
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter &ce, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. IDgher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information ConqaiQr

300 North Zed) Road, Ann Aibor MI 48106-1346 USA
313/761-4700 800/521-0600

Parallel hierarchical global illumination

by

Quinn O. Snell

A dissertation submitted to the graduate faculty

partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Major Professor: John L. Gustafson

Iowa State University

Ames, Iowa

1997

DMI Nximber: 9737760

UMI Microform 9737760
Copyrigiit 1997, by UMI Company. All rights reserved.

This microfonn edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

ii

Graduate College
Iowa State University

This is to certify that the Doctoral dissertation of

Quinn O. Snell

has met the dissertation requirements of Iowa State University

iber imit

Comi^itte^ Member

Committee Member

Major Professor

For t jor Progr;

or the ate College

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

iii

DEDICATION

For my sweetheart. Kristy, it's finished.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS x

1 GLOBAL ILLUMINATION 1

The Rendering Equation 3

Dissertation Structure 5

2 GLOBAL ILLUMINATION ALGORITHMS 6

Ray Tracing 6

Radiosity 9

Two-Pass Approaches 13

Extended Radiosity 13

Summary 14

3 MONTE CARLO TECHNIQUES IN COMPUTER GRAPHICS . 16

Background 17

Monte Carlo Integration 18

Modified Ray Tracing 19

Monte Carlo Simulation 19

Light Transport Simulation 22

Adaptive Histogramming 23

Summary 26

4 PHOTON 27

Algorithm Description 27

V

Photon Generation 28

Intersection Determination 31

Reflection 32

Four-Dimensional Histograms 32

Viewing Simulation Results 37

Summary 39

5 PARALLELIZATION OF PHOTON 40

Parallelization Issues 40

Performance 40

Random Number Generation 41

Test Configurations 42

Shared Memory Parallelization 43

Distributed Memory Parallelization 45

Data Distribution 45

Load Balancing 48

Communication vs. Computation 49

Results 50

SGI Power Onyx 51

SGI Indy Cluster 53

IBM SP-2 53

Visualizing Performance 55

Summary 57

6 CONCLUSION AND FUTURE WORK 61

Photo-realism 61

Massive Parallelism 62

APPENDIX

BIBLIOGRAPHY

vii

LIST OF TABLES

Table 5.1 Test Geometry Sizes 42

Table 5.2 Total Photons Processed using Naive Load Balancing Versus Bin

Packing. All counts are in thousands of photons 49

Table 5.3 Simulation Batch Sizes 50

viii

LIST OF FIGURES

Figure 1.1 Definition of Radiance 2

Figure 1.2 Geometry for Kajiya's Rendering Equation 3

Figure 1.3 Geometry for Immel's Rendering Equation 4

Figure 2.1 Ray Tracing Basics 7

Figure 2.2 Ray Traced Scene 8

Figure 2.3 Geometry for Radiosity Equation 10

Figure 2.4 Spherical Harmonic Approximation to Specular Reflection Using

30 Terms 13

Figure 3.1 Probability Density 18

Figure 3.2 Histogramming 21

Figure 3.3 3-Dimensional Histogramming 22

Figure 3.4 Adaptive Histogramming 24

Figure 3.5 Adaptive Histogram Algorithm 25

Figure 4.1 Algorithm used by Photon 28

Figure 4.2 Photon Emission 29

Figure 4.3 Photon Generation Algorithm 30

Figure 4.4 Scaling for Directional Lighting 31

Figure 4.5 Dimensions used in Histogram Binning 33

Figure 4.6 Photon Data Structure 34

ix

Figure 4.7 Harpsichord Practice Room 35

Figure 4.8 Cornell Box with Mirror 36

Figure 4.9 Viewing Stage 37

Figure 4.10 Different Viewpoints Using the Same Answer File 38

Figure 5.1 The Computer Laboratory 43

Figure 5.2 Shared Memory Algorithm 44

Figure 5.3 Distributed Memory .Algorithm 46

Figure 5.4 Memory Requirements for the Harpsichord Practice Room 47

Figure 5.5 Data Distribution for Parallel Photon 47

Figure 5.6 Shared Memory Speedup Results (Cornell Box) 51

Figure 5.7 Shared Memory Speedup Results (Harpischord Practice Room) . 52

Figure 5.8 Shared Memory Speedup Results (Computer Laboratory) 52

Figure 5.9 Indy Cluster Speedup Results (Cornell Box) 54

Figure 5.10 Indy Cluster Speedup Results (Harpsichord Practice Room) ... 54

Figure 5.11 Indy Cluster Speedup Results (Computer Laboratory) 55

Figure 5.12 SP-2 Speedup Results (Cornell Box) 56

Figure 5.13 SP-2 Speedup Results (Harpsichord Practice Room) 56

Figure 5.14 SP-2 Speedup Results (Computer Laboratory) 57

Figure 5.15 Performance and Speedup vs. Complexity 58

Figure 5.16 Visual Speedup 59

X

ACKNOWLEDGMENTS

I am grateful to all who helped and supported me towards the completion of the

Ph.D. degree. Many of those people cannot be named, but special thanks must go to

the following individuals:

John Gustafson, thank you for trusting in me and for your unselfish attitude in all

our work together. I will always be thankful for the chance to work with you. You have

made an indehble impact on my life.

Nan Ripley, thanks to you I made it through all the red tape and trips that came

along with my research. You have been a great friend.

Kristy Snell, my wife and family are most important in my life and without you, I

would have neither. You have held the family together during those long weeks at the

end of each semester and especially during the last stages of writing. I will always love

you.

Many others are too numerous to mention. A Ph.D. is not the work of just one indi­

vidual. I have received help from many people through discussions and simple kindness.

Thank you to all.

This work was performed at Ames Laboratory under Contract No. W-7405-Eng-82

with the U.S. Department of Energy. The United States government has assigned the

DOE Report number IS-T 1816 to this thesis.

1

1 GLOBAL ILLUMINATION

The field of computer graphics has changed dramatically over the last two decades.

One of the major goals has remained constant: Display a scene on the computer that

is photorealistic. In other words, display a computer-generated scene that is indistin­

guishable from a photograph of the actual scene. Accomplishing this task amounts to

correctly simulating all lighting effects within the scene.

The correct simulation of lighting effects involves determining how much light is

received at each point and what happens to the light after it hits a given point. The

reflection of light is governed by well-known laws such as Snell's law and the Fresnel

equations. Determination of the amount of light at a given point is performed by an

illumination model. Illumination models come in two varieties: global and local. In a

local illumination model, illumination on a surface depends only on the surface properties

and the light sources. Local illumination models do not account for illumination due to

reflection off surfaces in the scene. Global illumination models consider all objects as

sources of illumination.

The solution to the global illumination problem has many applications, architectural

rendering and virtual reality being two of the more popular. In general terms, the global

illumination problem is the determination of the color and intensity of light given off

from every point in an environment in every direction. This contrasts with ray tracing,

which attempts to estimate the light seen from one viewpoint. Global illumination is

key to virtual reality eff'orts since correct views can be displayed quickly as the viewpoint

moves.

2

m

Figure 1.1 Definition of Radiance

The physical quantity desired for global illumination is the radiance, L, at point x,

in direction tj) (see Figure 1.1), described in the following equation [42, 45]:

L(x, V) =
dl

(1.1)
dA cosQ

where i/* is a direction described by a vector or a (0, (j>) pair in spherical coordinates.

The quantity I is the radiant intensity computed as:

/ =
du)

(1.2)

where uj is the solid angle originating at the point and $ is the radiant flux.

Equation 1.1 shows that radiance is a function of position, x, and viewing angle,

{9,0). Therefore, any algorithm proposed to solve the global illumination problem must

present a solution that is likewise dependent on position and viewing angle.

3

The Rendering Equation

The mathematics involved in a global illumination model have been summarized in

a high-level continuous equation known as the Rendering Equation. The Rendering

Equation was proposed by two authors in 1986: Kajiya [29] and Immel [27]. The rep­

resentations are similar in that both are Fredholm Equations of the Second Kind. The

differences will be discussed below.

The Rendering Equation as expressed by Kajiya is:

where:

I(x, x') is the intensity of light passing from point x' to x

g{x, x') is a "geometry term" explained below

e(x, x') is the intensity of light emitted from x' to x

p{x, x', x") is the intensity of light scattered from x" to x through x'

S is the set of all surfaces in the scene

The geometry describing Kajiya's Rendering Equation is shown in Figure 1.2. The

three-point transport from x" through x' to x accounts for the directional reflectivity

(1.3)

Figure 1.2 Geometry for Kajiya's Rendering Equation

4

of specular surfaces. The function g{x , x ') is a determination of the visibility of x from

x', and takes a value of 1 if there is an unoccluded path between x from x", or 0 other­

wise. It can also be used to simulate fog effects by assigning a percentage based on fog

distribution. Note that, in this form, the equation integrates over all surfaces S.

in

'out

Figure 1.3 Geometry for Immel's Rendering Equation

Immel et al. formulate this equation in terms of radiance and thus integrate over all

incoming angles (see Figure 1.3).

Lout{-Xi, i>) = i^e(x, 1p)+ [p(x, ^')Lin{x , r j } ') COS e'du' (1.4)
J

where:

X is a vector representing a point in the scene

•0 is a direction represented as a (0,0) pair

is the radiance leaving point x in direction xp

Linix,^}') is the incoming radiance at point x in direction ij)'

Le is the emitted radiance

p is the bidirectional reflectance distribution function (BRDF).

This formulation does not include provisions for occlusion at this point. It is ac­

counted for during discretization using the function HID{i,j,d) which evaluates to 1 if

5

patch i is visible from patch j along direction d, 0 otherwise. This is equivalent to the

geometry term g{i,j) used by Kajiya. The BRDF is simply the radiance of the surface

seen from point x in direction ij} divided by the incident power per unit area. Determi­

nation of the BRDF for a given surface is a diflBcult task. It has become a related field of

research and is being examined by many [54, 24, 11]. The graphics program at Cornell

University under the direction of Donald Greenberg and Ken Torrance has developed

methods for measuring the BRDF for a given surface [14].

Dissertation Structure

This dissertation discusses the approaches to global illumination and in particular the

search for a global illumination algorithm that converges to a solution of the Rendering

Equation and is amenable to parallelization. The various algorithms axe presented in

chapter 2 along with an analysis of their respective prospects for parallelism.

Chapter 3 presents a general class of algorithms which use Monte Carlo simulation.

Monte Carlo integration is introduced and its application to global illumination is dis­

cussed. The chapter also analyzes current approaches to global illumination that use

Monte Carlo techniques.

A new algorithm based on Monte Carlo simulation of light transport, called Photon, is

presented in chapter 4. Also included is a new approach to histogramming the statistical

results of the Monte Carlo simulation. The chapter ends with a discussion of whether

the method converges to a solution of the Rendering Equation.

The parallelization of Photon is explained in chapter 5. Sources of parallelism are

examined and issues such as data decomposition, load balancing and performance are

discussed. Chapter 6 presents conclusions and examines areas of future research, and a

paper presenting these results that was published in the Proceedings of the Sixth Inter­

national Conference on High Performance Distributed Computing is in the Appendix.

6

2 GLOBAL ILLUMINATION ALGORITHMS

With the background from chapter 1, we can now examine the various global illumi­

nation algorithms. The algorithms can be grouped together in two basic classes: those

that solve for only a single viewpoint, and those that attempt the full global illumination

solution and solve for every possible viewpoint. These algorithms either directly solve

an equation which jdelds the intensity of light for every point in the scene or attempt

to compute the intensity heuristically. The computation may use a deterministic or a

Monte Carlo algorithm. The remainder of this chapter will consider deterministic solu­

tion methods. Algorithms that use Monte Carlo methods will be addressed in the next

chapter.

Ray Tracing

Ray tracing from the viewpoint, as introduced by Whitted [55], was partly introduced

to reduce the heavy computational requirements of forward ray tracing. The idea was

to compute only what was being viewed. These traditional ray tracing methods are

backward in that they start from the viewer and estimate the radiance by summing

the effects of light sources on the point of closest intersection. Ray tracing calculates

the radiance at a point by sending a ray from the viewpoint through a hole in the

viewplane corresponding to a pixel and determining the point p of closest intersection

(see Figure 2.1). If p lies on a non-specular surface, the radiance is calculated based on

an extension to the Phong [37] model. The intensity I for point p with normal N in the

7

shadow rays

Figure 2.1 Ray Tracing Basics

Whitted model is:

I = la + kd ^(N - Ly)/,- + k sS + ktT (2.1)
j

where:

la is the intensity of light due to ambient reflection

kd is the diffuse reflection constant

ks is the specular reflection constant

kt is the light transmission coefficient

Lj is the unit vector in the direction of light source j

S and T are the intensity of specularly reflected and transmitted light.

