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1 GLOBAL ILLUMINATION 

The field of computer graphics has changed dramatically over the last two decades. 

One of the major goals has remained constant: Display a scene on the computer that 

is photorealistic. In other words, display a computer-generated scene that is indistin­

guishable from a photograph of the actual scene. Accomplishing this task amounts to 

correctly simulating all lighting effects within the scene. 

The correct simulation of lighting effects involves determining how much light is 

received at each point and what happens to the light after it hits a given point. The 

reflection of light is governed by well-known laws such as Snell's law and the Fresnel 

equations. Determination of the amount of light at a given point is performed by an 

illumination model. Illumination models come in two varieties: global and local. In a 

local illumination model, illumination on a surface depends only on the surface properties 

and the light sources. Local illumination models do not account for illumination due to 

reflection off surfaces in the scene. Global illumination models consider all objects as 

sources of illumination. 

The solution to the global illumination problem has many applications, architectural 

rendering and virtual reality being two of the more popular. In general terms, the global 

illumination problem is the determination of the color and intensity of light given off 

from every point in an environment in every direction. This contrasts with ray tracing, 

which attempts to estimate the light seen from one viewpoint. Global illumination is 

key to virtual reality eff'orts since correct views can be displayed quickly as the viewpoint 

moves. 
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Figure 1.1 Definition of Radiance 

The physical quantity desired for global illumination is the radiance, L, at point x, 

in direction tj) (see Figure 1.1), described in the following equation [42, 45]: 

L(x, V) = 
dl 

(1.1) 
dA cosQ 

where i/* is a direction described by a vector or a (0, (j>) pair in spherical coordinates. 

The quantity I is the radiant intensity computed as: 

/ = 
du) 

(1.2) 

where uj is the solid angle originating at the point and $ is the radiant flux. 

Equation 1.1 shows that radiance is a function of position, x, and viewing angle, 

{9,0). Therefore, any algorithm proposed to solve the global illumination problem must 

present a solution that is likewise dependent on position and viewing angle. 
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The Rendering Equation 

The mathematics involved in a global illumination model have been summarized in 

a high-level continuous equation known as the Rendering Equation. The Rendering 

Equation was proposed by two authors in 1986: Kajiya [29] and Immel [27]. The rep­

resentations are similar in that both are Fredholm Equations of the Second Kind. The 

differences will be discussed below. 

The Rendering Equation as expressed by Kajiya is: 

where: 

I(x, x') is the intensity of light passing from point x' to x 

g{x, x') is a "geometry term" explained below 

e(x, x') is the intensity of light emitted from x' to x 

p{x, x', x") is the intensity of light scattered from x" to x through x' 

S is the set of all surfaces in the scene 

The geometry describing Kajiya's Rendering Equation is shown in Figure 1.2. The 

three-point transport from x" through x' to x accounts for the directional reflectivity 

(1.3) 

Figure 1.2 Geometry for Kajiya's Rendering Equation 
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of specular surfaces. The function g{x , x ' )  is a determination of the visibility of x  from 

x', and takes a value of 1 if there is an unoccluded path between x from x", or 0 other­

wise. It can also be used to simulate fog effects by assigning a percentage based on fog 

distribution. Note that, in this form, the equation integrates over all surfaces S. 

in 

'out 

Figure 1.3 Geometry for Immel's Rendering Equation 

Immel et al. formulate this equation in terms of radiance and thus integrate over all 

incoming angles (see Figure 1.3). 

Lout{-Xi, i>) = i^e(x, 1p)+ [ p(x, ^')Lin{x ,  r j } ' )  COS e'du' (1.4) 
J 

where: 

X is a vector representing a point in the scene 

•0 is a direction represented as a (0,0) pair 

is the radiance leaving point x in direction xp 

Linix,^}') is the incoming radiance at point x in direction ij)' 

Le is the emitted radiance 

p is the bidirectional reflectance distribution function (BRDF). 

