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Abstract

This paper proposes a framework for the systematic
design of directory-based distributed applications. We
evaluate a space of directory designs using our frame-
work. We present a case study consisting of design,
implementation and analysis of directories for a multi-
cast application.

Our framework is based on a model that extends the
formal concept of process knowledge in distributed sys-
tems. This concept is used informally in phrases such
as “process p knows when it is in state s that process
q s active.” We show that this definition of knowl-
edge s too strong for many distributed applications,
wcluding directory design. We propose a weaker con-
cept: estimation. We define the meaning of phrases of
the form: “process p in state s estimates with probabil-
ity 0.9 that process q is active.” We specify directory
design as an optimization problem with the objective
function of maximizing estimation probabilities, and
with constraints on the amount of bandwidth, computa-
tion and storage used. We show how this specification
helps in a systematic analysis of alternative directory
designs.

Key words: Distributed systems, directories, de-
sign frameworks, theory of process knowledge, estima-
tion, performance models, multicast.

1. Introduction

This paper presents a framework for designing di-
rectories in distributed systems, and describes a case
study of a design, implementation and analysis of a
directory for a multicast application.

For our purposes, a directory is a process in a dis-
tributed system that contains information about other

processes. For instance, a directory process p may
contain information that another process ¢ is dead-
locked. The problem that we are concerned with is
as follows: For a given application, what sort of infor-
mation should be stored in directories and how should
this information be organized and maintained?

The outline for this section is as follows. The point
of departure for our framework is the concept of process
knowledge in distributed systems. We review the defini-
tion and theorems about process knowledge, and then
show why this concept is inappropriate for directory de-
sign. We then show how global clocks and time impact
knowledge, and analyze systems with bounded message
delays. Next, we suggest a weaker concept: estimation.
Estimation theory is a well-established branch of com-
munications engineering; our contribution is to use it
to formulate a framework for directory design.

1.1. Knowledge

A Distributed System. A distributed system is a
set of processes and a set of communication channels.
Different processes do not share state directly. Pro-
cesses can interact with each other only by sending and
receiving messages. The state of a distributed system
is given by the sets of states of its component processes
and channels. A distributed system has no global clock.

The Concept of Process Knowledge. Informal
discussions about distributed systems may use phrases
of the form: “process p in state s knows that process
q is active.” This means that process ¢ is active in all
reachable (global) states of the system in which process
pisinstate s [1,4]. A global state is a state of the entire
system, as opposed to a process’ local state.

In general, “p knows x” is a predicate on p’s local

state, where p is a process and x is a predicate on global



states of the system. The predicate “p knows x” holds
for a local state s of process p if and only if x holds
for all global states in which p’s component is s. From
the definition, if p knows x at a point in a computation
then x holds at that point. For instance, if p knows ¢
is active at some point in a computation, then ¢ is in-
deed active at that point. In more philosophical terms,
this statement says that a process only knows truths;
a process cannot know falsehood. Early philosophical
works on knowledge defined the concept in terms of a
set of axioms [5].

Knowledge Gain and Loss. Theorems [1] about
knowledge gain and loss that are relevant to our dis-
cussion about directories are given next.

Knowledge Gain Theorem: A process can only
gain knowledge about another process by receiving
messages.

Knowledge Loss Theorem: A process can only
lose knowledge about another process by sending mes-
sages. If a process p knows at some point in a computa-
tion that a predicate x holds for another process ¢ (for
instance if p knows that ¢ is active), then x continues
to hold for ¢ at least until ¢ receives a message from p
(possibly via intermediate processes).

The informal argument for the last result is as fol-
lows. If p knows that x holds for ¢ at some point in
a computation, then x must hold for ¢ at least until p
changes its state. Furthermore x can be falsified only
when ¢ knows that p has changed its state. The only
way for ¢ to know that p has changed its state is for ¢
to receive a message sent to it by p (or for ¢ to receive
the last message in a chain of messages initiated by p
and sent via intermediate processes to ¢). Therefore x
must continue to hold until ¢ receives a message from
p, possibly via intermediate processes.

Knowledge is too Strong a Concept for Direc-
tories. The traditional definition of knowledge is too
strong for many applications as illustrated in the next
example. A directory may contain information that a
process p is participating in a collaborative group appli-
cation, such as a videoconference. The knowledge-loss
theorem tells us that if the directory knows that p is
participating, then p cannot cease to participate with-
out receiving a message from the directory. In most
practical situations, process p can cease to participate
in the videoconference on its own; it does not need to
receive messages (directly or indirectly) from the di-
rectory. Therefore, though a directory may have some

information about the participation of a process p, it
does not know whether p is participating or not.