The vector Lj is often termed a shadow ray as it also serves as a determination of

whether light source j is visible from point p. If a given light source is not visible,

its effects do not contribute to the sum. The computational complexity of ray tracing

increases with the number of light emitters whose effects must be added. Ray tracing

is not physically correct because radiance depends on the light input from all surfaces,

Figure 2.2 Ray Traced Scene

not just liglit emitters.

An example of a ray traced scene is shown in Figure 2.2. One of the disadvantages

can be easily seen in this example. Since point light sources are used, the shadows from

the spheres are very sharp even as the distance between the sphere and the ground

plane grows. Also note that there is no color interaction between the blue sphere and

the ground plane. In a natural environment, the colors of the ground plane would be

affected by the blue of the sphere. The effect would be especially evident in the white

blocks. More subtly, the refraction of the transparent sphere is too perfect. The sphere

shows no reflective properties. A real crystal ball tends to reflect and refract. While this

could be added to the geometry, it would greatly increase the complexity and run time

of the program. An advantage of ray tracing is that it parallelizes with little effort if

each processor can contain the entire geometry description. However, it never converges

to the correct answer for realistic surfaces and thus the parallel efficiency is moot.

9

Radiosity

The class of radiosity algorithms came out of the study of radiant heat transfer.

Instead of solving for radiant heat energy, the solution is found for visible light. Radiosity

methods solve the Rendering Equation for the special case in which all surfaces are ideal

difiuse reflectors. In other words, the radiance L is independent of the angle of emittance.

Remember that Immel's formulation of the Rendering Equation 1.4 is

= Lou t {y , f p ') -

For ideal diffuse reflectors, the BRDF reduces to a constant and can thus be moved out

of the integral. The Rendering Equation then becomes

Li„(x) = Le(x) +p(x) I Lout{y)cose'du}'.
Jrj,

We can then use the following relationship and convert the equation to a surface integral:

Lcmt{'X., i}) = i^e(x, V') + p(x, ^')^m(x, 'ij)') COS O'cLo'.

Since radiance is preserved along a line of sight.

This yields

Lant{-x) = Le(x) + p(x) Lout{y)
cos 9 COS 6'

d y . (2.2)

This is the continuous form of the Radiosity Equation. The representative geom­

etry is found in Figure 2.3. The quantity is referred to as the point to point

geometrical form factor between x and y. It is often represented by the function F(x, y).

10

N

Figure 2.3 Geometry for Radiosity Equation

The continuous form of any equation is difficult to deal with in a computer environ­

ment. For numerical computation, Equation 2.2 can be written in discrete form. At this

point, the geometry term g{i,j) is also added to account for occlusion.

While determination of the pointwise form factors is straightforward, the determi­

nation of the form factor between two arbitrary patches is not. It amounts to a surface

integral across the patch at point x for all points on surface y, resulting in

A detailed discussion and the closed form of the form factor for two arbitrary patches

can be found in [39]. While a closed form exists, computation is a very arduous task.

The complexity of form factor determination is perhaps the biggest motivation for Monte

Carlo methods as there is no need to compute the form factor. Since the accuracy of

the global illumination solution is only desired to a fixed precision, the form factor is

often estimated using two circular patches for which closed form expressions of the form

factor are simple.

Lout{ i) — 9{h j) Le { i) -f- p{ i) j) . (2.3)
j=i

(2.4)

11

To produce a solution of equation 2.3, the surfaces of a scene are discretized into

small patches p{i),i = 1 to AT, which are assumed to be of constant radiance Lou.t{i)

and constant reflectivity p{i). The equation is applied for each patch in the scene. This

reduces (2.3) to a system of linear equations solvable by traditional Gaussian elimination

[6, 7] expressible by

(/ - pF)b = e, (2.5)

where:

I is the identity matrix.

P is the reflectivity vector.

F is the form factor matrix,

b is the radiosity vector, and

e is the emittance vector.

All reflectivity values are positive and less than one, and the form factor matrix row

sums total one with the diagonal element equal to zero. The resulting matrix is one

in which the diagonal elements are ones and the sum of the absolute values of the off-

diagonal elements is less than 1. The resulting Gerschgorin circle [28] is centered at 1 with

radius less than 1. Therefore, the eigenvalues are all positive and thus the matrix that is

formed is diagonally dominant, making the system solvable using iterative methods such

as Jacobi and Gauss-Seidel iteration [8]. If the reflectivity range is bound, the condition

number of the matrix is known. For a known answer precision and condition number,

the number of iterations is constant thus reducing the complexity of the problem from

0{N^) to 0{N^). A detailed discussion of this can be found in [6].

In 1991, Hanrahan et al.[23] applied hierarchical methods similar to those used by

Appel's N-body algorithm [2] to radiosity. The method relies on the fact that, like N-

body calculations, the interaction between patches decreases as the square of the distance

12

between them. This means that patches that are farther away can be grouped and

summarized by a single geometrical form factor. The algorithm adaptively subdivides

a surface into smaller patches to improve the accuracy of the geometrical form factor.

The adaptive subdivision introduced by Hanrahan improved answer quality and reduced

storage compared to full discretization, where all patches are of the same size regardless

of importance. However, the adaptive nature depended not on the overall error in the

answer, but on the error in a single form factor. Reducing the error in a form factor

by half does not necessarily reduce the overall error similarly. Consider a comer in the

shadow underneath a desk: Refining the geometry by splitting patches in this area does

not improve overall answer quality. It is dark and thus the error associated with the

patches will be small. Hanrahan's method incorrectly assumes that answer quality is

proportional to the number of patches. What results is a plethora of patches that may

be unnecessary.

Hanrahan uses an idealized one-dimensional proof to state that hierarchical radiosity

i s 0 { N) . Tha t i s , t h e work a s soc i a t ed w i th a nd iV-p a t ch p rob l em i s p ropo r t i ona l t o N.

It makes no statement about closeness to a physically correct answer. This is true in a

one-dimensional world, however, it does not consider the added complexity of two and

three dimensions. In one dimension, each patch interacts with a constant number of

patches making it 0{N). In two and three dimensions, this is not the case.

It is clear that pure radiosity methods cannot yield a true global illumination solution

for general surfaces. The answer produced is view-independent, but it does not account

for glare effects, mirrors, or glossy surfaces. Surfaces and effects such as these have

different radiance depending on the view angle. Also, due to the tightly coupled nature

of these progressive radiosity methods, parallelization has met with little success [7, 51].

But perhaps most importantly, methods for estimating form factors are fraught with

difficulties and are nonconvergent or very slowly convergent to the correct values.

13

0.8

2 0.6
o

o
c _g
o
S
u.

0.2

-0.2

0

-0.4
-1.5 -1 -0.5 0 0.5 1

Deviation from Specular Angle in Radians
1.5

Figure 2.4 Spherical Harmonic Approximation to Specular Reflection Using
30 Terms

Two-Pass Approaches

Radiosity correctly accounts for illumination from diffuse surfaces. The formulation

above, however, cannot model any other surface. In light of this fact, many [46, 53] have

added a secondary ray tracing pass to account for viewing angle-dependent illumination.

In the first pass, the system is solved using radiosity methods for the diffuse surfaces and

lighting effects. Then a ray tracing pass is performed which follows specular transfers.

While the method produces pictures that are appealing to the eye, they are not physically

correct and do not accurately account for the semi-diffuse reflections that occur in nature.

Extended Radiosity

Radiosity does not account for specular reflection, and two-pass approaches are not

physically correct. Radiosity is an attractive approach in that it directly solves the Ren­

dering Equation. Sillion [44] uses spherical harmonics to summarize the directional light

intensity at each vertex. This method has problems accurately representing specular

14

reflections. To understand this, consider a specular reflection function such that a spike

of intensity occurs at some point. The use of spherical harmonics to represent the spike

is shown Figure 2.4. Even at 30 terms the accuracy leaves much to be desired, and

moreover, there will always be ringing near the spike. Also, requiring possibly hundreds

of terms for each specular reflective spike is an excessive demand on memory.

Recently, Aupperle [4] has extended hierarchical radiosity to account for specular

effects using three-point light transport. His algorithm is based on directly solving the

Rendering Equation using a method similar to Hanrahan's approach to radiosity. The

geometrical form factors become 3-point transfer percentages rather than the 2-point

transfer percentages used in radiosity. In other words, the method must determine and

record the percentage of light from patch x" that bounces off patch x' and hits patch x,

thus accounting for specular reflections.

Aupperle's algorithm is appealing in that it directly solves the Rendering Equation,

but computation amounts to a hierarchical tensor product. This is computationally

intensive and the prospects for parallelism are small due to its tightly coupled nature.

Another drawback of this method is that it only computes the light seen from each

surface in the scene. This means that to see the scene from any other point in space, a

physical viewplane must be inserted into the scene. This severely restricts the views to

those of a "fly on the wall." Perhaps most importantly, it inherits the error of Hanrahan's

method of equating patch count to answer quality, producing a proliferation of patches

that have little contribution to error reduction.

Summary

This chapter has considered various global illumination algorithms. Ray tracing is

based on tracing the supposed path of light from the viewpoint backwards into the scene.

While this reduces the computational effort and is highly parallel, it does not give the

15

physically correct solution. Radiosity is based on solving for the equilibrium light ra­

diation in a room. The solution method considers the global effects of light transport,

but does not solve for view-angle dependent effects such as specular reflections. Since

radiosity methods solve for global effects and ray tracing works well for specular effects,

two-pass methods have been developed using a hybrid radiosity ray tracer. However,

this approach is also not physically correct. It does not correctly account for semi-

diffuse reflections. Lastly, we considered an extension to radiosity in which the global

illumination equation is directly solved based on three-point light transport. This ef­

fort is appealing, but due to the tightly-coupled hierarchical three-dimensional matrix,

parallelization efforts for it appear doomed.

16

3 MONTE CARLO TECHNIQUES IN COMPUTER

GRAPHICS

The term "Monte Caxlo method" refers to any algorithm which uses random numbers

to generate a statistically convergent solution. Monte Carlo methods are employed in

many areas such as computational physics, computational chemistry, and operations

research, as well as computer graphics. Most of these algorithms fall into one of two

categories: Monte Carlo integration, and Monte Carlo simulation.

Monte Carlo integration is the term applied to algorithms that use random numbers

to approximate integrals. If a physical process is modeled using random numbers, the

algorithm is referred to as a Monte Carlo simulation. Both techniques have been used in

the field of computer graphics for calculations such as radiosity and in distribution ray

tracing [10, 9] for soft shadows and motion blur effects. The distinction will be clarified

below.

In this chapter, the basics of Monte Carlo integration and simulation are presented.

The discussion will cover the general techniques and present relevant global illumination

algorithms. For a more general treatment of Monte Carlo techniques, the reader is

referred to one of the classic Monte Carlo texts [22, 43, 56] or more recent publications

[49, 31].

17

Background

Monte Caxlo algorithms are based on the use of random variables. To understand

and appreciate this class of algorithm, one must understand some basic properties of

random variables from probability theory.

Random variables come in two varieties: continuous and discrete. Because problems

in computer graphics involve integrals of continuous functions, we will focus on contin­

uous random variables. A random variable is considered to be continuous if it can take

on any value in the interval (a, b) and its density can be represented by an integral. The

variable ^ is defined by specifying the interval containing all its possible values, and a

function, p{x), called the probability density function. Given an interval (a', b') such that

a < a' < b,a' < b' < b, the probability that ^ falls in the interval (a', b') is equal to

Figure 3.1 shows a graphical view of this. The area of the shaded region is the probability

that ^ falls in the interval. The density function must satisfy two conditions:

1. The density is strictly positive in the interval (a, 6):

p{x) > 0. (3.1)

2. The integral of p{x) over the interval is equal to one:

(3.2)

The expected value, E{^), of the random variable ^ is

(3.3)

18

y = p (x)

Figure 3.1 Probability Density

and the variance of ^ is

variO = E{e) - (E(Or (3.4)

Monte Carlo Integration

It can be shown [22, 43] for an arbitrary continuous function f (x) and random vari­

able 7/ = /(^) that

rb

E i r f) = [f { x) p { x) d x ,
J a

which can be approximated as

N

t=l
(3.5)

This leads to the idea of Monte Carlo estimation of integrals. If we simply substitute

g{x) for f{x)p{x) we arrive at

L ' , X , ^1 - ^ g i x i)
(3.6)

19

Note that, due to (3.1), there will never be a division by zero. However, in situations

where the probability p{xi) is very small, the division amplifies roundoff error and results

in a poor numericai approximation. Using this method, researchers have approximated

the value of integrals found in computer graphics such as the BRDF.

Modified Ray Tracing

Veach and Guibas [52] have extended ray tracing by using Monte Carlo methods to

evaluate the BRDF. At each ray-surface intersection, the BRDF is sampled by emitting

an appropriate distribution of rays and summing their contribution. For a diffuse surface,

the distribution examined would be widely scattered, but for a specular surface the

distribution would be much more narrow. This method seems to correctly solve for the

radiance given a single viewpoint; repositioning requires recomputation. This method

is suitable for generating still images, but it is patently inefficient for use in touring a

scene. The recomputation of global illumination for each viewpoint would not allow for

the redraw speeds needed.