This formulation does not include provisions for occlusion at this point. It is ac­

counted for during discretization using the function HID{i,j,d) which evaluates to 1 if 
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patch i is visible from patch j along direction d, 0 otherwise. This is equivalent to the 

geometry term g{i,j) used by Kajiya. The BRDF is simply the radiance of the surface 

seen from point x in direction ij} divided by the incident power per unit area. Determi­

nation of the BRDF for a given surface is a diflBcult task. It has become a related field of 

research and is being examined by many [54, 24, 11]. The graphics program at Cornell 

University under the direction of Donald Greenberg and Ken Torrance has developed 

methods for measuring the BRDF for a given surface [14]. 

Dissertation Structure 

This dissertation discusses the approaches to global illumination and in particular the 

search for a global illumination algorithm that converges to a solution of the Rendering 

Equation and is amenable to parallelization. The various algorithms axe presented in 

chapter 2 along with an analysis of their respective prospects for parallelism. 

Chapter 3 presents a general class of algorithms which use Monte Carlo simulation. 

Monte Carlo integration is introduced and its application to global illumination is dis­

cussed. The chapter also analyzes current approaches to global illumination that use 

Monte Carlo techniques. 

A new algorithm based on Monte Carlo simulation of light transport, called Photon, is 

presented in chapter 4. Also included is a new approach to histogramming the statistical 

results of the Monte Carlo simulation. The chapter ends with a discussion of whether 

the method converges to a solution of the Rendering Equation. 

The parallelization of Photon is explained in chapter 5. Sources of parallelism are 

examined and issues such as data decomposition, load balancing and performance are 

discussed. Chapter 6 presents conclusions and examines areas of future research, and a 

paper presenting these results that was published in the Proceedings of the Sixth Inter­

national Conference on High Performance Distributed Computing is in the Appendix. 
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2 GLOBAL ILLUMINATION ALGORITHMS 

With the background from chapter 1, we can now examine the various global illumi­

nation algorithms. The algorithms can be grouped together in two basic classes: those 

that solve for only a single viewpoint, and those that attempt the full global illumination 

solution and solve for every possible viewpoint. These algorithms either directly solve 

an equation which jdelds the intensity of light for every point in the scene or attempt 

to compute the intensity heuristically. The computation may use a deterministic or a 

Monte Carlo algorithm. The remainder of this chapter will consider deterministic solu­

tion methods. Algorithms that use Monte Carlo methods will be addressed in the next 

chapter. 

Ray Tracing 

Ray tracing from the viewpoint, as introduced by Whitted [55], was partly introduced 

to reduce the heavy computational requirements of forward ray tracing. The idea was 

to compute only what was being viewed. These traditional ray tracing methods are 

backward in that they start from the viewer and estimate the radiance by summing 

the effects of light sources on the point of closest intersection. Ray tracing calculates 

the radiance at a point by sending a ray from the viewpoint through a hole in the 

viewplane corresponding to a pixel and determining the point p of closest intersection 

(see Figure 2.1). If p lies on a non-specular surface, the radiance is calculated based on 

an extension to the Phong [37] model. The intensity I for point p with normal N in the 
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shadow rays 

Figure 2.1 Ray Tracing Basics 

Whitted model is: 

I  =  la +  kd  ^(N - Ly)/,- + k sS  + ktT (2.1) 
j 

where: 

la is the intensity of light due to ambient reflection 

kd is the diffuse reflection constant 

ks is the specular reflection constant 

kt is the light transmission coefficient 

Lj is the unit vector in the direction of light source j 

S and T are the intensity of specularly reflected and transmitted light. 

The vector Lj is often termed a shadow ray as it also serves as a determination of 

whether light source j is visible from point p. If a given light source is not visible, 

its effects do not contribute to the sum. The computational complexity of ray tracing 

increases with the number of light emitters whose effects must be added. Ray tracing 

is not physically correct because radiance depends on the light input from all surfaces, 



Figure 2.2 Ray Traced Scene 

not just liglit emitters. 