Volition. If a process p knows that some predicate
x holds for process ¢’s state, then process ¢ can only
falsify x after it receives a message; g cannot falsify
x autonomously. The fact that ¢ cannot falsify x au-
tonomously is called ¢’s giving up volition. In general,
if p knows x about ¢’s state then ¢ gives up volition to
change x. In many practical situations, a directory has
information x about a process ¢ but the process does
not give up volition to change x; therefore, the direc-
tory does not know x. The question is: What does “the
directory has information x about ¢” mean in this case?
For instance, what is the meaning of “the directory has
information that a remote process ¢ is participating in
a videoconference?”

1.2. TheRole of Time

Global Clocks. The knowledge gain and loss theo-
rems are based on a model of distributed systems that
assumes that different processes share no state, and
that there is no global clock. If there were a global clock
then a process could gain or lose knowledge merely by
the passage of time. For instance, if p knows at time
8 that ¢ will participate in a videoconference between
time 10 and time 11, then at time 10 p knows that ¢
is participating in the videoconference, and at time 11
p does not know if ¢ is still participating. Therefore, p
gains knowledge about ¢ merely by the passage of time
without additional messages from p to ¢, and likewise
p loses knowledge about ¢ by the passage of time.

Note that in this situation as well, ¢ gives up vo-
lition. If p knows at time 8 that ¢ will participate
between times 10 and 11 then ¢ cannot choose au-
tonomously to not participate in this interval. Since
processes do not give up volition in most directory-
based applications, a directory does not generally know
predicates about the states of other processes, even in
systems with global clocks.

Bounded Message Delays. The problem with
knowledge and volition is not an artifact of unbounded
message delays. Assume that message delays from ¢ to
p are between L and U in duration, and that L and U
are known constants. Assume that messages are not
lost; all messages sent will be delivered with delay at
most U.

Consider a protocol in which if p does not receive
a message from ¢ in the time interval [T, 7"], p knows
that ¢ is active at 7”. This protocol requires ¢ to send
a message to p in the interval [T'— L, 7" — U] if ¢ is not



going to be active at T”. A message sent by ¢q before T—
L may arrive at p before T', and therefore to guarantee
that the message arrives in the interval [T, 7] it must
be sent after T'— L. Likewise, the message must be sent
before T" — U because later messages may arrive only
after 77. If such a message is not sent, then at time 7" —
U, q gives up volition to become idle at T”. Of course,
there is no problem if U = 0 which means all messages
are delivered instantaneously, but this situation does
not arise in distributed systems.

1.3. Estimation

We propose a concept, estimation, that is weaker
than knowledge, and that we believe is the appropri-
ate structure for dealing with information in directo-
ries. We postulate that our distributed system is a
stochastic process in steady state. We deal with the
probability that a predicate x holds, or the conditional
probability that x holds given y holds. For instance, we
will compute the probability that a process ¢ is active
given that a directory process p received a message T
units ago from ¢ stating that ¢ was active when the
message was sent. Although we assume a global clock,
the ideas can be extended to distributed clocks with
clock drift; however, we do not do so in this paper.

Let us review the concept of process knowledge. In
essence, knowledge deals with invariant implications of
the form [X = Y], where X is a predicate that deals
with the states of a set of processes, D, and Y is a pred-
icate that may deal with any other set of processes. For
instance X could be a predicate on the state of a pro-
cess pand Y could be a predicate on a different process
q; by inspecting the state of p alone, we can determine
whether X holds, and if X holds we can conclude (from
[X = Y]) that Y holds for process ¢. Basically, infor-
mation about one process gives us information about
other processes. In terms of directories, data stored
in a directory process gives us information about the
states of remote processes.

To deal with volition, we extend implication denoted
by = to estimates with confidence ¢ denoted by —., as
follows:

(X —=.Y) = (probability(Y|X) > ¢)

For instance, X can be the predicate that a directory
process p contains data that a process ¢ is active, and
Y can be the predicate that ¢ is active, in which case
(X —o0.99 Y) means that the conditional probability
that ¢ is active, given the information in the directory,

exceeds 0.99.