Monte Carlo Simulation

All Monte Carlo methods are simulations of some physical process. Consider the

evaluation of a definite integral in 2-D space. The process that is being simulated is a

hit-or-miss process. Random points are repeatedly picked and determined to be below

or above the curve. In the end, the ratio of the number of points below the curve to the

totai points is used to estimate the area and thus approximate the integral.

In some c£ises, it is convenient to focus on the process to be simulated rather than

the definite integral being evaluated. Many times, a statistical model of behavior is

known but an analytical model is not. These processes are candidates for Monte Carlo

20

Simulation.

The defining difference between Monte Carlo Integration and Monte Carlo Simulation

is the effect of rajidom numbers on the algorithm. Monte Carlo Integration uses random

numbers and their respective probability to approximate an integral, but the random

numbers do not affect the decisions that are made in the algorithm. A simulation

based on Monte Carlo methods relies on the random numbers to control the flow of the

simulation. Decisions are made based on random probabilities.

In particular, consider the process by which light is radiated throughout a scene.

Rather than try to solve the integral equation, the behavior of light can be numerically

simulated. The simulation involves emitting photons from the light source and tracing

them throughout the scene. This seems like a simple method, and it is simple in many

ways. The problem that must be faced is that for each photon, all its interactions must

be accounted for and recorded. Since a numerical simulation of light in a scene must

emit large numbers of photons, the memory space required for the interactions is also

very large. The process is also computationally intensive. Emitting a photon amounts

to tracing the photon through the scene and determining its intersection points. This

method was disregarded in the early 1980s due to its heavy resource demands. It was

at this time that Whitted introduced his ray-tracing method which only considered the

subset of rays that were actually seen and a subset of the contributions to the color of

each ray.

If the intensity of reflected light from a surface is expressed as a function, determining

the intensity of light for all points is much like determining an unknown function for

which Monte Carlo methods also serve well. If we can determine whether a given point

is above or below the curve, we can determine the area under the curve. Further,

if we discretize the domain, the area for each subinterval can be determined. As we

choose random points in the interval, the containing subinterval is determined and a

tally is maintained. In the end, the relative subinterval hit counts will reveal the shape

y

A

21

0 a

Figure 3.2 Histogramming

of the curve (see Figure 3.2). Obviously, the accuracy of this method depends on the

discretization. A finer discretization will produce a higher resolution curve but will

require more storage.

In like manner, v/e can determine the view-independent radiance function along a

surface; simply replace the area histograms with volume histograms. Imagine the in­

tensity of light given off by a polygon as a functional surface where the height of the

function indicates intensity (see Figure 3.3). Now we can follow a similar algorithm to

determine this function. This works well for calculating a view-independent solution but

does not account for view-dependent effects such as glare. We will address this in the

following chapter. Although the method has high absolute computational and storage

demands, it is very economical among methods that compute views from any spatial

viewpoint. Since the process of radiation is being simulated, it has the possibility of

modeling all lighting effects including polarization and fluorescence.

22

intensity

V

Figure 3.3 3-Dimensional Histogramming

Light Transport Simulation

With the ever-increasing power and speed of today's computers coupled with the

diminishing cost of memory, some researchers [40, 36, 20] have returned to tracing light

from the light source through the scene. Methods such as these use Monte Carlo

techniques to simulate the transport of light through a scene. As the light passes through

the scene, each interaction with a surface is recorded. Viewing is accomplished by

summarizing the interactions and computing a color for each visible point in the scene.

The Density Estimation algorithm proposed by Shirley et al. [40] goes through

three phases: particle tracing, density estimation, and meshing. In the particle tracing

phase, photons are generated and the light transport is simulated. Each interaction

is recorded in a "hit point" file in mass storage, thus saving the ray history of each

photon. The density estimation phase processes the hit point file and generates an

23

approximate irradiance function H for each surface, and the meshing phase generates a

set of Gouraud-shaded polygons which can then be used for viewing.

Since H is only a function of position, the Density Estimation algorithm produces

a view-independent solution to the global illumination problem that does not include

specular effects. To account for the viewing angle dependence, a separate ray-tracing

pass is performed for each viewpoint. While the pictures produced are appealing to the

eye, the ray-tracing pass cannot correctly account for partially specular transmissions,

because the light could come from more than one point. Also, the hit point file size is

0{n) with respect to the number of photons simulated. This generates huge files that

must be distilled to find H.

The Density Estimation algorithm has been parallelized [57] to increase the speed

of the simulation. Parallelization is accomplished by two algorithms: The first handles

the particle tracing phase while the second performs the density estimation and mesh

generation. Due to the nature of the problem, the speedup obtained in the parallel

particle tracing is quite impressive, approximately 15 on 16 processors for one geometry.

However, for the same geometry the parallel density estimation and meshing phase only

reaches a speedup of approximately 8.5 for the same 16 processors. The authors admit

that the density estimation and meshing phase speedup is limited by the time needed to

process the surface with the largest number of "hit points." In some cases, the speedup

in this phase is a mere 4.5 for 16 processors. Hence, parallel approaches to date have not

been scalable. The approach we present in Chapter 4 has excellent scaling properties

overall.

Adaptive Histogramming

One way to reduce the amount of storage for histogram bins is to adapt the histogram

to the unknown curve. This cannot be done a priori as the curve is unknown. However,

by keeping track of a few extra values, we can adaptively create the histogram according

y

A

24

0 a
- ^ x

Figure 3.4 Adaptive Histogramming

to the distribution. This method, referred to as splitting in the literature [49], is not

widely discussed or used. John Gustafson, at Ames Laboratory, independently developed

the adaptive histogramming algorithm for Monte Carlo particle transport.

Initially, start with a single subinterval corresponding to the desired interval. As

random points are chosen, one keeps track of the number of points landing in each half

of the interval. When the halves are statistically different, split the interval and repeat

the process on the resulting discretization. Over time the discretization will adapt to

the shape of the curve. In those places of steep gradient, a finer discretization will be

produced thus increasing the accuracy and limiting the storage requirements to those

areas where it is needed (see Figure 3.4).

The difficult decision to make for adaptive histogramming is when to split a histogram

bin. A bin is hypothesized to have a uniform distribution such that the left and right

halves have the same number of points. Each point that lands in the bin has some

probability p of being in the left half and probability q= 1 — p of being in the right half.

The resulting distribution is binomial. If we wait until we have a significant number

Hypothesis

A, = la
Don't split yet

A2 = 3.2a
Split now

Figure 3.5 Adaptive Histogram Algorithm

of points in a bin before we decide to split, the distribution can be approximated as a

normal distribution with mean fjL = np and standard deviation a = ^Jnpq [35, 13].

The decision to split a bin is made by deciding that the proposed left and right halves

have different distributions. When a point is determined to be in a bin, we also decide

which half-bin it belongs in. As the algorithm proceeds, the totals in the two halves may

begin to differ (see Figure 3.5). As the difference grows, we can decide whether to reject

the hypothesis of an even distribution. In our program, when the two halves differ by

more than 3cr we reject the hypothesis. Using Za means that with probability 0.9974,

we will reject correctly. Although there is a probability that the rejection is incorrect,

it will not significantly affect the accuracy of the algorithm. What will result is a bin

that was not needed. However, the likelihood of this is very small and thus will not

significantly affect the storage required for the algorithm. The result of this algorithm

is that refinement is performed only where it is needed to improve accuracy.

The choice of Scr as a splitting criterion is based on a storage economy versus dis­

cretization error argument. Values less than three tend to split histogram bins more

often, thus decreasing discretization error but increasing storage demands. Increasing

the splitting criterion beyond Za reduces splitting, thus reducing storage demands, but

also increasing discretization error.

26

Summary

This chapter introduced Monte Carlo methods for numerical integration and sim­

ulation. Monte Carlo integration uses random variables in estimating the value of a

definite integral. Numerical simulations that use random variables and distributions

are termed Monte Carlo simulations. This method simulates the physical process to

numerically solve problems. To reduce the storage demands of Monte Carlo methods,

histogramming can be used.

The method is used by graphics researchers to evaluate the BRDF or to simulate the

process of radiation. Veach used Monte Carlo integration to augment the ray-tracing

method and evaluate the BRDF at each point of intersection. This process only generates

a single view. Any repositioning requires a total recomputation for the new viewpoint.

The Density Estimation algorithm involves simulation of the radiation process. For

each interaction point between a photon and a surface, the vital statistics are recorded.

This algorithm results in excessively large files that must be processed to determine the

resulting scene.

Adaptive histogramming is a technique that can be used to reduce storage demands

with increased quality. Histogram bins are split when there is a statistically significant

difference between the distributions of the left and right half.

Parallel processing has been successful on low-fidelity approaches, but unsuccessful

as fidelity has increased. However, the Monte Carlo approach appears to be highly

parallelizable and capable of producing high quality results.

27

4 PHOTON

Like Zareski et al. [57] the tightly coupled nature of radiosity and its poor prospects

for parallelism turned us to Monte Carlo light transport simulation. Its inherent par­

allelism and ability to account for all non-wavelike lighting effects promise a scalable

solution to Kajiya's Rendering Equation. It also solves the problem of accurate form

factor computation.

Algorithm Description

We have created an algorithm which we call Photon that simulates light transport

through a scene. Each emitted photon is traced through the scene until it is probabilis­

tically absorbed. Each time the photon is reflected, a count is maintained which records

the number of reflected photons. The count is recorded in a data structure known as a

bin. A bin is a description of a geometry subset along with the number of photons that

have been reflected within that subset.

A high-level description of the algorithm used by Photon is presented in Figure 4.1.

We have used the convention that output parameters are indicated using an ampersand

to reflect that a reference parameter is being passed. At the heart of a light transport

simulator such as Photon are four routines: GeneratePhoton, Determinelntersection,

DetermineBin, and Reflect. These form the basis of the simulation, and also account for

most of the simulation time. Each will be discussed below.

28

for iphot = 1 to nphot do
GeneratePhoton(&:photon, &bin);
UpdateBinCount (&bin);
absorbed = FALSE;
while(not absorbed)

DeterniineIntersection(photon, &:poly);
DetennineBin(photon, &:bin, poly);
if (Reflect (&:photon, bin) == TRUE)

UpdateBinCount(&:bin);
if (NeedsSplit(bin) == TRUE)

Split(&:bin);
else

absorbed = TRUE;
endwhile

endfor

Figure 4.1 Algorithm used by Photon.

Photon Generation

Computationally emitting photons from a geometrical primitive amounts to the sim­

ulation of a luminaire (a light emitting object). A diffuse luminaire emits photons in all

directions. A random point on the unit hemisphere is used to calculate that direction

from any point on the luminiare (see Figure 4.2). Methods such as those by Shirley

[40] and Sillion [46] calculate a random direction using the following formula:

(x, y , z) = ̂ cos (2 7 r 6) y 6 , sin(27rei)V^,

Using temporary variables to avoid recalculation results in the following algorithm:

tmpl = 27r * randomQ

tmp2 = randomQ

tmp3 = ^ytmp2

X = cos (tmpl) * tmpZ

29

Figure 4.2 Photon Emission

y = sin(fmpl) * tmp3

z = v^l — tmyl

If each random number generation involves 3 floating point operations, this algorithm

generates 34 floating point operations (we use the Lawrence Livermore National Labo­

ratory convention that sin and cos count as 8 operations, and square root as 4). The

method used by Photon takes a different approach. Rather than directly calculating the

photon direction using only two random number generations, random planar coordinate

pairs are generated until they fall within a unit circle, afterwhich the final coordinate is

calculated based on the pair.

Again, allowing for 3 floating-point operations in random number generation, one

iteration of the loop of the algorithm in Figure 4.3 takes 13 floating-point operations.

The loop must be executed at least once, and with a probability of 1 — 7r/4 the generated

coordinate pair will lie outside of the unit circle and the process must be started again.

Calculation of the average number of instructions executed by the loop results in an

30

do
X = randomO * 2.0 - 1.0;
y = randomQ * 2.0 - 1.0;
tmp = x*x + y*y;

while(tmp > 1)
z = sqrt(l - tmp);

Figure 4.3 Photon Generation Algorithm.

infinite geometric series:

inst = 13 + 13g + 13g^ + 13g^ + 13g'' + ...

inst = 13(——)
l - q

inst = 16.55

where q is the probability that the coordinate pair is outside the unit circle. After the

coordinate pair is determined, the calculation of z adds 5 floating-point operations. The

resulting operation count is 22, which is 12 fewer operations than the method of Shirley.

It can easily be shown that both methods generate a uniform distribution of emitted

photons. In an environment where possibly billions of photons must be emitted, the

method used by Photon presents a substantial savings. This algorithm was developed

by John Gustafson at Ames Laboratory in conjunction with this work. Experiments

show that our photon generation kernel is about twice as fast as the formula presented

by Shirley and Sillion.