An example of a ray traced scene is shown in Figure 2.2. One of the disadvantages 

can be easily seen in this example. Since point light sources are used, the shadows from 

the spheres are very sharp even as the distance between the sphere and the ground 

plane grows. Also note that there is no color interaction between the blue sphere and 

the ground plane. In a natural environment, the colors of the ground plane would be 

affected by the blue of the sphere. The effect would be especially evident in the white 

blocks. More subtly, the refraction of the transparent sphere is too perfect. The sphere 

shows no reflective properties. A real crystal ball tends to reflect and refract. While this 

could be added to the geometry, it would greatly increase the complexity and run time 

of the program. An advantage of ray tracing is that it parallelizes with little effort if 

each processor can contain the entire geometry description. However, it never converges 

to the correct answer for realistic surfaces and thus the parallel efficiency is moot. 
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Radiosity 

The class of radiosity algorithms came out of the study of radiant heat transfer. 

Instead of solving for radiant heat energy, the solution is found for visible light. Radiosity 

methods solve the Rendering Equation for the special case in which all surfaces are ideal 

difiuse reflectors. In other words, the radiance L is independent of the angle of emittance. 

Remember that Immel's formulation of the Rendering Equation 1.4 is 

= Lou t {y , f p ' ) -

For ideal diffuse reflectors, the BRDF reduces to a constant and can thus be moved out 

of the integral. The Rendering Equation then becomes 

Li„(x) = Le(x) +p(x) I Lout{y)cose'du}'. 
Jrj, 

We can then use the following relationship and convert the equation to a surface integral: 

Lcmt{'X., i}) = i^e(x, V') + p(x, ^')^m(x, 'ij)') COS O'cLo'. 

Since radiance is preserved along a line of sight. 

This yields 

Lant{-x) = Le(x) + p(x) Lout{y) 
cos 9 COS 6' 

d y .  (2.2) 

This is the continuous form of the Radiosity Equation. The representative geom­

etry is found in Figure 2.3. The quantity is referred to as the point to point 

geometrical form factor between x and y. It is often represented by the function F(x, y). 
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N 

Figure 2.3 Geometry for Radiosity Equation 

The continuous form of any equation is difficult to deal with in a computer environ­

ment. For numerical computation, Equation 2.2 can be written in discrete form. At this 

point, the geometry term g{i,j) is also added to account for occlusion. 

While determination of the pointwise form factors is straightforward, the determi­

nation of the form factor between two arbitrary patches is not. It amounts to a surface 

integral across the patch at point x for all points on surface y, resulting in 

A detailed discussion and the closed form of the form factor for two arbitrary patches 

can be found in [39]. While a closed form exists, computation is a very arduous task. 

The complexity of form factor determination is perhaps the biggest motivation for Monte 

Carlo methods as there is no need to compute the form factor. Since the accuracy of 

the global illumination solution is only desired to a fixed precision, the form factor is 

often estimated using two circular patches for which closed form expressions of the form 

factor are simple. 

Lout{ i )  — 9{h j )  Le { i )  -f- p{ i )  j )  .  (2.3) 
j=i 

(2.4) 
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To produce a solution of equation 2.3, the surfaces of a scene are discretized into 

small patches p{i),i = 1 to AT, which are assumed to be of constant radiance Lou.t{i) 

and constant reflectivity p{i). The equation is applied for each patch in the scene. This 

reduces (2.3) to a system of linear equations solvable by traditional Gaussian elimination 

[6, 7] expressible by 

(/ - pF)b = e, (2.5) 

where: 

I is the identity matrix. 

P is the reflectivity vector. 

F is the form factor matrix, 

b is the radiosity vector, and 

e is the emittance vector. 

All reflectivity values are positive and less than one, and the form factor matrix row 

sums total one with the diagonal element equal to zero. The resulting matrix is one 

in which the diagonal elements are ones and the sum of the absolute values of the off-

diagonal elements is less than 1. The resulting Gerschgorin circle [28] is centered at 1 with 

radius less than 1. Therefore, the eigenvalues are all positive and thus the matrix that is 

formed is diagonally dominant, making the system solvable using iterative methods such 

as Jacobi and Gauss-Seidel iteration [8]. If the reflectivity range is bound, the condition 

number of the matrix is known. For a known answer precision and condition number, 

the number of iterations is constant thus reducing the complexity of the problem from 

0{N^) to 0{N^). A detailed discussion of this can be found in [6]. 

