for SOR, which also suffers because its messages do not get shorter as
the number of nodes solving the problem increase, as is the case with LIN. Moreover,
in general, since the computation time between synchronization points decreases for
a larger number of processes solving the problem, the speedup also decreases as the
number of processes is increased. Since the completion times of EP are practically
indistinguishable on the three systems (which should be case because it exhibits little
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# machines # machines
L [2[4]8] L [2]4[8]
TSP | 7 | 3.5 2 TSP |6 ]38 4
LIN | 6 | 9.5 |17 LIN |7 9 |15
SOR | 23 | 23 | 27 SOR | 5| 10 |21
comm sync

Table 2: Comm and sync times for 2, 4 and 8 nodes, on ECM, in seconds

sharing), we discuss details of the other three applications.

TSP. For TSP, ECM is 15-35% slower than MP (for 2 and 8 nodes respectively), and
FSO is, at best, 3% better (2 nodes), and at worse, 25% worse (8 nodes). As shown in
(Table 2) for TSP, communication times reduce as the number of processors increase for
ECM. That is to be expected as the number of times a processor approaches a server to
acquire a lock to dequeue a tour decreases as more processes execute the application.
The synchronization time also reduces for the same reason. ECM takes longer than
the other two for TSP as the best tour value does not get propagated quickly (the old
value is invalidated and a new one is fetched only when a lock is acquired).

LIN. In the case of LIN, the FSO curve matches the MP curve closely but ECM has
higher completion times. This is because synchronization here is barrier-based and
message sizes are relatively large. Thus, ECM performance is limited by the time spent
in synchronization calls. For two nodes, ECM has 13% higher completion time than
MP and FSO’s completion time is 7% more than MP. For four nodes, the corresponding
numbers are 19% and 10%, and for eight nodes, they are 35% and 9%. The ECM times
are higher than the others not due to Indigo but, firstly, due to the synchronization
overhead, and secondly, due to the particular implementation of ECM. More specifically,
in this implementation, when a barrier is completed, the data at all nodes is invalidated.
As a result, all nodes request data from the respective servers at the same time, leading
to increased communication and synchronization times. The sync and comm times
shown in Table 2 support these claims.

SOR. For SOR, MP and FSO’s performances are quite identical. ECM, however, does
not have completion times close to either of these systems. First, simple barriers are
used in the ECM implementation whereas FSO and MP require a process to synchronize
only with its neighbours. Second, due to false sharing among processes in the case
of ECM, the servers suffer from some amount of extra computation overhead (see
Section 4.2.3).

In the case of SOR and LIN, the communication times do not drop as the number
of nodes increase, as was the case with TSP. This is because each node executes the
same number of iterations independent of the number of machines. Thus, they still
receive the same amount of data from the server. The main reason for the gap between
the ECM and the other curves here is the extra communication (which also results in
additional work for the servers). Also, in applications that use barriers, we observe
an almost linear increase in the synchronization times as we increase the number of
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nodes (Table 2). This is to be expected as the in the case of barriers, each processor
has to wait for more nodes to arrive at the barrier, and hence the average waiting time
increases.

The effect of consistency mismatch. As seen in almost all the applications, ECM
performed worse than both FSO and MP, though in some cases, it came quite close.
This was mainly due to the extra communication and synchronization that is an in-
herent part of a DSM system. For TSP, where the messages are very small and the
communication and synchronization cost are very slight, ECM follows the FSO and
the MP curves closely. For LIN and SOR, where ECM suffers due to barrier synchro-
nization and some extra messages, especially in the latter where FS is present, the
differences in completion times are more pronounced.

Using structure and type information. How much impact did exploiting struc-
ture and type information (like in our DSA implementations) have on the completion
times? FSOs provide performance very close to MP (or even better than MP) because
remote invocations are executed independently of the user process at that node, thus
providing great flexibility in using the invocation itself to perform other functions and
computations, like making more invocations or manipulating the values in the memory
space of the local process. The gains are quite obvious from the graphs. FSOs for our
four applications perform consistently near their message-passing equivalents, as can
be seen from the completion time plots where the FSO curves are very close to the
MP curves for all the applications. For TSP, on two nodes, the FSO actually performs
better than MP. This is because of the presence of active messages - the best tour value
gets automatically updated on other nodes without the process having to do a receive
as in the case of MP, and this results in quicker pruning of the search tree. Moreover,
as we explained earlier, in our TSP implementation, we overlap communication with
local computation, thus resulting in lower wait latency for the next jobs in the work
queue.