The above method accounts well for diffuse lighting. In nature, not all lighting is

diffuse. For example, the light we receive from the sun is very directional in nature.

Photon simulates this phenomenon by "limiting" or focusing the emitted light. This is

easily performed by scaling the unit circle in the generation method above. This limits

the angle of emittance, thus providing a directional quality (see Figure 4.4).

31

Figiire 4.4 Scaling for Directional Lighting

To accurately simulate sunlight, consider that the sun, from our viewpoint, is a

disc of approximately one half degree. So, in reference to Figure 4.4, the unit circle

must be scaled such that 9 is one quarter degree. Therefore, scaling the unit circle

by 0.005 and generating restricted-angle photons from a plane yields a light source that

simulates sunlight, and correctly blurs shadows as the distance from the occluding object

increases. Most rendering programs and graphics packages incorrectly consider the sun

or any other light as a point light source, thereby producing unrealistically sharp shadows

(see Figure 2.2).

Intersection Determination

Once a photon is generated, the problem breaks down to determining the point

of closest intersection. This subject is covered in many ray tracing texts and papers

[55, 16, 33]. There are many approaches to speeding up intersection testing that can

be applied in this setting, such as bounding volumes [16] and tree structures [38, 17].

32

However, techniques such as ray coherence [25] are not applicable.

Increasing the speed of intersection determination holds the most promise for decreas­

ing solution time. It is also this area that offers the most prospects for parallelization.

Each photon is an independent entity and thus its path can be computed without respect

to others. The only dependency is accounting for each photon interaction, which will be

discussed in the next chapter.

Reflection

The reflection model used in Photon is based on the work of Xiao He et. al [24].

The intent is to make the algorithm as accurate as possible by incorporating the physics

of surface-light interaction. This model incorporates all the aspects of the BRDF and

includes polarization and masking/self-shadowing effects.

Using this model, Photon has the potential to model polarized light which has not

been a well-explored area in computer graphics. Currently, we are working on deter­

mining the impact of incorporating polarization in computer graphics. This work is

being done by Sairam Sankaranarayanan who has incorporated the reflection model into

Photon.

Four-Dimensional Histograms

Photon uses adaptive subdivision of histogram bins, as previously described, to dis­

cover the radiance function for a given surface. To allow for the adaptive subdivision,

each bin is is parameterized. When the bin is split, two daughter bins are created to

keep a more accurate accounting of the light interactions with the surface. For each

parameter, a little extra work is performed to determine which daughter bin would have

tallied the reflected photon. We only split a bin when the two daughter bins probably

have very different photon counts.

33

Figure 4.5 Dimensions used in Histogram Binning

As discussed in Chapter 3, the distribution of photons in a given bin is binomial. This

allows us to calculate the sample standard deviation as cr = y/npq where n is the number

of photons in the bin and p and q represent the probabilities of a photon being in the left

or right daughter bin. These probabilities can be approximated asp = l/n and q = 1 —p,

where I is the number of photons that would be in the left daughter bin. To improve

accuracy, p is calculated based on the daughter bin with the most photons. When the

two proposed daughter bins differ by more than 3 times the standard deviation, the bin

is split. Using the normal approximation to the binomial distribution, 3a gives us 99.7%

confidence that the two bins have different distributions. In this way. Photon adapts the

histogram to best reflect the intensity gradient.

As shown in Equation 1.1, radiance is a function of location and viewing angle. It

is for this reason that Photon maintains four dimensions for each bin. We use bilinear

parameters s and t to represent position on the surface; to record the angle of reflection,

cylindrical coordinates r and 9 are used (see Figure 4.5). The use of cylindrical coor­

dinates as opposed to spherical coordinates (f) and 9 make the computation of diffuse

reflection probability densities simpler. Color is actually a fifth dimension, but one not

34

etc.

^ Octree representation
of geometry description

• Defining polygons

A 4-D Bin Tree

Figure 4.6 Photon Data Structure

subject to hierarchical subdivision in this model. The cylindrical r coordinate is not

the usual one. It is the projected radial distance within the unit circle of the direction

vector.

When splitting a bin, the goal is to also split the photon distribution in half. Given

that the distribution is uniform, it is clear that splitting along the bilinear parameters

s and t splits the distribution in half for a nontrapezoidai patch. Trapezoidal patches

are not split optimally, but will still converge correctly. Likewise, splitting 9 also splits

a diflFuse surface distribution in half. The last parameter used in splitting the bin is the

squared radius r of the projected direction angle. This choice was made because splitting

the elevation angle of spherical coordinates does not split a Lambertian distribution in

half, nor does splitting the spherical radius. However, splitting the squared radius does

indeed result in half the area and thus split the distribution in half, for Lambertian

(diflPuse) surfaces.

For each geometrical primitive, a bin tree is maintained to record photon counts. The

35

Figure 4.7 Harpsichord Practice Room

result is a forest of bin trees which is depicted in Figure 4.6. Above the forest is an octree

decomposition of the geometry. This data structure is capable of recording the answer

of a global illumination model with the color of every patch as a function of the position

on the patch and the viewing direction. In this way, we have a discrete representation

of the radiance L for all points in a scene. A purely diffuse surface requires only planar

bin subdivisions while a specular surface requires more angular bin subdivisions.

Our method can correctly solve a global illumination model that contain mirrors.

This can be seen in the Harpsichord Practice Room (Figure 4.7). While the defining

geometry is not complex, the patch geometry has 150,000 view-dependent polygons, and

it demonstrates some very important concepts. The scene depicts a harpsichord in a

room with skylights and a mirrored music shelf. Note the reflection in the mirror. We

must stress that this is not the result of a single view-dependent solution. This mirror

36

Figure 4.8 Cornell Box with Mirror

can be viewed from all angles correctly as the radiance for all angles is stored in the bin

tree for the mirror. Note also that we have not resorted to the usual trick of constructing

a duplicate room on the other side of the mirror. The mirror is like any other surface, but

with a richer set of histogram information. Also notice that the shadowing produced by

the skylights is slightly blurred in contrast to the protruding shadow of the harpsichord

which is sharper.

Figure 4.8 shows the Cornell Box, named after the seminal research in radiosity done

at Cornell University. Floating in the center of the room is a mirror, added for purposes

of testing Photon. As with all specular surfaces rendered by Photon, the mirror can be

viewed from all angles without recomputation or a full ray tracing pass. Note that in

all figures, there is no Gouraud shading performed on the individual patches. This was

purposely done to show the adaptive nature of Photon as well as to preserve integrity.

37

*

Rays go to first visible surface only.

Figure 4.9 Viewing Stage

Viewing Simulation Results

The approach to computer graphics taken by Photon is to break the rendering process

into two pieces: simulation and viewing. Approaches such as ray tracing combine and

confuse the pieces. Ray tracers compute the light intensity value of a pixel on the view

plane and do not consider all the light interactions. Radiosity, conversely, computes the

light interactions but does not consider the view point and thus the specular interactions.

Photon determines all the light interactions and stores them in a database. Once the

simulation is finished, all that remains is to determine what is displayed. It is much like

turning on the lights in a room and then walking in. When the lights are turned on, all

the interactions take place. Walking into the room places the viewer in the environment

where the light can enter the eye. Thus, all that is needed is to determine what is seen.

This can be reduced to a single-step ray trace (see Figure 4.9).

Once the point of closest intersection is determined, the color seen must be calcu­

lated. This is done by determining the bin parameters of a photon that would have

Figure 4.10 Different Viewpoints Using the Same Answer File

traveled along the path from the object to the viewpoint. Since s and t cannot be easily

determined from an arbitrary point on a patch, we recursively determine which half of

the current bin the point is in and traverse the tree. When a leaf node is reached, the

displayed color is calculated based on the ratio of the number of reflected photons in

the bin and the total number of photons. The tree traversal and intersection determi­

nation is performed by the routines Determinelntersection and DetermineBin which

are shared between the simulation and viewing programs.

Figure 4.10 demonstrates one of the advantages of Photon. This figure depicts a series

39

of viewpoints from the same scene. Although the viewpoint is changing, no recalculation

of the global illumination is needed. All scenes were generated from the same solution

file.

Summary

We have created a new algorithm for global illumination. The algorithm, called

Photon, is based on Monte Carlo simulation of light transport in a scene. Photon gener­

ation, intersection testing, and reflection calculation combine to make up the bulk of the

time in a Photon simulation. A new method for photon generation is used which takes

fewer operations. Intersection testing is a well-studied topic addressed in ray tracing;

it presents the greatest possibility for speedup via optimization and parallelism. The

reflection model employed by Photon is based on the work of Xia He et al. This model

incorporates physical optics and describes all the surface-light interactions. It includes

polarization of light which is currently being studied as to its effects on computer-

generated images. The photon data structure used here appears to be unique in its

representation of global light properties of a scene. The structure accurately represents

the discrete form of the radiance function for every surface. Finally, a scene can be

viewed by simply determining what is seen given a viewpoint and perspective.

40

5 PARALLELIZATION OF PHOTON

The parallelization of a program must begin at algorithm design time. Parallelization

of an inherently sequential algorithm will yield little parallelism. For example, parallel

hierarchical radiosity efforts have met with little success. This is a major reason that

we chose Monte Carlo methods for Photon. The Monte Carlo algorithm is inherently

parallel corresponding to the parallel nature of global illumination. This chapter will

focus on the relevant issues pertaining to the parallelization of Photon.

Two parallel programming models will be considered here: shared memory and dis­

tributed memory. Photon has been parallelized for both the shared memory model and

the distributed memory model. Both models have their advantages and disadvantages

which will be discussed with respect to Photon.

Parallelization Issues

Performance

When discussing parallel programming, one must have a measure of performance

for comparing approaches and for demonstrating their respective advantages. For our

purposes, we will use speedup as a comparator. Speedup can be defined in many ways.

Roughly speaking, speedup is the ratio of the speed of a parallel version and the speed

of a sequential version of an algorithm. The problems surrounding "speedup" include

how to define speed and when to measure the speed. One can consider a time-based

measure of speed by measuring how long it takes to complete a fixed task. We will

41

term this fixed-size speedup. Another approach is to consider a work based approach,

i.e. how much work can be done in a given amount of time. We will term this fixed-time

speedup[19, 21]. The problem with these two approaches and others like them is how to

determine the size or duration in fixing the given metric. Examination of a program at

different execution durations can, and often does, yield different speedup results.

We have chosen to present the full speedup picture as a function of execution time.

A single simulation is broken up into batches of photons. After each batch. Photon

calculates the processing rate in number of simulated photons per second. The particular

batch sizes will be discussed below. By plotting this speed versus time, a trace of

the program speed can be displayed. Placing execution traces of different number of

processors on the same graph reveals speedup. One can interpolate fixed-time speedup

by examining the graph values at a set time. For ease of reading, we have added a

speedup scale on the right side of each graph. Speedup is defined as 1.0 for the best

serial version of the program (not the parallel version run on one processor).

Another related metric for parallel programs is scalability. A successful paralleliza-

tion is scalable in time and memory. In other words, a truly scalable program runs twice

as fast on twice as many processors and uses, at most, twice as much memory. This is

not always a realizable goal. To the extent that it is realizable is a measure of scalability.

Random Number Generation

Monte Carlo techniques are based on the use of random numbers. There has been

much research done in this area to insure that pseudo-random number sequences emulate

a true random sequence (see [30]). When parallelizing a program that uses random

numbers, one must insure that two processors are not using the same random number

sequence. Otherwise there is a duplication of effort. Again much research has been

done in this area (see [1, 5, 12]). The basic idea is to split the pseudo random sequence

into subsequences. Using knowledge about the random number generator, a processor

42

Table 5.1 Test Geometry Sizes

Geometry Defining Polygons View-Dependent Polygons
Cornell Box 30 397,000
Harpsichord Practice Room 100 150,000
Computer Laboratory 2000 350,000

divides the sequence into P equal parts, where P is equal to the number of processors. It

then calculates the beginning point in the appropriate subsequence. This is termed the

leapfrog method. The particular random number generator used by Photon has a period

of 2"^^, which is divided into subsequences for the number of processors, thus yielding

individual periods of 2'^^/F.

Test Configurations

When testing a program and generating speedup results, it is important to test

under a variety of conditions. Photon has been designed to run on a wide variety of

supercomputing platforms. It can be run on a traditional supercomputer, a shared

memory multiprocessor, and a cluster of workstations, and has been tested on each of

the platforms. For purposes of determining scalabiUty beyond 16 processors. Photon was

run on an ensemble of up to 64 processors of an IBM SP2. The other two platforms were

an SGI Power Onyx and a cluster of SGI Indy workstations. The latter two platforms

demonstrate Photon's ability to adapt to the communication medium.