For finite-state systems in which all states have pos-

itive probability measure,
X=Y]=X—Y)

Computations with conditional probability are much
more difficult than computations with implication;
however, conditional probability is the concept of
choice when dealing with directories. For instance if
Y is the predicate “process ¢ is active,” and X is: “a
directory process p has information that ¢ is active,”
then ¢ can transit autonomously from active to idle,
provided probability(Y|X) < 1.

A useful special case of estimation is to extend the
concept of the predicate p knows Y to the predicate
p estimates Y with confidence ¢, which means that the
conditional probability that ¥ holds exceeds ¢. We can
now ask ourselves questions such as what is the mean-
ing of: “p estimates (p’ estimates Y with confidence
¢') with confidence ¢? This is analogous to the mean-
ing of “p knows ¢ knows Y. We do not carry out such
exercises further because our goal here is to develop a
practical framework for designing directories.

2. Specification of a Directory

In this section, we present a specification for a di-
rectory. Of course, the specification depends on the
application that uses the directory; different directory-
based applications have different specifications. The
specifications of most directory-based applications have
certain common characteristics, and we discuss those
first. Then we consider the issues specific to a given
application.

The general specification of a directory-based ap-
plication is as an optimization problem. The objec-
tive function is to maximize the estimation probabil-
ities that a directory has about the states of remote
processes. The main constraints are the resources —
computing, memory, bandwidth — used by protocols
that maintain the directory. Other constraints deal
with properties, such as fault-tolerance, of the given
system.!

Though the general goal is to maximize estimation
probabilities, the specifics of a problem depend on the
use of the estimates. In particular, different applica-
tions have different consequences of error. For instance,
if an application makes a decision based on the assump-
tion that a remote process is active when the process
is not active, the consequences of error depend on the

1In all optimization problems, the parameter to be optimized
and the parameters to be constrained are a matter of choice;
so we could formulate the problem in terms of constraints on
estimation probabilities with the goal of minimizing the use of
some resource such as bandwidth.



application. If the consequence of errors is small, it is
less important to obtain high estimation probabilities.
The specification has the form:

Devise a protocol for a directory in a distributed
system that estimates the states of remote infor-
mation (remote processes or sites). The direc-
tory makes decisions based on these estimates that
maximize the value of the decisions (or minimize
the consequences of incorrect assumptions about
the states of remote sites).

Subject to: constraints on storage, computational
cycles, and message traffic.

Given: infrastructure properties, spatial and tempo-
ral locality, and the use of directory information,
all of which we consider central issues in the spec-
ification and discuss informally next.

2.1. Central Issues

Infrastructure Properties. System infrastructure
includes the communication network, storage system,
and compute engine. Example communication prop-
erties are the distribution of delays or the occurrence
of faults. Rapid or unpredictable state changes would
make the estimation problem more difficult because a
directory can obtain high confidence of estimation only
by receiving timely information. A directory p can
maintain high confidence of estimation about another
process q even if the directory receives information in-
frequently from ¢ provided ¢’s behavior is predictable
and the system has a global clock. For instance, if an
aircraft follows its flight plan closely, then the air traf-
fic control system can estimate the aircraft’s location
with high confidence at any point in time.

Spatial and Temporal Locality. Locality of infor-
mation plays a role in the cost of a directory protocol
and describes the manner of state change of compo-
nent processes. It encompasses spatial locality, such as
the topological dissemination of state changes to all or
some directories, as well as temporal locality, such as
the rate of state changes. In some directory applica-
tions, for instance certain directories of network rout-
ing information, a process needs to estimate aspects of
the states of nearby processes (in this case the reach-
ability and addresses of nearby routers) but does not
care about processes far away; this allows for localized
information flow.

Use of Directory Information. Who needs what
information when, and for what purpose? If the conse-

quence of erroneous decisions is severe, then higher con-
fidence of estimation is required. One of the questions
that we explore in our project is the increasing amount
of resources required to obtain increasingly higher con-
fidence.

Next, we present a few examples of directory-based
applications to motivate our two-tiered approach of (i)
a general specification common to most directory-based
applications and (ii) issues that tailor the general spec-
ification to a particular application.