The effect of Indigo overheads. The fact that FSOs, which are built on Indigo,
provide performance almost identical with MP shows that Indigo overheads are in-
significant. This is also to be seen for ECM for EP and TSP applications. In fact, the
differences in completion times between ECM and MP for these three applications are
similar to differences between these systems when ECM is implemented at the operat-
ing system level [20]. For the other applications, the loss of performance in ECM is due
to synchronization and false sharing. Thus, we conclude that Indigo allows multiple
systems to be implemented without having a negative impact on performance.

4.2.2 Effect of Granularity Mismatch

We now use the Indigo facilities to explore the effects of granularity mismatch. If a
DSM system provides consistency at the level of a page, there may be unnecessary data
transfers, as a page (typically 4 Kbytes) is transferred even when a small amount of
data on that page is shared. Other systems provide consistency at the level of user-
defined objects. In this section, we explore the performance gains made possible by
using the latter strategy.

The increased communication times for our applications’ page-based implementa-
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tions shown in Table 3 demonstrate the importance of user-defined object sizes. The
effect is quite pronounced with LIN and SOR, as the table shows. SOR suffers a little
more as the number of messages it sends are much more than in the case of TSP or
LIN and hence the effect is more obvious. Larger messages also cause bottlenecks at
the server, thus slowing down the execution even more.

| | TSP | LIN | SOR |
Object | 2 17 37
Page 4 37 92

Table 3: Communication times for 8 nodes on ECM, in seconds

4.2.3 Handling False Sharing

An approach that maintains consistency at the level of user-defined objects and not
pages will suffer from little or no false sharing (FS) (such an assumption has been
made in Midway [7] that provides consistency at the level of user-defined objects).
However, it is not possible to completely eliminate F'S [8]. Our implementation makes
the assumption that F'S will not be common, and hence we optimize for the case of no
FS. That is, in our implementation which does deal with FS, applications with no FS
will not pay any penalty for its handling. We ensure this by using server-diffs, instead
of the more commonly used client-diff technique.

To evaluate server-diffs, processors were made to share objects in a test harness
with different kinds of FS: write-write and read-write, along with the corresponding
implementations of no falsely shared objects. In the case of write-write FS (WWFS),
a single object was shared between all the processors which wrote into different parts
of it and then synchronized at a barrier. No-WWFS means that FS was removed by
having as many objects as the number of processors, which wrote only into their “own”
objects. For read-write FS (RWFS), again, there were as many shared objects as the
number of processors (let’s say n). A part of each was was written by the corresponding
processor, which then read the not-written-into parts of the other (n — 1) objects. The
corresponding No-RWF'S had 2n shared objects, with each processor writing into one
and reading n others, none of which have been written into. In each program above, a
hundred iterations were performed, all synchronization being barrier-based.

The test harness was executed for both the client-based and server-based diff schemes.
The results are tabulated in Table 4. We also present the completion times of the three
applications (LIN, SOR and TSP) in Table 5 when the two FS handling techniques are
used.

For the case of no FS, the server-diff scheme performed better than the client-
based scheme. When there is FS, however, which one performs better is application-
dependent, as we discussed in Section 3.3. We expect the client-based-diff approach to
perform better than the server-based approach for applications that send large messages
and do not modify a large portion of the object. This is because the message size in
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| [ WWFS [ No WWFS | RWFS | No RWFS |

Server 26 12 53 56
Client 20 15 53 61

Table 4: Server- vs. Client-based diffs, completion times, test harness, 8 nodes

the former would, on an average, be less than what it would be in the latter (since the
message from the client has size roughly proportional to the extent of modification in
client-based diff but is always equal to the object size in server-based diff). SOR is such
an application, and the reverse is true for LIN. In LIN, each message is 106 bytes larger
on an average in the client-based diff approach as compared to the server-based diff
approach (it is of a fixed 4096 byte length in the latter, for two nodes). In SOR, client-
diff results in messages which are approximately 1974 bytes shorter on an average, for
eight nodes. As we see in Table 5, the completion times change as expected (the main
component changing here is the communication time). Also, we observe no change for
the two cases for TSP, as the shared data size is quite small in this case, and hence
the copying and diff overheads are minimal, besides resulting in small messages (the
message size is shorter in the client diff case by around 11 bytes on an average, for eight
nodes).

In summary, these results are consistent with our goal that with no false sharing,
our implementation of ECM on top of Indigo avoids the copying, buffering and com-
munication overheads which could improve performance. With FS; the results depend
on the degree of F'S and the pattern of modification of the data within the application,
though they are still close to the numbers with client-diffs.

| | LIN | SOR | TSP |

Server | 389 95 1441
Client | 397 {8 1441

Table 5: Server- vs. Client-based diffs. Completion times are for number of nodes
showing maximum difference between the two cases on Sparc2s.