All speedup graphs in this chapter are based on three input files to Photon: the

Cornell Box, the Harpsichord Practice Room, and the Computer Laboratory. The ge­

ometry files range in complexity from 30 polygons for the Cornell Box, to 100 polygons

for the Harpsichord Practice Room, to approximately 2000 polygons for the Computer

Laboratory. Table 5.1 shows the resulting number of mesh polygons after subdivision.

It is important to note here that while the polygon counts for the geometries seem small,

these are the defining polygons and not the resulting mesh polygons after subdivision.

43

Figure 5.1 The Computer Laboratory

Most rendering programs count the mesh polygons as the total number of geometry

polygons. Also note that these are view-dependent polygons. Each polygon possibly

contains multiple angle-dependent bins. The number of view-dependent polygons is dis­

proportionately high for the Cornell Box due to the large mirror in the center of the box

and the simulation has been run much longer to generate a higher level of detail.

The rooms were chosen for their varying degree of content as well as surface types.

The Cornell Box (Figure 4.8) and the Harpsichord Practice Room (Figure 4.7) have

previously been shown. Figure 5.1 shows the rendered geometry of the Computer Lab.

Shared Memory Parallelization

Shared memory parallelization of Photon is relatively simple. The geometry data

structure becomes a shared database with multiple processors accessing and modifying

44

forall iprocessor = 1 to nprocessors do
for iphot = 1 to nphot/nprocessors do

GeneratePhoton(&photon, &bin);
UpdateBinCount (&bin);
absorbed = FALSE;
while(not absorbed)

DetermineIntersection(photon, &:poly);
DetennineBin(photon, &bin, poly);
if (Reflect (&photon, bin) == TRUE)

UpdateBinCount(&:bin);
if (NeedsSplit(bin) == TRUE)

Lock(bin);
Split (&:bin);
UnLock(bin);

else
absorbed = TRUE;

endwhile
endfor

endforall

Figure 5.2 Shared Memory Algorithm.

it. As in all shared memory programming, one must minimize memory conflicts. All

updates to the database must be mutually exclusive. This is an area of extensive research

in database and operating system theory [32, 47]. Mutually exclusive access is insured

through the use of semaphores to lock access to nodes in the bin forest (as described

previously in Figure 4.6), and follows a multiple reader, single writer protocol.

When Photon starts a simulation in shared memory, multiple processes start up and

share access to the geometry and bin forest. When a bin needs to be split, it locks access

to the bin, splits it, and then releases the lock as can be seen in Figure 5.2. The forall

loop is a parallel construct that executes the loop statements on all processors. During

the splitting phase, all other processes may read any other part of the bin forest except

the bin that is being modified. This is to promote as much parallelism as possible.

45

Distributed Memory Parallelization

Programming Photon for distributed memory systems introduces two inter related

issues: data distribution and load balancing. Unlike the parallel Density Estimation

algorithm [57] which uses two parallel programs, Photon is paralleUzable in both storage

and work requirements. Each processor performs the same algorithm generating and

tracing photons through the scene. Since the data structure is distributed, the processors

must communicate to update the bin forest and synchronize. This algorithm is presented

in Figure 5.3. The statements in bold type are changes from the original serial algorithm

that will be discussed below.

The Message Passing Interface standard (MPI) [34] was chosen for all interprocessor

communications. This choice gave us the greatest flexibility and portability. Many

supercomputers now have a native implementation of MPI. It also allows us to run

Photon on our network of workstations.

Data Distribution

The data structure used by Photon for storing the histogram bins is made up of

two distinct sections: the geometry description and the histogram bin forest. While

the memory requirements to store the geometry information for a given scene remain

constant throughout the run, the memory requirements for the bin forest tend to be

nearly 0(n) in the number of photons. Figure 5.4 clearly shows that after an initial

buildup of memory, the size of the bin forest tends to increase sub-linearly. The bin

forest is the largest data structure in memory and thus the target for distribution. For

this implementation, the bin forest was chosen for distribution among the processors

and the geometry was replicated across all processors.

Each processor is assigned a section of the bin forest (see Figure 5.5). That processor

is responsible for maintaining the photon tallies and splitting bins when and where

46

for iphot = 1 to nphot/batchsize do
for jphot = 1 to batchsize do

Generate?hoton(&:photon, &bin);
UpdateBinCount(&bin);
absorbed = FALSE;
while(not absorbed)

DetermineIntersection(photon, &poly);
DetermineBin(photon, &bin, poly);
if (Reflect(&:photon, bin) == TRUE)

if(bin.ProcessorID == My ED)
UpdateBinCount (&:bin);
if (NeedsSplit(bin) == TRUE)

Split (&bin);
else

EnQueue(photon, &Q[bin.ProcessorID]);
else

absorbed = TRUE;
endwhile

endfor
for iprocessor = 1 to nprocessors do

if (iprocessor != MylD)
SendQ(iprocessor, Q[i], sizeof(Q[i]));

endfor
for i = 1 to nprocessors - 1 do

ReceiveQ(&TempQ, ANYPROCESSOR, size)
for j = 1 to size do

DeterniineBin(TempQ[i], &:bin);
UpdateBinCount(&bin);
if (NeedsSpIit(bin) == TRUE)

Split (&bin);
endfor

endfor
endfor

Figure 5.3 Distributed Memory Algorithm.

47

10 20 30
Data staicture size in Mbytes

Figure 5.4 Memory Requirements for the Haxpsichord Practice Room

Figure 5.5 Data Distribution for Parallel Photon

48

necessary. To do this, every reflected photon must be forwarded to the processor which

owns the bin. To save on message overhead and increase performance, photons are

queued and batched for transmission. This results in an all-to-all communication period

following each particle tracing phase. When a set of photons are received, all that is

required is to determine the bin of interaction and update the appropriate parameter

tallies, splitting bins where necessary.

Load Balancing

Due to the nature of the algorithm, naive load balancing for Photon can lead to

disastrous results. Consider a darkly painted room with only a spotlight that is focused

on the floor. If the floor is assigned solely to processor 0, that processor will have to do

all the work as all the photons generated must be passed to processor 0 to update tally

counts. Clearly this limits parallelism. The same thing can happen in a more general

environment. If a major percentage of the light receiving polygons are assigned to one

processor, parallelism will be restricted.

Avoiding the above situation is important to promote scalability. In the current

implementation, initially all processors are eissigned ownership of the entire geometry.

During this load balancing phase, k photons are generated and traced through the scene.

The parameter k has been chosen to best generate a good (not optimal) balance. Due to

the random nature of Photon, it appears that k does not depend on the size of geometry.

However, more research needs to be done in this area. No tallying is performed until the

photons have been traced. Then each processor goes through the photons in the same

order, thus producing the same bin forest. At this point, we are able to use the photon

counts for each bin to determine an appropriate load balance. The period of redundant

work lasts less than a second and is quickly made up in higher parallel performance.

Finding an optimal load balance is then reduced to the bin packing problem which has

been shown to be NP-Complete [15]. However, a good approximation can be reached

49

Table 5.2 Total Photons Processed using Naive
Load Balancing Versus Bin Packing. All
counts are in thousands of photons.

Processor Naive Load Balance Bin Packing
0 47.9 29.4
1 34.5 28.9
2 35.6 29.8
3 25.6 29.4
4 32.7 29.6
5 24.9 29.1
6 35.1 28.7
7 32.8 29.0

using the Best-Fit algorithm. Essentially, a bin is added to the processor with the

smallest photon count. While this is a greedy algorithm, it has produced good results.

If one processor must process more photons than another, it will take more time per batch

and force the remaining nodes to wait. Ideally, all nodes would process the same number

of photons and thus not have idle time waiting for communication from an overloaded

processor. Table 5.2 shows a comparison of the number of photons processed by each

processor using naive load balancing versus bin packing. It shows that load balancing

using bin packing is clearly superior to naive balancing. Consider, for example, processor

number 5 processes half as many photons as processor 0 using naive load balancing. This

means that processor 5 must have spent a lot of idle time waiting for processor 0 to finish.

Load balancing using bin packing more evenly distributes the work and thus lessens idle

time.

Communication vs. Computation

Another aspect of load balancing in a distributed computing environment is match­

ing communication with computation. Photon simulates light transport in batches of

photons followed by a period of communication. If the batches are too large or too small,

it could be detrimental to performance. If batches are too small, most of the communi-

50

Table 5.3 Simulation Batch Sizes

SGI Power Onyx IBM SP2 SGI Indy Cluster
500 500 500
750 750 750

1125 675 1125
1687 1012 1125
1518 1012 1125
2277 910 1125
3415 1365 1012
3073 1365 1012
4609 1228 1012
4148 1842 1012
6222 1657 1518
7558 1657 1518

11337 1657 1518

cation time will be spent in latency, thus slowing down the simulation. Likewise, overly

laxge batches may spend too much time in transmission, due to large message sizes, and

thus slow down the simulation.

Photon attempts to match batch size to communication medium. This is accom­

plished by a growing batch size to maximize overall simulation speed. Batch size starts

with just 500 photons per processor and grows as long as overall speed is increased.

When a decrease in simulation speed is detected, the batch size is reduce by 15 percent.

Table 5.3 shows the resulting sequence of batch sizes for the three compute platforms. In

each case, the simulation was performed on 8 processors using the Harpsichord Practice

Room geometry.

Results

Previously, the implementation specifics of two parallel implementations of Photon

have been discussed. We now present and compare the resulting performance of the

algorithms. Note that in all cases, when a single processor performance is given, it

51

u (D w
(0
c
o
o
Q.

T3 O (D
Q. W

20000•

15000-

10000-

5000-

8 Processors
4 Processors
2 Processors
1 Processor - 2

Q. 3 •D (D O
Q.
CO

0.1 10
Time

100 1000

Figure 5.6 Shared Memory Speedup Results (Cornell Box)

is generated using the best serial version of the code. It is not merely the parallel

code running on a single processor. Often, researchers present relative speedup figures

by executing the code on a single processor and repeatedly doubling the number of

processors but always using the same code.

Relative speedup is useful to see the scalability of a program, but it does not show

if the program was worth parallelizing. Comparison with the best serial algorithm

demonstrates the advantages and disadvantages of parallelism. One will notice in the

graphs to come that often the serial performance is more than half of the performance on

two processors. This is due to the parallel overhead from memory contention or message

passing.

SGI Power Onyx

Figures 5.6 through 5.8 show the resulting performance for the shared memory version

of Photon on an 8-processor SGI Power Onyx. These graphs show a typical parallel

52

20000 -
8 Processors
4 Processors
2 Processors
1 Processor

u
<0

(0
C
o
•5

"O <D
<D
OL CO

15000-

10000-

5000-

- 3

Q. 3 "O O
(D
Q. CO

0.1 10
Time

100 1000

Figure 5.7 Shared Memory Speedup Results (Harpischord Practice Room)

o Q)
40
CO
c
o

Q.
c
T3 (D
(O
CL

CO

10000

8000

6000

4000

2000

8 Processors
4 Processors
9 Prnriaeenrs
1 Processor

/
/'

8

Q. 3 T3 (D (D
Q.
W

2

1

0.1 10
Time

100 1000

Figure 5.8 Shared Memory Speedup Results (Computer Laboratory)

53

processing phenomenon: As the geometry size increases, so also does the scalability. For

small geometries, using more than two processors is a waste. Large geometries, on the

other hand, seem to have excellent scaling properties. This can be attributed to the fact

that with a large geometry, processors spend more time in other areas of the bin forest

or program code. One might think that subdividing a small geometry to create more

polygons would improve speedup and thus improve performance. This is not the case.

Notice that as the geometry size increases, the scalability increases, but the absolute

performance is reduced.

SGI Indy Cluster

The SGI Indy cluster demonstrates the scalability of Photon in a message passing en­

vironment. This version of the code queues photons to be sent to other processors in the

all-to-all communication phase. Notice that communication overhead and slower proces­

sors force the initial time to the right and reduce performance. Although performance is

lost, scalability is increased. Often, when a program is parallelized for distributed mem­

ory, the memory bottlenecks are removed, making it possible to nm faster and scale

better. This is the case with Photon. Each processor is free to work in its own memory

space and thereby reduce memory contention.

IBM SP-2

Figures 5.12 through 5.14 show the performance graphs for the IBM SP-2. The

results are similar to the SGI Indy cluster, except that the reduced scaling between 2

and 4 processors is not expected. Beyond 4 processors, the graphs show that Photon

seems to scale well. The reason for the performance hit that is taken by moving from 2 to

4 processors is theorized to be due to communication overhead. Unlike the Indy cluster,

the SP-2 requires that asynchronous messaging be buffered, which adds an extra memory

copy and buffer management overhead to each message. In a configuration of 2 nodes.