2.2. Examples of Directory-Based Applications

Metacomputing. A metacomputer is a collection of
computing and communication devices that are inte-
grated to offer an interface to a single resource col-
lection. For instance, a large scientific visualization
might marshall many resources across the network to
complete not only the calculation, but also the display
and storage of the results; this is in contrast to an ap-
proach that tries to tailor the problem to the abilities
of a single (often parallel) machine. An important part
of metacomputing integration are the directories that
keep track of resources at remote sites. This informa-
tion has some components that change slowly and oth-
ers that change rapidly. Examples of slowly-changing
information are the amounts of resources (comput-
ing, memory, input-output devices) located at each
site. Examples of rapidly-changing information are the
amounts of resources currently free at each site. A
decision based on an erroneous assumption that a re-
source is free at a remote site (when the resource is in
fact not free) has the consequence that the job schedule
has to be changed. Conversely, a decision based on an
erroneous assumption that a resource is not free at a
remote site (when the resource is in fact free) has the
consequence that jobs are delayed unnecessarily.

Videoconferencing. Informally speaking, a multi-
cast videoconference is like a collection of people talk-
ing to each other, and the scope of the conference is
analogous to how loudly the conversation is carried
out: the louder a person speaks, the more people who
can hear the speaker. A person should speak just loud
enough so that all those who want to hear the speaker
can do so. If the scope is too large, the multicast uses
bandwidth on some links unnecessarily. If the scope
is too small, some users that should participate in the
videoconference cannot do so.

Directories contain information about which users
are participating in the videoconference, and their re-
spective scopes. This information is dynamic because
new participants may arrive, and some participants



may leave. The problem is to adjust the scope dy-
namically so that it has the minimum value to reach
all those who wish to participate, as shown in Figure 1.

Figure 1. Session Scope: the maximum of the minimum
scope needed by process p to reach participant pro-
cesses 1, s and ¢.

Telephone and IP Address Directories. The
consequence of incorrect information in a telephone
directory is either that a phone call is made to a
wrong number or that a customer cannot make a phone
call because the intended recipient is not in the direc-
tory. This situation is handled by a multilevel direc-
tory, which is comprised of a hard-copy directory that
changes once a year and a more current directory main-
tained by the telephone companies.

In the Internet realm, the Domain Name Service
(DNS) provides a mapping between machine names
and machine addresses [6]. Again, the directory is mul-
tilevel, but the DNS directories change dynamically.
Each entry is renewed regularly by periodic announce-
ment messages sent by the process whose name and
address is being stored, Without renewal, the entry is
dropped from the directory, and then this change is
propagated up the the directory hierarchy. As a re-
sult, the consequence of incorrect information in the
DNS is that an incorrect mapping is provided or that
the translation from name to address cannot be made
because the entry does not exist; both of these sce-
narios cause an error in the requesting application. A

third outcome is that there is delay as the mapping is
retrieved from further up the directory hierarchy.

Other Examples. Information maintained by credit
card companies about current usage of a credit card
account is interesting in the context of knowledge, vo-
lition and the estimation framework. If the specifi-
cation is that the directory maintained by the com-
pany knows the current expenditures in an account,
then expenditures on that account can be carried out
only after receiving permission from the directory. (In
some cases, expenditures on large-ticket items require
explicit permission while expenditures on small-ticket
items are done autonomously by the seller of the item,
in which case the directory only has an estimate — but
not knowledge — about the state of the account.)

Directories to keep track of cellular phones and other
mobile communication devices have interesting costs of
error, depending on the nature of the call or the ur-
gency of the communication. Directories in air-traffic
control and other command and control systems have
high consequences of error and therefore estimation
probabilities are required to be high. In some cases,
estimation probabilities are required to be so high that
a good approximation is to design protocols in which
directories know the states of remote sites; for in-
stance, as a first approximation pilots give up voli-
tion to change flight plans without receiving permission
from the air-traffic control system.

3. Design Space

In this section we identify two design issues common
to most directory designs.

1. Should the directory be organized in a central-
1zed, hierarchical, or completely distributed man-
ner? In a centralized scheme, there is a single
repository of information. In a completely dis-
tributed scheme, each process maintains its own
directory and makes decisions based on its own
estimates of remote sites. A hierarchical scheme
partitions the directory information into a tree-like
structure, and processes traverse the hierarchy to
locate information about remote processes.

Hierarchical and distributed schemes use a variety
of caching strategies (or use no caching strategy
at all). Typically these schemes are a function of
the frequency with which a piece of information
(process state) is either retrieved or updated.

2. How and when does a process inform a directory
about state changes? A process can send informa-



tion periodically, with every state change or signif-
icant state change, or only when the information
is requested by a directory.

To answer these design questions, we explore the
parameters that effect these decisions.