In 1991, Hanrahan et al.[23] applied hierarchical methods similar to those used by 

Appel's N-body algorithm [2] to radiosity. The method relies on the fact that, like N-

body calculations, the interaction between patches decreases as the square of the distance 
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between them. This means that patches that are farther away can be grouped and 

summarized by a single geometrical form factor. The algorithm adaptively subdivides 

a surface into smaller patches to improve the accuracy of the geometrical form factor. 

The adaptive subdivision introduced by Hanrahan improved answer quality and reduced 

storage compared to full discretization, where all patches are of the same size regardless 

of importance. However, the adaptive nature depended not on the overall error in the 

answer, but on the error in a single form factor. Reducing the error in a form factor 

by half does not necessarily reduce the overall error similarly. Consider a comer in the 

shadow underneath a desk: Refining the geometry by splitting patches in this area does 

not improve overall answer quality. It is dark and thus the error associated with the 

patches will be small. Hanrahan's method incorrectly assumes that answer quality is 

proportional to the number of patches. What results is a plethora of patches that may 

be unnecessary. 

Hanrahan uses an idealized one-dimensional proof to state that hierarchical radiosity 

i s  0 { N) .  Tha t  i s ,  t h e  work  a s soc i a t ed  w i th  a nd  iV-p a t ch  p rob l em i s  p ropo r t i ona l  t o  N.  

It makes no statement about closeness to a physically correct answer. This is true in a 

one-dimensional world, however, it does not consider the added complexity of two and 

three dimensions. In one dimension, each patch interacts with a constant number of 

patches making it 0{N). In two and three dimensions, this is not the case. 

It is clear that pure radiosity methods cannot yield a true global illumination solution 

for general surfaces. The answer produced is view-independent, but it does not account 

for glare effects, mirrors, or glossy surfaces. Surfaces and effects such as these have 

different radiance depending on the view angle. Also, due to the tightly coupled nature 

of these progressive radiosity methods, parallelization has met with little success [7, 51]. 

But perhaps most importantly, methods for estimating form factors are fraught with 

difficulties and are nonconvergent or very slowly convergent to the correct values. 
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Two-Pass Approaches 

Radiosity correctly accounts for illumination from diffuse surfaces. The formulation 

above, however, cannot model any other surface. In light of this fact, many [46, 53] have 

added a secondary ray tracing pass to account for viewing angle-dependent illumination. 

In the first pass, the system is solved using radiosity methods for the diffuse surfaces and 

lighting effects. Then a ray tracing pass is performed which follows specular transfers. 

While the method produces pictures that are appealing to the eye, they are not physically 

correct and do not accurately account for the semi-diffuse reflections that occur in nature. 

Extended Radiosity 

Radiosity does not account for specular reflection, and two-pass approaches are not 

physically correct. Radiosity is an attractive approach in that it directly solves the Ren­

dering Equation. Sillion [44] uses spherical harmonics to summarize the directional light 

intensity at each vertex. This method has problems accurately representing specular 
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reflections. To understand this, consider a specular reflection function such that a spike 

of intensity occurs at some point. The use of spherical harmonics to represent the spike 

is shown Figure 2.4. Even at 30 terms the accuracy leaves much to be desired, and 

moreover, there will always be ringing near the spike. Also, requiring possibly hundreds 

of terms for each specular reflective spike is an excessive demand on memory. 

Recently, Aupperle [4] has extended hierarchical radiosity to account for specular 

effects using three-point light transport. His algorithm is based on directly solving the 

Rendering Equation using a method similar to Hanrahan's approach to radiosity. The 

geometrical form factors become 3-point transfer percentages rather than the 2-point 

transfer percentages used in radiosity. In other words, the method must determine and 

record the percentage of light from patch x" that bounces off patch x' and hits patch x, 

thus accounting for specular reflections. 

Aupperle's algorithm is appealing in that it directly solves the Rendering Equation, 

but computation amounts to a hierarchical tensor product. This is computationally 

intensive and the prospects for parallelism are small due to its tightly coupled nature. 

Another drawback of this method is that it only computes the light seen from each 

surface in the scene. This means that to see the scene from any other point in space, a 

physical viewplane must be inserted into the scene. This severely restricts the views to 

those of a "fly on the wall." Perhaps most importantly, it inherits the error of Hanrahan's 

method of equating patch count to answer quality, producing a proliferation of patches 

that have little contribution to error reduction. 