54

20000
8 Processors
4 Processors
2 Processors
1 Processor

18000-

16000-

g 14000-

03
C
o 12000-
o JO a.
c

10000-

8000-TJ 0) O CX
CO 6000-

4000-

2000-

100 1000 10 1 0.1
Time

Figure 5.9 Indy Cluster Speedup Results (Cornell Box)

14000-

12000-

10000-

8000-

6000

4000

2000

8 Processors
4 Processors
2 Processors
1 Processor - 8

Q.
3 -a <0 0)
a.

CO

2

1

0.1 10
Time

100 1000

Figure 5.10 Indy Cluster Speedup Results (Harpsichord Practice Room)

55

o
<D
-2
CO
c
o
o
Q.

T3
<D
<D
CL

CO

2000

1500-

1000-

500-

8 Processors
4 Processors
2 Processors
1 Processor

8

- 4

- 2

a. 3
T3 O) (D
a.

CO

10 100
Time

1000 10000

Figure 5.11 Indy Cluster Speedup Results (Computer Laboratory)

each processor only sends one message per batch. In this case the communication may

be overlapped with computation and thus hidden. Increasing the number of processors

increases the buflfer management and memory copy overhead to the point that it can no

longer be hidden. This is why the absolute performance of configurations of more than

two processors is shifted down. However, performance after the shift appears to scale

well.

Visualizing Performance

Performance differences are often hard to express and visualize. In this section, we

present two new ways of visualizing and comparing computer performance. We believe

they are unique in their representation and highly informative.

First, Figure 5.15 shows a table of performance graphs, a 4-dimensional graph-of-

graphs data representation. Each graph is a log-log plot of the data on the same xy

scale. The horizontal outer-graph scale increases in complexity of the geometry scene.

56

55000

50000

45000 -

o 40000 -
(D

35000 -
C

% 30000 -
£

c 25000

g 20000•
Q.

" 15000 -

10000-

5000-

64 Processors
32 Processors
16 Processors
8 Processors
4 Processors
2 Processors

Serial Version

/ —"
.A""*

/(j y

-L...---'——-

/i. f
. 1 r

1

0.1 10
Time

100 1000

Figure 5.12 SP-2 Speedup Results (Cornell Box)

45000

40000

35000

30000 -

•K 25000 -

c 20000 -

15000-

10000-

5000

0

64 Processors
32 Processors
16 Processors
8 Processors
4 Processors
2 Processors

Serial Version

0.1 10
Time

100 1000

Figure 5.13 SP-2 Speedup Results (Harpsichord Practice Room)

57

32
64 Processors
32 Processors
16 Processors
8 Processors
4 Processors
2 Processors -

Serial Version

10000-

o 8000 -
(D
CO

"13
c
° 6000 -

Q.
C

•a
<D a
a.

CO

4000-

2000-

100 1000 10000 1 10
Time

Figure 5.14 SP-2 Speedup Results (Computer Laboratory)

and the vertical outer-graph scale increases in processor coupling. Note how the time

to the first data point increases as coupling decreases. This is due to slower message

passing speeds. The graph shows that as the complexity of the geometry scene increases,

scalability also increases. However, the overall performance is decreased.

Finally, Figure 5.16 gives a visual feel for speedup. Photon was used to generate

a scene on 2, 4, and 8 processors. In each case the simulation was run on an SGI

Power Challenge for approximately two minutes using the distributed memory version

of Photon. It is easy to see the improved quality due to higher photon simulation counts.

Note especially the improvement in the mirror, and in shadows under the harpsichord

and skylight.

SummEiry

Photon has been parallelized for both shared memory and message-passing environ­

ments. The shared memory version of Photon works best on large problem sets where

58

Cornell Box Harpsichord Room Computer Lab

BPncesm — iPnamt •— ZPKBUOf"
SMV«Dtl —

1 10 ns lOOQ tODQO
Tee

fltann — <Ptoot—*
SWIVBIMI

1 to
Tn

1000

10000-

<Piotcs>n
ZPncessn***
Scnivro —

10 100 Tn

1000

4hoCSS0S *** JPistsm *** Serai Vnct)"-
at 10 100 1000 10000

To*

SPtoam
<tae»n
2Pnencn
SmVtnon

Figure 5.15 Performance and Speedup vs. Complexity

59

V
2 minute run on 1 processor. 2 minute run on 2 processors.

2 minute run on 4 processors. 2 minute run on 8 processors.

Figure 5.16 Visual Speedup

60

memory contention is minimal. The distributed memory parallel algorithm is scalable.

Finally, two new methods of visualizing performance indicate several dimensions of pared-

lelism, throughput, and answer quality. We believe these are very useful representations

of the advantages and disadvantages of parallelism.

61

6 CONCLUSION AND FUTURE WORK

We have presented a parallel implementation of a global illumination algorithm.

The speedup graphs show that it is scalable. Photon solves the Rendering Equation by

determining the radiance at each point, and it does this without the need for storing

huge ray history files. Photon is written using MPI, and can therefore be run on a

variety of supercomputers as well as inexpensive clusters of workstations.

Photo-realism

The question may be asked, "Does Photon solve the Rendering Equation?" Since

Photon is based on quantum light transport simulation from the light source, it has the

potential to account for all lighting effects. At this time polarization is being added,

and we foresee the ability to add fluorescence. It is our belief that polarization will play

a large role in the realism of a rendered scene.

Only those algorithms that account for all lighting effects can truly claim to solve the

Rendering Equation. Photon correctly solves for the radiance for each discrete area and

direction. As the discrete areas and angle ranges shrink, Photon converges to a solution

for the radiance at every point in a scene, and therefore will converge to a solution to

the Rendering Equation.

62

Massive Parallelism

Currently, the octree representation of the geometry is replicated on all nodes. This

could limit the size of the input geometry. Distribution of the geometry would allow

computation of a global illumination solution for very complex scenes. It would also

lend itself to more massive parallehsm.

The choice of an octree representation of the geometry is especially beneficial for

distribution. The octree data structure orders the intersection testing for a given photon

such that we only test polygons in the space the photon is traveling through. When an

intersection is detected, it is the closest intersection and further testing is not needed.

In a distributed environment, a photon is then only passed to those processors that are

responsible for the space the photon is traveling through. The photons can then be

queued and sent in a batch to the appropriate processors, thus reducing communication

overhead. A bounding box data structure would require all processors to calculate

intersection points, and then the closest intersection must be determined. The result is

a global reduction operation for each photon, which is far too expensive.

Photon is a new and unique approach to computer graphics. If computers continue to

follow Moore's Law, many algorithms that seem barely viable today will become routine

for computers of the future. We expect that the approach to rendering described herein

will be used more widely as memory sizes grow and computer performance increases.

63

APPENDIX

64

Parallel Hierarchical Global lUiimination

Quinn O. Snell and John L. Gustafson
Ames Laboratory, USDOE

Ames, lA
snell@ameslab.gov gus@ameslab.gov

Abstract

This paper presents an algorithm that solves the Ren­
dering Equation to any desired accuracy, and can be run
in parallel on distributed memory or shared memory com­
puter systems with excellent scaling properties. It appears
superior in both speed and physical correctness to recent
published methods involving bidirectional ray tracing or
hybrid treatments of diffuse and specular surfaces. Like
"progressive radiosity" methods, it dynamically refines
the geometry decomposition where required, but does
so without the excessive storage requirements for "ray
histories."

Keywords Global illumination, parallel rendering,
Monte Carlo.

1. Introduction

In 1986, Kajiya [6] proposed a unifying equation for ren­
dering. This equation, known as the Rendering Equation,
has become widely accepted in the computer graphics field.
The solution to the Rendering Equation yields the solution
to the global illumination problem. Virtually all computer
graphics programs are based on highly simplified versions
of the Rendering Equation that trade realism for speed. Dis­
tributed computing now offers enough speed to solve the
Rendering Equation without compromise.

The solution to the global illumination problem has
many applications, e.g. architectural rendering. In general
terms, the global illumination problem is the determination
of the color and intensity of light given off from every point
in an environment in every direction. This contrasts with
ray u-acing, which attempts to estimate the light seen from
one viewpoint. Global illumination is key to virtual reality

'This work was supported by the Applied Mathematical Sciences Pro­
gram of the Ames Laboratory, U.S. Department of Energy under contract
number W-7405-ENG-82

Figure 1. Definition of Radiance

efforts since correct views can be displayed quickly as the
viewpoint moves.

The physical quantity desired for global illumination is
the radiance, L, at point x, in direction rp, described in the
following equation [7, 10]:

where V" is a direction described by a vector or a {6, (i>) pair
in spherical coordinates. The quantity I is the radiant in­
tensity computed as:

where w is the solid angle originating at the point and $ is
the radiant flux (See Figure 1).

Equation I shows that radiance is a function of position,
X, and viewing angle, (0, <fi). Therefore the solution to the

65

global illumination problem must also be a function of posi­
tion and viewing angle, and any algorithm proposed to solve
the global illumination problem must present a solution that
is likewise dependent on position and viewing angle.

With this background, we can now examine the vari­
ous global illumination algorithms with distributed com­
puting issues in mind. Radiosity methods such as [5] pro­
duce an answer that is based on ideal diffuse surfaces. In
other words the radiance L is independent of the angle of
emlttance. In light of this fact, many [9, 14] have added
a secondary ray tracing path to account for viewing angle-
dependent illumination. This does not accurately account
for the semi-diffuse reflections that occur in nature. Re­
cently, Aupperle [1] has extended radiosity to account for
specular effects using three-point light transport. However,
due to the tightly coupled nature of these progressive ra­
diosity methods, parallelization has met with little success
[12].

Ray tracing from the viewpoint, as introduced by Whit-
ted [15], was partly introduced to reduce the heavy com­
putational requirements of forward ray tracing. The idea
was to compute only what was being viewed. Ray trac­
ing methods are backward in that they start from the viewer
and estimate the radiance by summing the effects of light
sources on the point of closest intersection. Complexity in­
creases with the number of light emitters whose effects must
be added. Ray tracing is not physically correct because ra­
diance depends on the light input from all surfaces, not just
light emitters. One advantage of ray tracing is that it par­
allelizes trivially if each processor can contain the entire
geometry description. However, it never converges to the
correct answer for realistic surfaces and thus the parallel ef­
ficiency is moot.

Veach and Guibas [13] have extended ray tracing by us­
ing Monte Carlo methods to evaluate the bidirectional re­
flectance distribution function (BRDF). At each ray-surface
intersection, the BRDF is sampled by emitting an appropri­
ate distribution of rays and summing their contribution. For
a diffuse surface, the distribution examined would be widely
scattered, but for a specular surface the distribution would
be much more narrow. This method seems to correctly solve
for the radiance given a single viewpoint; repositioning re­
quires recomputation.

With the ever increasing power and speed of today's
computers coupled with the diminishing cost of memory,
researchers [8, 4] have returned to tracing light from the
light source through the scene. Methods such as these use
Monte Carlo techniques to simulate the particle transport of
light through a scene. As the light passes through the scene,
each interaction with a surface is recorded. Viewing is ac­
complished by summarizing the interactions and computing
a color for each point in the scene.

The Density Estimation algorithm proposed by Shirley et

al. [8] goes through three phases: particle tracing, density
estimation, and meshing. In the particle tracing phase, pho­
tons are generated and the light transport is simulated. Each
interaction is recorded in a "hit point" file in mass storage,
thus saving the ray history of each photon. The density es­
timation phase processes the hit point file and generates an
approximate irradiance function, H, for each surface, and
the meshing phase generates a set of Gouraud-shaded poly­
gons which can then be used for viewing.

H is only a function of position on a geometric primi­
tive, viewing angle is assumed constant. Thus Density Esti­
mation produces a view-independent solution to the global
illumination problem that does not include specular effects.
In order to account for the viewing angle dependence, a
separate ray-tracing pass is performed for each viewpoint.
While the pictures produced are appealing to the eye, the
ray-tracing pass cannot correctly account for partially spec­
ular transmissions, because the light could come from more
than one point. Also, the hit point file size is very large. If
each photon requires 100 bytes of storage, a realistic scene
might consume a terabyte of storage. These huge files must
be distilled to find H. The method presented below reduces
the storage requirement substantially by distilling photon
information in histograms.

Tne Density Estimation algorithm has been parallelized
[16] to increase the speed of the simulation. Parallelization
was accomplished by two algorithms: The first handles the
particle tracing phase while the second performs the den­
sity estimation and mesh generation. Due to the nature of
the problem, the speedup obtained in the parallel particle
tracing was quite impressive: approximately 15 on 16 pro­
cessors for one geometry. However, for the same geome­
try the parallel density estimation and meshing phase only
reached a speedup of approximately 8.5 for the same 16
processors. The authors admit that the density estimation
and meshing phase speedup is limited by the time needed to
process the surface with the largest number of "hit points."
In some cases, the speedup in this phase was a mere 4.5 for
16 processors.

2. Photon

Like Zareski et al. [16] the tightly coupled nature of
progressive radiosity and its poor prospects for parallelism
turned us to Monte Carlo light transport simulation. Its
inherent parallelism and ability to account for all lighting
effects promise a scalable solution to Kajiya's Rendering
Equation.