3.1. Directory Organization

Centralization. A centralized directory architecture
is suited to the situation where processes reporting
state to the directory are within close proximity of the
directory itself. Centralization also makes sense when
the ratio between reporting processes to computational
overhead at the directory is small, or the ratio between
reporting processes to network overhead is small. If di-
rectory information is relatively static or warrants few
accesses, a centralized scheme also is appropriate.

The main worry is that the directory is potentially
a bottleneck and a single point of failure. As a result,
scaling up becomes less viable, due to the sheer num-
ber of processes or the the geographic distribution of
processes.

Hierarchy. When state information can be parti-
tioned into manageable size components that reflect
directory access patterns, then hierarchy should be in-
troduced into the directory organization. A hierarchi-
cal scheme also should be used if information can be
arranged so that estimates most frequently needed by
a process are available in directories near the process,
and estimates needed less frequently can be obtained
by searching the hierarchical structure. In addition,
the hierarchical scheme should be used if information
can be organized so that directories higher up in the
hierarchy have better estimates than those lower down.
A process obtains information from a nearby directory,
and if that information is incorrect it requests informa-
tion further up the hierarchy chain, as in the telephone
and IP address directories.

Distributed Directories. Distributed directories
replicate information about process state in multiple
places in the network. When is it appropriate to dis-
tribute the directory in this fashion? A distributed
directory is an optimal choice if it is inexpensive to
replicate data among multiple processes and if synchro-
nization for consistency among the directories is either
unnecessary or trivially enforced (due to the number of
participating entities).

There are gradations of directory distribution. One
extreme is to fully distribute the directory, where ev-
ery process participates in the directory protocol. The

key advantage to this approach is that the directory
processes no longer obtain knowledge indirectly. Each
directory gains remote process knowledge from the re-
mote process itself, rather than through a proxy acting
on behalf of the remote process. Consequently, the es-
timation probability will be higher.

Nonetheless, this approach exhibits some of the
same shortcomings as a centralized architecture. It
has the problem that storing all process state together
in one place consumes significant memory or disk re-
sources. In addition, because all processes are directory
processes, message generation may present challenges,
as all processes send state information to all other pro-
cesses. Another scaling issue emerges if the frequency
of message exchanges is high. This is problematic if
the bandwidth used by the processes in the aggregate
exceeds the link capacity or some predesignated upper
threshold.

Therefore, a fully distributed directory architec-
ture is a useful approach when there are limited di-
rectory processes, when it is inexpensive for this set
of processes to fully communicate (perform multiway
communication), and when storage and computational
overhead of keeping full but approximate global state
is low. For applications that permit inconsistencies
among directory contents [7], or those that only need
eventual consistency [3], the fully replicated directory
provides the greatest immediacy of state information,
as there are no intermediaries required.

More moderate forms of this architecture use coarser
grain replication, providing just a few replicated di-
rectories. This approach is appropriate when a fairly
small number of replicated directories sufficiently can
manage the remote process state and accesses to it.
Thus the disadvantages are eliminated. For example,
there has been an increased amount of discussion about
Web caching. The notion is that there should be mir-
ror sites for heavily-accessed Web servers (directories)
to distribute the load on the Web file server, as well
as the network. Fist, where should the caches reside?
Second, how many should there be? The most promis-
ing approaches have suggested that these directories
migrate over time and/or replicate under heavy usage,
in those instances where the server becomes inundated
and must shed some of the load. When there are only
a few directories, it is also possible to employ cache
consistency without prohibitive penalties.

3.2. Directory Maintenance

There are two approaches for processes to share
state information with directory processes: passive and
active messaging. Passive messaging is a technique



where processes distribute state information to direc-
tory processes, whereas active messaging is where pro-
cesses send state information in response to the direc-
tory process or processes querying for that information.

Periodic Updates. One passive approach dis-
tributes state information on a regular basis. This is
most appropriate if state information may change at
a rate that matches the periodicity of the announce-
ment interval. It is also useful if the information may
not change, but needs renewal within that timeframe,
if the application using the directory relies on having
timely state information, i.e., higher estimation prob-
abilities, Or the message delivery system is unreliable
and leads to some degree of misinformation, i.e., if a
renewal message is lost.

The update periodicity can be explicitly declared
by the announcing processes, by embedding the value
of the interval duration in the message itself, or by
agreeing on a predetermined update interval. Alterna-
tively, the periodicity can be inferred by the directory
due to the regularity of message receipt, if in fact the
announcement interval is highly regular. Yet another
strategy is to make the periodicity adaptive, so that
network bandwidth is conserved and processing over-
head is reduced.