4.3 Results on the SP2

The results on the IBM SP2 are still preliminary. It appears at this point that due to
the faster processor and communication speeds, a number of the results from the Sun
workstations are somewhat modified on the SP2 though the general characteristics do
not change significantly. This section presents a summary of the results of executing
the same four applications on an 8-(RS6000-)processor SP2. Ethernet was used as the
communication medium and not the high performance switch due to its unavailability
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when these experiments were being performed. The hardware page size was 4 Kbytes
and the main memory size was around 100 Megabytes on each node. The applications
were executed on 1-8 nodes.

Figure 12 presents completion times for the four applications implemented on ECM,
FSOs and also directly on PVM, all running on the SP2. As the RS6000s are much
faster than the Sparc2s, we have implemented larger problem sizes for the SOR and
LIN applications. SOR is now being computed for a 2048 x 2048 (up from 512) matrix,
and LIN for 4096 unknowns (up from 2048).
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Figure 12: Completion Times

As seen from the figure, all the curves now are quite close to each-other. For TSP,
ECM is 15-23% slower than MP. The FSO does much better again - it is 6% faster in
the best case (two nodes) and 18% slower than MP, in the worst case. For LIN, ECM
varies between 2-12% of the MP implementation, and the FSO lies between 2-6%. For
SOR, the corresponding numbers are 6-11% and +2% - the FSO is up to 2% faster than
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the corresponding MP implementation, mainly due to a computation-communication
overlap.

The SP2 effect. The performance of the applications is closer to each-other on the
three systems on the SP2 compared to the workstation cluster. The gap between
the various systems is reduced because it is primarily due to the communication time
which is much smaller on the SP2 (mainly because a large part of the cost of Ethernet
communications in the software layers). These results again demonstrate that using
type and structure information as in FSOs leads to better performance than using

DSM.

5 Related Systems

A number of systems that can support state sharing on a workstation cluster (for ex-
ample, Ivy [28], Treadmarks [22], Midway [7] and Distributed Filaments [15]) have been
proposed and implemented. The goal of these systems has mainly been to implement
a particular memory model (like Entry Consistency in Midway) and not to provide a
general framework like Indigo that allows many different consistency models as well as
general shared abstractions to be implemented. We have implemented shared abstrac-
tions which go beyond just memory models, thus allowing us to quantify the gains in
the performance of the applications when type information is exploited. Thus we are
able to provide system support that matches the needs of various state sharing tech-
niques that range from memory with various consistency needs to FSOs. Moreover,
Indigo is portable as it runs on PVM which has been ported to a number of systems.

Shapiro [34] proposed a system in which objects fragmented across nodes of a dis-
tributed system could be implemented. This work is similar to topologies [33], which
is the approach we take for implementing distributed shared abstractions. Indigo pro-
vides lower level support for data movement between shared abstraction caches and
events that could be used to keep the caches consistent. The object fragments and
the communication structure between them can be implemented using Indigo calls. In
addition, we explored shared abstractions for computational problems and compared
their performance with message passing and a DSM system. In contrast, coarse-grain
objects such as replicated files are investigated in [34].

Tempest [19] also provides mechanisms for communication and synchronization in
a parallel program. It differs from Indigo which considers access detection techniques
needed by DSM implementations to be a matter of policy and thus a responsibility of the
DSM layer whereas Tempest provides support for it. Nexus [14] supports distributed
objects but it does not provide support for programming shared abstractions over a
distributed system. It also does not address caching and consistency issues because an
object resides at a single node.

6 Conclusion

This paper presents the design and implementation of a user-level library called Indigo
that facilitates sharing of state across nodes in a distributed system. Indigo provides



various primitives for data movement and active handling of messages. To evaluate it,
a distributed shared memory system and several shared abstractions were programmed
and used to explore several issues that impact the performance of applications pro-
grammed on a DSM system, such as the effect of consistency and granularity mismatch
between the application and the communication layers. In addition, a new approach
is evaluated for handling false sharing, in which programs which do not exhibit false
sharing do not pay any penalty for handling it. Our results with fragmented shared ob-
jects also demonstrate that utilizing type and structure information leads to significant
gains in performance of distributed applications.

There are many interesting ways in which the functionality of Indigo can be ex-
tended. We are presently considering whether to add thread support, or to add RPC
mechanisms. There is also a plan to run the system on a larger number of nodes to test
it for scalability and to observe any effects it has on the performance of our applications.
Platforms other than PVM will also be considered in our future implementations. We
are currently in the process of designing and building a system that supports config-
urable objects for high-performance applications over a distributed platform.
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