Summary 

This chapter has considered various global illumination algorithms. Ray tracing is 

based on tracing the supposed path of light from the viewpoint backwards into the scene. 

While this reduces the computational effort and is highly parallel, it does not give the 
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physically correct solution. Radiosity is based on solving for the equilibrium light ra­

diation in a room. The solution method considers the global effects of light transport, 

but does not solve for view-angle dependent effects such as specular reflections. Since 

radiosity methods solve for global effects and ray tracing works well for specular effects, 

two-pass methods have been developed using a hybrid radiosity ray tracer. However, 

this approach is also not physically correct. It does not correctly account for semi-

diffuse reflections. Lastly, we considered an extension to radiosity in which the global 

illumination equation is directly solved based on three-point light transport. This ef­

fort is appealing, but due to the tightly-coupled hierarchical three-dimensional matrix, 

parallelization efforts for it appear doomed. 



16 

3 MONTE CARLO TECHNIQUES IN COMPUTER 

GRAPHICS 

The term "Monte Caxlo method" refers to any algorithm which uses random numbers 

to generate a statistically convergent solution. Monte Carlo methods are employed in 

many areas such as computational physics, computational chemistry, and operations 

research, as well as computer graphics. Most of these algorithms fall into one of two 

categories: Monte Carlo integration, and Monte Carlo simulation. 

Monte Carlo integration is the term applied to algorithms that use random numbers 

to approximate integrals. If a physical process is modeled using random numbers, the 

algorithm is referred to as a Monte Carlo simulation. Both techniques have been used in 

the field of computer graphics for calculations such as radiosity and in distribution ray 

tracing [10, 9] for soft shadows and motion blur effects. The distinction will be clarified 

below. 

In this chapter, the basics of Monte Carlo integration and simulation are presented. 

The discussion will cover the general techniques and present relevant global illumination 

algorithms. For a more general treatment of Monte Carlo techniques, the reader is 

referred to one of the classic Monte Carlo texts [22, 43, 56] or more recent publications 

[49, 31]. 
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Background 

Monte Caxlo algorithms are based on the use of random variables. To understand 

and appreciate this class of algorithm, one must understand some basic properties of 

random variables from probability theory. 

Random variables come in two varieties: continuous and discrete. Because problems 

in computer graphics involve integrals of continuous functions, we will focus on contin­

uous random variables. A random variable is considered to be continuous if it can take 

on any value in the interval (a, b) and its density can be represented by an integral. The 

variable ^ is defined by specifying the interval containing all its possible values, and a 

function, p{x), called the probability density function. Given an interval (a', b') such that 

a < a' < b,a' < b' < b, the probability that ^ falls in the interval (a', b') is equal to 

Figure 3.1 shows a graphical view of this. The area of the shaded region is the probability 

that ^ falls in the interval. The density function must satisfy two conditions: 

1. The density is strictly positive in the interval (a, 6): 

p{x )  >  0. (3.1) 

2. The integral of p{x )  over the interval is equal to one: 

(3.2) 

The expected value, E{^), of the random variable ^ is 

(3.3) 
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y = p ( x )  

Figure 3.1 Probability Density 

and the variance of ^ is 

variO = E{e) - (E(Or (3.4) 

Monte Carlo Integration 

It can be shown [22, 43] for an arbitrary continuous function f ( x )  and random vari­

able 7/ = /(^) that 

rb 

E i r f )  =  [  f { x ) p { x ) d x ,  
J a 

which can be approximated as 

N 

t=l 
(3.5) 

This leads to the idea of Monte Carlo estimation of integrals. If we simply substitute 

g{x) for f{x)p{x) we arrive at 

L ' , X , ^1 - ^ g i x i )  
(3.6) 
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Note that, due to (3.1), there will never be a division by zero. However, in situations 

where the probability p{xi) is very small, the division amplifies roundoff error and results 

in a poor numericai approximation. Using this method, researchers have approximated 

the value of integrals found in computer graphics such as the BRDF. 