The choice in periodicity strategies is driven by how
much the processes and the network can afford to carry
additional timing information in the message, by how
much processing is needed to adapt the periodicity to
the load characteristics of the network, and how much
link bandwidth is available.

To focus on the latter point, often network band-
width is greater in the local area than in the wide area,
and thus the frequency of state information updates
can be more rapid within the local area than in the
wide area. Yet, it may be the case that the processes
that care most about timely state information are ge-
ographically further away, in which case the context of
the directory plays as important a role as bandwidth
constraints. One caveat is that the further away the
processes from the directory where state is stored, then
the more the network is impacted by state updates.

Furthermore, rapid state information dissemination
does not necessarily improve knowledge estimation. If
the periodicity of message announcements is too high,
then the network may be inundated and more messages
may be dropped, leading to worse approximations of
global state.

Significant State Changes. Another optimization
is to have processes only report significant state
changes. If process state changes infrequently, then

this approach produces useful savings. However, this
depends on a reliable messaging infrastructure, which
may or may not be provided by the underlying network
fabric, and may have to be built in.

Active Requests. In situations where the rate of
state changes is extremely low, an active messaging
approach should be employed. In passive messaging
approaches, the interactions between the directory and
the announcing processes were considered critical to
protocol design. With active messaging, the interac-
tions between the directory and the requesting pro-
cesses (the processes relying on the information in the
directory) have more impact on the protocol outcome.
Here, there are more query messages generated by re-
questing processes, than state changes produced by the
processes reporting to the directory. As a result, the
placement of the directory may be closer (in network
delay terms) to the community of requesting processes
than to the community of reporting processes.

4. Mathematical Issues

In this section we give a few examples that illustrate
the basic mathematical issues. It should be no surprise
that Bayes’ rule is the fundamental rule in this analysis
since the concept of estimation is based on conditional
probability.

Our goal in this paper is to give a gqualitative idea
of how estimation probabilities are used in our design
framework. We do so by considering a few simple ex-
amples. Lack of space prohibits a more detailed discus-
sion of our framework and its associated mathematics.

4.1. A Simple Example: A Processwith Two States

Problem Specification. Consider an example con-
sisting of a directory p and a process ¢ where ¢ has
two states, active and idle. We associate the boolean
g.a with process ¢, where ¢q.a holds true if and only if
q is in the active state, and q.a is false if and only if
q is in the idle state. Associated with directory p is
a real number p.c which is the conditional probability
that ¢ is active given the information in p. Our prob-
lem is to explore different kinds of information stored
in the directory and different ways for ¢ to communi-
cate information to the directory so as to maximize p.c
subject to computational, storage and communication
constraints.

Assumptions. Assume that the duration of time
that ¢ remains continuously in the active state, before



it next transits to idle, is a random variable X, and let
the time that ¢ remains in the idle state before it next
transits to active be a random variable Y. All active
(and idle) durations are independently and identically
distributed. Assume that the average active and idle
durations are much greater than message delays. This
assumption is justified in applications such as those
where states represent the availability or unavailability
of a user to participate in a videoconference; in this
case, the average time between state transitions is on
the order of several minutes whereas message delays
are in seconds.

Let us assume that messages from ¢ to the directory
p are delayed by a constant U time units. Later, we
relax the assumption that all messages are delivered.
The constant-delay assumption helps in giving an in-
tuitive understanding to the issues involved.

We assume that the distributed system has a global
clock.

A Simple Protocol. One of the simplest solutions
is for ¢ to send a message containing the value of gq.a
to the directory p each time ¢ changes state. The di-
rectory keeps the contents of the last message and the
time that the message was sent by ¢. Let p[g].m be the
contents of the last message received by p from ¢, and
let p[q].t be the time at which the message was sent.
Let T be the current time. Given p[q].m, p[g].t and T
we wish to estimate the conditional probability that ¢
is active, as shown in Figure 2.

unchanging between
message arrivals
e
Conditional
probability
remote site
is active
¢ /
active message idle message
arrives arrives
Time —

Figure 2. No Message Loss: exponential holding times.