We have created an algorithm which we call Photon that
simulates light transport through a scene by emitting pho­
tons from each light source. The photon is then traced
through the scene until it is probabilistically absorbed. Each
time the photon is reflected, a count is maintained which

66

r"

Figure 2. Dimensions used in histogram bin­
ning

records the number of reflected photons. The count is
recorded in a data structure known as a bin. A bin is a de­
scription of a geometry subset along with the number of
photons that have been reflected from that subset.

2.1. Four-Dimensional Histograms

A bin is parameterized to allow for adaptive subdivision.
When the bin is split, two daughter bins are created to keep
a more accurate accounting of the light interactions on the
surface. For each parameter, a little extra work is performed
to determine which daughter bin would have tallied the re­
flected photon. We refer to this as "speculative binning."
Since the split could occur in any of the parameters, the
speculative binning guides the choice of which to split. A
bin is split when the two daughter bins would probably have
very different photon counts. "Very different" is determined
using statistical properties of Monte Carlo simulations (See
[11]). The result is that we split where there is the largest
gradient.

As shown in (1) radiance is a function of location and
viewing angle. It is for this reason that Photon maintains
four dimensions for each bin. We use bilinear parameters
s and t to represent position on the surface; to record the
angle of reflection, cylindrical coordinates are used (See
Figure 2). The use of cylindrical coordinates as opposed
to spherical coordinates makes the computation of diffuse
reflection probability densities simpler. Color is actually a
fifth dimension, but one not subject to hierarchical subdivi­
sion in this model.

This data structure is capable of recording the answer of
a global illumination model with the color of every patch as

Figure 3. Harpsichord Practice Room

a function of the position on the patch and the viewing di­
rection. In this way, we have a discrete representation of the
radiance L for all points in a scene. A purely diffuse surface
requires only planar bin subdivisions while a specular sur­
face requires more angular bin subdivisions. Our method
can correctly solve a global illumination model that contain
mirrors. This can be seen in the Harpsichord Practice Room
(Figure 3). The back of the bookcase is a mirror which re­
flects the music book. This mirror can be viewed from all
angles correctly as the radiance for all angles is stored in
the bin tree for the mirror. Note that we have not resorted to
the usual trick of constructing a duplicate room on the other
side of the mirror. The mirror is like any other surface, but
with a richer set of histogram information.

3. Parallel Implementation

Unlike the Density Estimation algorithm [16] which uses
two parallel programs. Photon is parallelizable in both stor­
age and work requirements. Each processor performs the
same algorithm generating and tracing photons through the
scene. To eliminate duplication of work, each processor
starts with a distinct random number seed that guarantees
no overlap of random number sequences between proces­
sors. The random number generator scales to any parallel
ensemble of 2^ processors and has a period of 2^^.

A naive method of parallelization would be to allow each
processor to work on the entire geometry, and determine
splittings without global knowledge. At the end of the sim­
ulation, each processor would contribute its bin forest which
must be coalesced into a single representation. This has two
signiflcant drawbacks: First, it fails to distribute storage re­
quirements and does not scale with respect to memory use.
Second, different processors arrive at different adaptive bin-

WEH im mmm mmi

67

elc.

^ Octree representation
of geometry description

• DeHning polygons

A 4-D Bin Tree

Figure 4. Photon data structure

nings, which cannot be merged without considerable extra
computation. We chose to distribute the largest data struc­
tures as well as the work in order to provide scalability.

MPI [2] was chosen for all interprocessor communica­
tions. This choice gave us the greatest flexibility and porta­
bility. Many supercomputers now have a native implemen­
tation of MPI. It also allows us to run Photon on our network
of SGI Indy workstations, and on a Pentium Pro cluster.

3.1. Data Distribution

Figure 4 shows the data structure used by Photon for
storing the histogram bins. It is made up of two distinct sec­
tions: the geometry description, and the histogram bin for­
est. While the memory requirements to store the geometry
information for a given scene remain constant throughout
the run, the memory requirements for the bin forest tend to
be 0{n) in the number of photons. Figure 5 clearly shows
that after an initial buildup of memory, the size of the bin
forest tends to increase linearly. However, it requires far
less storage (1 to 2 orders of magnitude) than if complete
ray histories are recorded. For this implementation, the bin
forest was chosen for distribution among the processors and
the geometry was replicated across all processors.

Each processor is assigned a section of the bin forest.
That processor is responsible for maintaining the photon tal­
lies and splitting the bin when and where necessary. In order
to do this, every reflected photon must be forwarded to the
processor which owns the bin. To save on message over­
head and increase performance, photons are queued and
batched for transmission. This results in an all-to-all com­
munication period following each particle tracing phase.
When a set of photons are received, all that is required is
to determine the bin of interaction and update the appropri-

&
•q

10 20 30
Data structure size in Mbytes

Figure 5. Memory requirements

ate parameter tallies, splitting bins where necessary.

3.2. Load Balancing

Due to the nature of the algorithm, naive load balancing
for Photon can lead to disastrous results. Consider a darkly
painted room with only a spotlight that is focused on the
floor. If the floor is assigned to a processor 0, that proces­
sor will have to do all the work as all the photons generated
must be passed to processor 0 to update tally counts. Clearly
this limits parallelism. The same thing can happen in a more
general environment. If a major percentage of the light re­
ceiving polygons are assigned to one processor, parallelism
will be restricted.

Avoiding the above situation is important to promote
scalability. In the current approach, initially all processors
are assigned ownership of the entire geometry. During this
load balancing phase, k photons are generated and traced
through the scene. No tallying is performed until the pho­
tons have been traced. Then each processor goes through
the photons in the same order, thus producing the same bin
forest. At this point, we are able to use the photon counts
for each bin to determine an appropriate load balance.

Finding an optimal load balance is then reduced to the
bin packing problem which has been shown to be NP-
Complete [3]. However, a good approximation can be
reached using the Best-Fit algorithm. Essentially, a bin
is added to the processor with the smallest photon count.
While this is a greedy algorithm, it has produced good re­
sults. Table 1 shows a comparison of the number of pho­
tons processed by each processor using naive load balancing
versus bin packing. It shows that load balancing using bin
packing is clearly superior to naive balancing. Consider, for
example, processor number 5 processes half as many pho­
tons as processor 0 using naive load balancing. The proces­
sors are identical, therefore processor 5 spent a lot of idle

68

Table 1. Photons processed using naive load
balancing versus bin packing. All counts are
in thousands of photons.

Processor Naive Load Balance Bin Packing
0 47.9 29.4
I 34.5 28.9
2 35.6 29.8
3 25.6 29.4
4 32.7 29.6
5 24.9 29.1
6 35.1 28.7
7 32.8 29.0

Table 2. Test Geometry Sizes
Geometry Polygons Patches Photons
Cornell Box
Harpsichord Room
Computer Lab

33
97

2,000

397,000
150,000
350,000

3 billion
1.5 billion

I billion

20000
8 Processors
4 Processors —
2 Processors
1 Processor

18000

16000

S 14000-
0)

g 12000-

^ 10000-

8000-

6000-co

4000-

2000-

0.1 1 10 100 1000
Tme

Rgure 6. Speedup for Cornell Box

time waiting for processor 0 to finish. Load balancing us­
ing bin packing more evenly distributes the work and thus
lessens idle time.

4. Results

Three separate geometry descriptions were used in test­
ing Photon: the Cornell Box, the Harpsichord Practice
Room, and the Computer Laboratory. The rooms were cho­
sen for their varying complexity as well as surface types.
The rooms are shown on the color plate. Note that there is
no Gouraud shading performed on the individual patches.
This was purposely done to show the adaptive nature of
Photon as well as to preserve calculation integrity. All
speedup results were generated on an 8-processor SGI Indy
Cluster and an IBM SP-2. Table 2 shows the resulting num­
ber of patches for each geometry with the respective number
of simulated photons.

All speedup graphs show a time scale plot of per­
formance. We chose this representation to demonstrate
speedup because it clearly shows that speedup is not a con­
stant; it varies with problem size and time. The startup
overhead for load balancing and data distribution must be
accounted for.

Figure 16 shows the Cornell Box. Floating in the center
of the room is a mirror. As with all specular surfaces, the
mirror can be viewed from all angles without recomputa-
tion or a full ray tracing path. The geometry consists of 30
defining polygons and has approximately 397,000 patches.
The performance results are shown in Figure 6.

S
I

14000- B Processors
4 Processors
2 Processors
1 Processor 12000

10000

8000-

6000-

4000-

Figure 7. Speedup for Harpsichord Practice
Room

69

B Processors
4 Processors
2 Processors
1 Processor

10 100
Tvne

1000 10000

SSOOOi

50000

45000-

s 40000-

S
pe

ed
up

M
'a
1 o
£
e

35000-

30000-

25000-

Q.
Ui

20000

15000-

10000-

5000-

64 Processors
32 Processors
16 Processors
8 Processors
4Processors
2 Processors

Serial Version

0.1

16

&

10
Time

100 1000

Figure 8. Speedup for SCL Computer Room
Figure 9. Speedup for Cornell Box (IBM SP-2)

The Harpsichord Practice Room in Figure 3 and in Fig­
ures 12 through 15 is defined by approximately 100 poly­
gons. The rendering uses about 100,000 to 200,000 subdi­
visions depending on the number of photons generated. It
depicts a harpsichord in a room with skylights and a mir­
rored music shelf. While the geometry is not complex, it
demonstrates some very important concepts. First note the
reflection in the mirror. We must stress that this is not the
result of a single view dependent solution. The mirror can
be viewed from all angles. Also not the light from the sky­
lights on the floor. Most rendering programs incorrectly
consider the sun as a point light source, thereby producing
sharp shadows. Photon considers the sun as a source cover­
ing the scene and collimated to a range of 0.5 degree. We
also treat ambient light from the sky with appropriate color,
intensity, and directionality. This produces sharp shadows
when the occluding object is near the shadowed surface and
fiizzy shadows when the occluder is farther away. The ef­
fect is clearly evident when examining the shadow from the
harpsichord versus the outline of the skylights on the floor.

Figure 7 shows the performance results for the Harpsi­
chord Practice Room. The superiinear speedup for two pro­
cessors is due to cache effects. When moving from one
processor to two processors, a smaller working set is used
per processor, allowing faster access to memory and thereby
increasing speed.

The final speedup curve found in Figure 8 shows the
results for simulation of the Computer Lab. The scene is
made up of approximately 2000 polygons. A graphical rep­
resentation of the geometry can be found in Figure 17. The
speedup for this geometry is more uniform because there
is a more even distribution of light through the room. This
allows the load to be nearly uniform across the processors.

Figures 9 through 11 show the performance graphs for
the IBM SP-2. The results are similar to the SGI Indy clus­
ter, except that the reduced scaling between 2 and 4 proces­
sors is not expected. Beyond 4 processors, the graphs show

45000-1

40000-

35000-

« 30000
c o
o 25000-
£ CL
e 20000-
TJ O
z. 15000-

(/>

10000-

5000-

64 Processors
32 Processors
16 Processors
8 Processors
4 Processors
2 Processors

Serial Verskxi
16

s.

0.1 10
Time

100 1000

Figure 10. Speedup for Harpsichord Practice
Room (IBM SP-2)

10000

8000

Q 6000-

4000-

2000

64 Processors
32 Processors
16 Processors
8 Processors
4 Processors
2 Processors

Serial Version

32

16

10 100
Time

1000 10000

Figure 11. Speedup for SCL Computer Room
(IBM SP-2)

70

that Photon seems to scale well. The reason for the perfor­
mance hit that is taken by moving from 2 to 4 processors
is theorized to be due to communication overhead. Unlike
the Indy cluster, the SP-2 requires that asynchronous mes­
saging be buffered, which adds an extra memory copy and
buffer management overhead to each message. In a config­
uration of 2 nodes, each processor only sends one message
per batch. In this case the communication may be over­
lapped with computation and thus hidden. Increasing the
number of processors, increases the buffer management and
memory copy overhead to the point that it can no longer be
hidden. This is why the absolute performance of configu­
rations of more than two processors is shifted down. How­
ever, performance after the shift appears to scale well.

Figures 12 through 14 give a visual feel for speedup.
Photon was used to generate a scene on 2, 4, and 8 proces­
sors. In each case the simulation was run for approximately
two minutes. It is easy to see the improved quality due to
higher photon simulation counts.

5. Conclusions and Future Work

We have presented a parallel implementation of a global
illumination algorithm. The speedup graphs show that it is
scalable. Photon solves the Rendering Equation by deter­
mining the radiance at each point, and it does this without
the need for storing huge ray history files. Photon is written
using MPI, and can therefore be run on a variety of super­
computers as well as inexpensive clusters of workstations.

Since Photon is based on quantum light transport simula­
tion from the light source, it has the potential to account for
all lighting effects. At this time polarization is being added,
and we foresee the ability to add fluorescence. It is our be­
lief that polarization will play a large role in the realism of
a typical scene.