Modified Ray Tracing 

Veach and Guibas [52] have extended ray tracing by using Monte Carlo methods to 

evaluate the BRDF. At each ray-surface intersection, the BRDF is sampled by emitting 

an appropriate distribution of rays and summing their contribution. For a diffuse surface, 

the distribution examined would be widely scattered, but for a specular surface the 

distribution would be much more narrow. This method seems to correctly solve for the 

radiance given a single viewpoint; repositioning requires recomputation. This method 

is suitable for generating still images, but it is patently inefficient for use in touring a 

scene. The recomputation of global illumination for each viewpoint would not allow for 

the redraw speeds needed. 

Monte Carlo Simulation 

All Monte Carlo methods are simulations of some physical process. Consider the 

evaluation of a definite integral in 2-D space. The process that is being simulated is a 

hit-or-miss process. Random points are repeatedly picked and determined to be below 

or above the curve. In the end, the ratio of the number of points below the curve to the 

totai points is used to estimate the area and thus approximate the integral. 

In some c£ises, it is convenient to focus on the process to be simulated rather than 

the definite integral being evaluated. Many times, a statistical model of behavior is 

known but an analytical model is not. These processes are candidates for Monte Carlo 



20 

Simulation. 

The defining difference between Monte Carlo Integration and Monte Carlo Simulation 

is the effect of rajidom numbers on the algorithm. Monte Carlo Integration uses random 

numbers and their respective probability to approximate an integral, but the random 

numbers do not affect the decisions that are made in the algorithm. A simulation 

based on Monte Carlo methods relies on the random numbers to control the flow of the 

simulation. Decisions are made based on random probabilities. 

In particular, consider the process by which light is radiated throughout a scene. 

Rather than try to solve the integral equation, the behavior of light can be numerically 

simulated. The simulation involves emitting photons from the light source and tracing 

them throughout the scene. This seems like a simple method, and it is simple in many 

ways. The problem that must be faced is that for each photon, all its interactions must 

be accounted for and recorded. Since a numerical simulation of light in a scene must 

emit large numbers of photons, the memory space required for the interactions is also 

very large. The process is also computationally intensive. Emitting a photon amounts 

to tracing the photon through the scene and determining its intersection points. This 

method was disregarded in the early 1980s due to its heavy resource demands. It was 

at this time that Whitted introduced his ray-tracing method which only considered the 

subset of rays that were actually seen and a subset of the contributions to the color of 

each ray. 

If the intensity of reflected light from a surface is expressed as a function, determining 

the intensity of light for all points is much like determining an unknown function for 

which Monte Carlo methods also serve well. If we can determine whether a given point 

is above or below the curve, we can determine the area under the curve. Further, 

if we discretize the domain, the area for each subinterval can be determined. As we 

choose random points in the interval, the containing subinterval is determined and a 

tally is maintained. In the end, the relative subinterval hit counts will reveal the shape 
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Figure 3.2 Histogramming 

of the curve (see Figure 3.2). Obviously, the accuracy of this method depends on the 

discretization. A finer discretization will produce a higher resolution curve but will 

require more storage. 

In like manner, v/e can determine the view-independent radiance function along a 

surface; simply replace the area histograms with volume histograms. Imagine the in­

tensity of light given off by a polygon as a functional surface where the height of the 

function indicates intensity (see Figure 3.3). Now we can follow a similar algorithm to 

determine this function. This works well for calculating a view-independent solution but 

does not account for view-dependent effects such as glare. We will address this in the 

following chapter. Although the method has high absolute computational and storage 

demands, it is very economical among methods that compute views from any spatial 

viewpoint. Since the process of radiation is being simulated, it has the possibility of 

modeling all lighting effects including polarization and fluorescence. 
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Figure 3.3 3-Dimensional Histogramming 

Light Transport Simulation 

With the ever-increasing power and speed of today's computers coupled with the 

diminishing cost of memory, some researchers [40, 36, 20] have returned to tracing light 

from the light source through the scene. Methods such as these use Monte Carlo 

techniques to simulate the transport of light through a scene. As the light passes through 

the scene, each interaction with a surface is recorded. Viewing is accomplished by 

summarizing the interactions and computing a color for each visible point in the scene. 