Analysis. Let plg].m = true, i.e., the last message p
received from ¢ was sent by ¢ when ¢ made a transition
from idle to active. Let the value of p[q].t be ¢; there-
fore, the time at which this message was sent by ¢ was
t. Recall that 7" is the current time. Since the message
delay is a constant U, no message was sent by ¢ in the

interval [t,T—U]. Therefore, ¢ remained active in that
interval. If ¢ is now idle, then it made the transition
from active to idle in the interval [T'— U,T]. There-
fore, the conditional probability that ¢ is idle at time
T' is the probability that ¢ transits from active to idle
in the interval [T'— U, T'] given that ¢ transits to active
at time ¢ and remains active in the interval [t,7 — U].
Recall that we make the assumption that U is small
compared with the average values of X and Y'; so the
probability of more than one state transition while a
message is in transit can be ignored.

prob(q idle at T' | p[q].m, p[q].t = true, 1)
=prob(T—t—-UL<X<T—-t|T-t-U<X)

A similar analysis can be carried out for the case
where p[q].m = false.

If X is an exponential random variable, then this
conditional probability is independent of 7' — ¢ and in-
creases as (1 — eU/d) where d is the average duration
of an active interval. For small values of U/d this con-
ditional probability increases linearly (as U/d). The
mathematical and qualitative analysis are similar if X
has other distributions where X is bounded above by a
constant U and where U/d is small. This approach is
reasonable if U/d < 0.05 and estimates with confidence
90% are adequate, which is often the case.

4.2. Faulty Communication Channels

Our goal here is to gain a qualitative understanding
of the effect of message loss. We analyze a case identical
to that considered in the previous section except that
messages may be lost. The protocol is the same as in
the previous paragraph: process ¢ sends a message to
the directory p each time ¢ changes its state.

Consider the case where a message sent by ¢ to the
directory is delivered with probability ¢ and is lost with
probability 1—g. If the message is delivered, its delay is
a constant U. Let us analyze the situation considered
in the previous section in which the directory receives
a message sent at time t by ¢, stating that ¢ made a
transition from idle to active at time ¢, and the direc-
tory has received no subsequent message. What is the
confidence with which the directory estimates that ¢ is
active now at time 77

Analysis. The probability that process ¢ is idle at 7',
given that it became active at time ¢, and given that
the directory has received no message after the one sent
at t is the sum of the probabilities that



1. ¢ became idle some time in the interval [¢,T], and
the message that ¢ sent when it made the transi-
tion to idle got lost. This value is g x prob(X <
T-1).

2. ¢ became idle in the interval [T — U, T] and the
message sent will be delivered after delay U. This
valueis (1—g)x prob(T—t—-U < X <T—-t|T-
t—U<X).

Figure 3 shows the shape of the graph of conditional
probability that ¢ is active at T" given information that
the directory receives.

changes between
message arrivals
P
Conditional
probability
remote site
is active
¢ /
active message idle message
arrives arrives
Time —

Figure 3. With Message Loss: exponential holding times.

For large T' and ¢ the estimation probabilities are
low, so the protocol makes decisions based on erroneous
estimates a significant fraction of the time. This is
unsatisfactory in most cases.

An Alternative Protocol. An alternative protocol
that solves this problem is for ¢ to send messages peri-
odically, where the information contained in the mes-
sages indicates ¢’s state. Estimation probabilities get
better as message frequency increases, but traffic re-
quired by the protocol increases as well. An analysis
of this protocol for practical situations requires more
space than we have here. Several interesting questions
arise such as: Should the period at which ¢ announces
that it is active be the same as the period that it an-
nounces that it is idle? Should the periods change dur-
ing the course of an execution (for instance to limit
bandwidth usage by the directory protocol)?

These and other issues are handled systematically
in our project. We examine in the next section the
architectural tradeoffs that lead to different points in
the design space.

5. A Case Study

In this section, we describe a case study that ex-
plores a particular point in the directory design space,
and that illustrates how architectural decisions are
driven by application context.

5.1. Design

We have designed a directory that dynamically up-
dates user location information across wide-area net-
works [7]. Tt is a fully distributed architecture, mean-
ing every process participates in the directory proto-
col. The motivation behind this experiment was to help
collaborative applications find user addresses for those
users it wishes to invite to participate in multimedia
sessions. Such an application has a real need for up-to-
date mappings between a user and the user’s physical
locations on the network. This is an increasingly dif-
ficult problem to solve because of several reasons; the
number of users accessible via the network continues
to grow exponentially, often each user is reachable in
multiple locations at different times, and each user fre-
quently is associated wth multiple aliases.