Currently, the octree representation of the geometry is
replicated on all nodes. This could limit the size of the ge­
ometry that is used. Distribution of the geometry would al­
low computation of a global illumination solution for very
complex scenes. It would also lend itself to more massive
parallelism.

References

[1] L. Aupperie. Hierarchical Algorithms for Illumination. PhD
thesis, Princeton University, 1993.

[2] M. Forum. Mpi: A message passing interface standard. In­
ternational Journal of Supercomputer Applications, 8(3/4),
1994.

[3] M. Garey and D. Johnson. Computers and Intractability, A
Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, New York, New York, 1979.

[4] J. Gustafson. A radar simulation program for a 1024-
processor hypercube. Proceedings of Supercomputing '89,
pages 96—105,1989.

[5] P. Hanrahan, D. Salzman, and L. Aupperie. A rapid hierar­
chical radiosity algorithm. Computer Graphics, 25(4): 197-
206,1991.

[6] J. Kajiya. The rendering equation. Proceedings of SIG-
GRAPH '86, pages 143-149,1986.

[7] P. Shiriey. Physically Based Lighting Calculationsfor Com-
puter Graphics. PhD thesis. University of Illinois at Urbana-
Champaign, 1991.

[8] P. Shirley. Global illumination via density estimation. Pro­
ceedings of the Sixth Eurographics Workshop on Rendering,
pages 187-199, June 1995.

[9] F. Sillion and C. Puech. A general two-pass method inte­
grating specular and difiuse reflection. Computer Graphics,
23(3);335-334,1989.

[10] F. Sillion and C. Puech. Radiosity and Global Illumination.
Morgan Kaufmann Publishers, Inc., San Francisco, Califor­
nia, 1994.

[11] Q. Snell. Parallel Hierarchical Global Illumination. PhD
thesis, Iowa State University, 1997.

[12] G. Sturzlinger and J. Volkert Load balancing for a parallel
radiosity algorithm. Proceedings of the 1995 Parallel Ren­
dering Symposium, pages 39-45,1995.

[13] E. Veach and L. Guibas. Optimally combining sampling
techniques for monte cario rendering. Proceedings of SIG-
GRAPH '95, pages 419^28,1995.

[14] J. Wallace, M. Cohen, and D. Greenberg. A two-pass so­
lution to the rendering equation: A synthesis of ray-tracing
and radiosity methods. Computer Graphics, 21(4):311-320,
1987.

[15] T. Whitted. An improved illumination model for shaded dis­
play. Communications of the ACM, 23(6):343-349, June
1980.

[16] D. Zareski. Efficient parallel global illumination using den­
sity estimation. Proceedings of the 1995 Parallel Rendering
Symposium, pages 47-54,1995.

6. Acknowledgments

As with many projects. Photon is not the work of just the
authors of the paper. We must thank Charles Shorb for his
help on the Photon project. The program that produces the
pictures and allows for viewing of a Photon generated scene
is the result of his hard work.

Figure 12.2 minute run on 2 processors. Figure 15. Harpsichord Practice Room.

Figure 13.2 minute run on 4 processors. Figure 16. Cornell Box.

Figure 14.2 minute run on 8 processors. Figure 17. Computer laboratory.

72

BIBLIOGRAPHY

[1] S. Alum, J. Gustafson, and G. Prabhu, "A Random Number Generator for Parallel

Computers," Parallel Computing, vol. 18, 1992, pages 839-847.

[2] A. Appel, "An Efficient Program for Many-Body Simulation," SIAM Journal on

Scientific and Statistical Computing, vol. 6, no. 1, 1985, pages 85-103.

[3] J. Arvo and D. Kirk, "Particle Transport and Image Synthesis," SIGGRAPH '90

Proceedings, vol. 24, no. 4, August 1990, pages 63-66.

[4] L. Aupperle, Hierarchical Algorithms for Illumination, Ph.D. thesis, Princeton Uni­

versity, Department of Computer Science, Princeton, New Jersey, November 1993.

[5] D. Bailey et ai, "The NAS Parallel Benchmarks," Report RNR-91-002, NASA

Ames Research Center, January 1991.

[6] P. Bjorstad and E. Boman, "A New Algorithm for the SLALOM Benchmark,"

Technical Report No. 55, Department of Informatics, University of Bergen, Norway,

May 1991.

[7] M. Carter, Parallel Hierarchical Radiosity Rendering, Ph.D. thesis, Iowa State Uni­

versity, Department of Electrical and Computer Engineering, Ames, Iowa, 1993.

[8] M. Cohen and D. Greenberg, "The Hemi-Cube: A Radiosity Solution for Complex

Environments," SIGGRAPH '85 Proceedings, vol. 19, no. 3, Aug. 1985, pages 31-40.

73

[9] R. Cook, "Stochastic Sampling in Computer Graphics," ACM Transactions on

Graphics., vol. 5, no. 1, Jan. 1986, pages 51-72.

[10] R. Cook, T. Porter, and L. Carpenter, "Distributed Ray Tracing," Computer Graph­

ics, vol. 18, no. 3, 1984, pages 137-145.

[11] R. Cook, and K. Torrance, "A Reflectance Model for Computer Graphics," ̂ 4 CM

Transactions on Graphics, vol. 1, 1982, pages 7-24.

[12] I. Deak, "Uniform Random Number Generators for Parallel Computers," Parallel

Computing, vol. 15, 1990, pages 155-164.

[13] W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley

and Sons Inc., New York, New York, 1968.

[14] S. Foo and K. Torrance, "Equipment Acquisition for the Light Measurement Labo­

ratory of the Cornell Program of Computer Graphics," Cornell University Program

of Computer Graphics Technical RepoH, 1995.

[15] M. Garey and D. Johnson, Computers and Intractability, A Guide to the Theory of

NP-Completeness, W. H. Freeman and Company, New York, New York, 1979.

[16] A. Glassner, An Introduction to Ray Tracing, Academic Press Limited, 1989.

[17] A. Glassner, "Space Subdivision for Fast Ray Tracing," IEEE Computer Graphics

and Applications, vol. 4, no. 10, Oct. 1984, pages 15-24.

[18] J. Gustafson and Q. Snell, "Reevaluating Global Illumination Methods," Ames

Laboratory Technical Report, USDOE (in preparation).

[19] J. Gustafson, "The Consequences of Fixed Time Performance Measurement," Pro­

ceedings of the 25th Hawaii International Conference on System Sciences, IEEE

Computer Society Press, January 1992, pages 113-124.

74

[20] J. Gustafson et al., "A Radar Simulation Prograni for a 1024-Processor Hypercube,"

Proceedings of Supercomputing '89, pages 96-105.

[21] J. Gustafson, "Reevaluating Amdahl's Law," Communications of the ACM, vol. 32,

no. 5, May 1988, pages 532-533.

[22] J. Hammersley and D. Handscomb, Monte Carlo Methods, Wiley, New York, NY,

1964.

[23] P. Hanrahan, D. Salzman, and L. Aupperle, "A Rapid Hierarchical Radiosity Al­

gorithm," Computer Graphics, vol. 25, no. 4, 1991, pages 197-206.

[24] X. He et ai, "A Comprehensive Physical Model for Light Reflection," SIGGRAPH

'91 Proceedings, vol. 25, no. 4, July 1991, pages 175-186.

[25] P. Heckbert and P. Hanrahan, "Beam Tracing Polygonal Objects," Computer

Graphics, vol. 18, no. 3, 1984, pages 119-127.

[26] A. Heirich and J. Arvo, "Scalable Photorealistic Rendering of Complex Scenes,"

First Eurographics Workshop on Parallel Graphics and Visualization, Bristol, U.K.,

September 1996.

[27] D. Immel, M. Cohen, and D. Greenberg, "A Radiosity Method for Non-Diffuse

Environments," SIGGRAPH '86 Proceedings, vol. 20, no. 4, August 1986, pages

133-142.

[28] E. Isaacson and H. Keller, Analysis of Numerical Methods, John Wiley and Sons,

Inc., New York, New York, 1966.

[29] J. Kajiya, "The Rendering Equation," SIGGRAPH '86 Proceedings, vol. 20, no. 4,

August 1986, pages 143-149.

75

[30] D. Knuth, Seminumerical Algorithms, Addison-Wesley Publishing Company, Read­

ing, Massachusetts, 1981.

[31] 1. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and

Photon Calculations, CRC Press, Boca Raton, Florida, 1991.

[32] M. Maekawa, A. Oldehoeft, and R. Oldehoeft, Operating Systems, Advanced Con­

cepts, The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

[33] N. Magnenat-Thalmann and D. Thalmann, Image Synthesis Theory and Practice,

Springer-Verlag, Tokyo, 1987.

[34] Message Passing Interface Forum, "MPI: A Message Passing Interface Standard,"

International Journal of Supercomputer Applications, vol. 8, no. 3/4, 1994.

[35] A. Mood, F. Graybill, and D. Boes, Introduction to the Theory of Statistics,

McGraw-Hill, New York, New York, 1974.

[36] S. Pattaniak and S. Madur, "Computation of Global Illumination by Monte Carlo

Simulation of the Particle Model of Light," Third Eurographics Workshop on Ren­

dering, May 1992, pages 71-83.

[37] B. Phong, "Illumination for Computer Generated Pictures," Communications of

the ACM, vol. 18, no. 6, June 1975, pages 311-317.

[38] S. Rubin and T. Whitted, "A 3-Dimensional Representation for Fast Rendering

of Complex Scenes," SIGGRAPH '80 Proceedings, vol. 14, no. 3, July 1980, pages

110-116.

[39] P. Schroder and P. Hanrahan, "On the Form Factor between Two Polygons," SIG­

GRAPH '93 Proceedings, August 1993, pages 163-164.

76

[40] P. Shirley et ai, "Global Illumination via Density Estimation," Proceedings of the

Sixth Eurographics Workshop on Rendering, June 1995, pages 187-199.

[41] P. Shirley, "Monte Carlo Simulation and Integration," Global Illumination, ACM

SIGGRAPH '92 Course Notes.

[42] P. Shirley, Physically Based Lighting Calculations for Computer Graphics, Ph.D.

thesis. University of Illinois at Urbana-Champaign, Department of Computer Sci­

ence, Urbana, Illinois, 1991.

[43] Y. Shreider, The Monte Carlo Method, Pergamon Press, New York, NY, 1966.

[44] F. Sillion, et ai, "A Global Illumination Solution for General Reflectance Distribu­

tions," SIGGRAPH '91 Proceedings, vol. 25, no. 4, July 1991, pages 187-196.

[45] F. Sillion and C. Puech, Radiosity and Global Illumination, Morgan Kauftnann

Publishers, Inc., San Francisco, California, 1994.

[46] F. Sillion and C. Puech, "A General Two-Pass Method Integrating Specular and

DiflFuse Reflection," Computer Graphics, vol. 23, no. 3, 1989, pages 335-344.

[47] M. Singhal and N. Shivaratri, Advanced Concepts in Operating Systems, McGraw-

HiU, Inc., New York, NY, 1994.

[48] B. Smits, J. Arvo, and D. Salesin, "An Importance Driven Radiosity Algorithm,"

SIGGRAPH '92 Proceedings, vol. 26, no. 2, July 1992, pages 273-282.

[49] I. Sobol, A Primer for the Monte Carlo Method, CRC Press, Boca Raton, Florida,

1994.

[50] E. Sparrow and R. Cess, Radiation Heat Transfer, Hemisphere Publishing Corpo­

ration, Washington, 1978.

77

[51] W. Stiirzlinger, G. Schaufler, and J. Volkert, "Load Balancing for a Parallel Ra-

diosity Algorithm," Proceedings of the 1995 Parallel Rendering Symposium, ACM

SIGGRAPH, pages 39-45.

[52] E. Veach and L. Guibas, "Optimally Combining Sampling Techniques for Monte

Carlo Rendering," Proceedings of SIGGRAPH '95, ACM SIGGRAPH, pages 419-

428.

[53] J. Wallace, M. Cohen, D. Greenberg, "A Two-Pass Solution to the Rendering Equa­

tion: A Synthesis of Ray-Tracing and Radiosity Methods," SIGGRAPH '87 Pro­

ceedings, vol. 21, no. 4, 1987, pages 311-320.

[54] G. Ward, "Measuring and Modeling Anisotropic Reflection," SIGGRAPH '92 Pro­

ceedings, vol. 26, no. 2, July 1992, pages 265-272.

[55] T. Whitted "An Improved Illumination Model for Shaded Display," Communica­

tions of the ACM, vol. 23, no. 6, June 1980, pages 343-349.

[56] S. Yakowitz, Computational Probability and Simulation, Addison-Wesley, New York,

NY, 1977.

[57] D. Zareski et al, "Efficient Parallel Global Illumination using Density Estimation,"

Proceedings of the 1995 Parallel Rendering Symposium, ACM SIGGRAPH, pages

47-54.