The Density Estimation algorithm proposed by Shirley et al. [40] goes through 

three phases: particle tracing, density estimation, and meshing. In the particle tracing 

phase, photons are generated and the light transport is simulated. Each interaction 

is recorded in a "hit point" file in mass storage, thus saving the ray history of each 

photon. The density estimation phase processes the hit point file and generates an 



23 

approximate irradiance function H for each surface, and the meshing phase generates a 

set of Gouraud-shaded polygons which can then be used for viewing. 

Since H is only a function of position, the Density Estimation algorithm produces 

a view-independent solution to the global illumination problem that does not include 

specular effects. To account for the viewing angle dependence, a separate ray-tracing 

pass is performed for each viewpoint. While the pictures produced are appealing to the 

eye, the ray-tracing pass cannot correctly account for partially specular transmissions, 

because the light could come from more than one point. Also, the hit point file size is 

0{n) with respect to the number of photons simulated. This generates huge files that 

must be distilled to find H. 

The Density Estimation algorithm has been parallelized [57] to increase the speed 

of the simulation. Parallelization is accomplished by two algorithms: The first handles 

the particle tracing phase while the second performs the density estimation and mesh 

generation. Due to the nature of the problem, the speedup obtained in the parallel 

particle tracing is quite impressive, approximately 15 on 16 processors for one geometry. 

However, for the same geometry the parallel density estimation and meshing phase only 

reaches a speedup of approximately 8.5 for the same 16 processors. The authors admit 

that the density estimation and meshing phase speedup is limited by the time needed to 

process the surface with the largest number of "hit points." In some cases, the speedup 

in this phase is a mere 4.5 for 16 processors. Hence, parallel approaches to date have not 

been scalable. The approach we present in Chapter 4 has excellent scaling properties 

overall. 

Adaptive Histogramming 

One way to reduce the amount of storage for histogram bins is to adapt the histogram 

to the unknown curve. This cannot be done a priori as the curve is unknown. However, 

by keeping track of a few extra values, we can adaptively create the histogram according 
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Figure 3.4 Adaptive Histogramming 

to the distribution. This method, referred to as splitting in the literature [49], is not 

widely discussed or used. John Gustafson, at Ames Laboratory, independently developed 

the adaptive histogramming algorithm for Monte Carlo particle transport. 

Initially, start with a single subinterval corresponding to the desired interval. As 

random points are chosen, one keeps track of the number of points landing in each half 

of the interval. When the halves are statistically different, split the interval and repeat 

the process on the resulting discretization. Over time the discretization will adapt to 

the shape of the curve. In those places of steep gradient, a finer discretization will be 

produced thus increasing the accuracy and limiting the storage requirements to those 

areas where it is needed (see Figure 3.4). 

The difficult decision to make for adaptive histogramming is when to split a histogram 

bin. A bin is hypothesized to have a uniform distribution such that the left and right 

halves have the same number of points. Each point that lands in the bin has some 

probability p of being in the left half and probability q= 1 — p of being in the right half. 

The resulting distribution is binomial. If we wait until we have a significant number 
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Figure 3.5 Adaptive Histogram Algorithm 

of points in a bin before we decide to split, the distribution can be approximated as a 

normal distribution with mean fjL = np and standard deviation a = ^Jnpq [35, 13]. 

The decision to split a bin is made by deciding that the proposed left and right halves 

have different distributions. When a point is determined to be in a bin, we also decide 

which half-bin it belongs in. As the algorithm proceeds, the totals in the two halves may 

begin to differ (see Figure 3.5). As the difference grows, we can decide whether to reject 

the hypothesis of an even distribution. In our program, when the two halves differ by 

more than 3cr we reject the hypothesis. Using Za means that with probability 0.9974, 

we will reject correctly. Although there is a probability that the rejection is incorrect, 

it will not significantly affect the accuracy of the algorithm. What will result is a bin 

that was not needed. However, the likelihood of this is very small and thus will not 

significantly affect the storage required for the algorithm. The result of this algorithm 

is that refinement is performed only where it is needed to improve accuracy. 