5.2. Implementation

Each directory process uses periodic multicast mes-
saging [2] to disseminate and collect user state informa-
tion. State information includes naming and address-
ing information for a user. As a result, a directory
is able to track the most recent location where a user
resides, as well as statistics on previous and alternate
locations. Additionally, scope information is included
in messages and thus stored in directories, so that net-
work distances between users (i.e., between their direc-
tory processes) can be derived.

In turn, scope information is used by collaborative
applications, such as teleconferencing, to ascertain the
correct group scopes for real-time sessions, given a par-
ticular collection of users. An estimate of the appropri-
ate group scope is obtained from estimates of pairwise
scopes needed between all users in the group.

5.3. Analysis

How critical are the directory estimates for user lo-
cation?

False Negatives. What if a user’s state information
is not found in the directory when the user is actually



active in the network (i.e., participating in the direc-
tory protocol)? The ramifications of not storing in-
formation about a user is that that user cannot be in-
vited into a conference. However, the only reasons why
an active user’s information might be missing from a
remote user’s directory is that the location announce-
ment messages are not reaching the remote directory
process(es). This would occur if there is congestion in
the network, or the network is partitioned. In both
these cases, it would do no good to try to rendezvous
with the omitted user, since the subsequent confer-
ence could not be sustained by the underlying network.
Therefore, the active user’s omission from a remote di-
rectory is relatively harmless, and is actually a more
accurate assessment of the user’s reachability. Because
the messages are periodic, when the network repairs
itself, the announcement messages once again will flow
to remote directories.

False Positives. What are the consequences of a
user’s information not being removed from the direc-
tory when the user becomes idle in the network? Typ-
ically, when the user is no longer active, it no longer
multicasts location messages to peer user directory pro-
cesses. User information is removed from the directory
if it is not renewed within some timeout period. If
the timeout interval is too short compared to the an-
nouncement interval, then the status of user activity
risks being incorrect. If the timeout interval is too long,
then a user may be reported as active, when in fact the
user is no longer reachable. However, the collaboration
software tries quite hard to reach a user to forward an
invitation request. Consequently, it sends invitations
to both past (idle) and present (active) addresses for a
particular user (sequentially or in parallel); either the
user resides at one of the locations, or at none of them.
Therefore, the consequences of an incorrect estimate in
the local directory is the overhead of storing the entry
and the overhead of the local user sending an invita-
tion request (or requests). This translates into either a
minor delay at conference initialization if messages are
sent sequentially, or false hope that a conference can
meet when it cannot; both are fairly minor errors to
endure.

What if the address for
a user is correct, but the scope is not? If the scope is too
large, the real-time data flows potentially are sent to
disinterested parts of the network, using up bandwidth.
If the scope is too small, some session participants will
be unreachable. This may cause a delay in full ses-
sion connectivity as the scope value is incrementally
adjusted to reflect the real group scope.

Other State Inaccuracies.

5.4. Future Work

In the future, we will evaluate the applicability of
other fully distributed and hybrid architectures (a com-
bination of distributed and hierarchical approaches).
Our interest stems from two important developments.
First, the emergence of IP multicast [2] allows a re-
duction in the overhead associated with group com-
munication, which makes efficient multiway messaging
tractable in the wide area. Second, the use of adap-
tive soft-state protocols (ones that rely on approximate
rather than guaranteed agreement of global state) per-
mits such an architecture to scale more effectively, pro-
vided the directory can withstand, and even take ad-
vantage of, temporary or permanent inconsistencies in
global state of directories.

6. Summary

In this paper, we presented a new framework for
thinking about directories and expanded the scope of
what is defined as a directory. We showed that pro-
cess knowledge is too strong a concept for distributed
directories and suggested the weaker but more appro-
priate concept of estimation. We introduced a spec-
ification for distributed directories, with an objective
function to maximize estimation probabilities, while
minimizing the consequences of incorrect assumptions.
Through examination of infrastructure properties, in-
formation locality, and specific examples of directory
usage, we identified the key issues in the directory de-
sign space. We discussed informal guidelines to help a
designer locate an appropriate architecture within this
space, given certain constraints; our ongoing work is to
refine and to formalize this methodology. An overview
was given of the mathematical foundations for direc-
tory performance analysis, which provided a qualita-
tive glimpse of how directory estimation might be de-
rived and evaluated. Finally, we described a case study
of a fully distributed directory service for collaborative
applications needing user location in the Internet.
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