The choice of Scr as a splitting criterion is based on a storage economy versus dis­

cretization error argument. Values less than three tend to split histogram bins more 

often, thus decreasing discretization error but increasing storage demands. Increasing 

the splitting criterion beyond Za reduces splitting, thus reducing storage demands, but 

also increasing discretization error. 
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Summary 

This chapter introduced Monte Carlo methods for numerical integration and sim­

ulation. Monte Carlo integration uses random variables in estimating the value of a 

definite integral. Numerical simulations that use random variables and distributions 

are termed Monte Carlo simulations. This method simulates the physical process to 

numerically solve problems. To reduce the storage demands of Monte Carlo methods, 

histogramming can be used. 

The method is used by graphics researchers to evaluate the BRDF or to simulate the 

process of radiation. Veach used Monte Carlo integration to augment the ray-tracing 

method and evaluate the BRDF at each point of intersection. This process only generates 

a single view. Any repositioning requires a total recomputation for the new viewpoint. 

The Density Estimation algorithm involves simulation of the radiation process. For 

each interaction point between a photon and a surface, the vital statistics are recorded. 

This algorithm results in excessively large files that must be processed to determine the 

resulting scene. 

Adaptive histogramming is a technique that can be used to reduce storage demands 

with increased quality. Histogram bins are split when there is a statistically significant 

difference between the distributions of the left and right half. 

Parallel processing has been successful on low-fidelity approaches, but unsuccessful 

as fidelity has increased. However, the Monte Carlo approach appears to be highly 

parallelizable and capable of producing high quality results. 
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4 PHOTON 

Like Zareski et al. [57] the tightly coupled nature of radiosity and its poor prospects 

for parallelism turned us to Monte Carlo light transport simulation. Its inherent par­

allelism and ability to account for all non-wavelike lighting effects promise a scalable 

solution to Kajiya's Rendering Equation. It also solves the problem of accurate form 

factor computation. 

Algorithm Description 

We have created an algorithm which we call Photon that simulates light transport 

through a scene. Each emitted photon is traced through the scene until it is probabilis­

tically absorbed. Each time the photon is reflected, a count is maintained which records 

the number of reflected photons. The count is recorded in a data structure known as a 

bin. A bin is a description of a geometry subset along with the number of photons that 

have been reflected within that subset. 

A high-level description of the algorithm used by Photon is presented in Figure 4.1. 

We have used the convention that output parameters are indicated using an ampersand 

to reflect that a reference parameter is being passed. At the heart of a light transport 

simulator such as Photon are four routines: GeneratePhoton, Determinelntersection, 

DetermineBin, and Reflect. These form the basis of the simulation, and also account for 

most of the simulation time. Each will be discussed below. 
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for iphot = 1 to nphot do 
GeneratePhoton(&:photon, &bin); 
UpdateBinCount (&bin); 
absorbed = FALSE; 
while(not absorbed) 

DeterniineIntersection(photon, &:poly); 
DetennineBin(photon, &:bin, poly); 
if (Reflect (&:photon, bin) == TRUE) 

UpdateBinCount(&:bin); 
if (NeedsSplit(bin) == TRUE) 

Split(&:bin); 
else 

absorbed = TRUE; 
endwhile 

endfor 

Figure 4.1 Algorithm used by Photon. 

Photon Generation 

Computationally emitting photons from a geometrical primitive amounts to the sim­

ulation of a luminaire (a light emitting object). A diffuse luminaire emits photons in all 

directions. A random point on the unit hemisphere is used to calculate that direction 

from any point on the luminiare (see Figure 4.2). Methods such as those by Shirley 

[40] and Sillion [46] calculate a random direction using the following formula: 

(x, y ,  z )  =  ̂ cos ( 2 7 r 6 ) y 6 ,  sin(27rei)V^, 

Using temporary variables to avoid recalculation results in the following algorithm: 

tmpl = 27r * randomQ 

tmp2 = randomQ 

tmp3 = ^ytmp2 

X = cos (tmpl) * tmpZ 
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Figure 4.2 Photon Emission 

y = sin(fmpl) * tmp3 

z = v^l — tmyl 

If each random number generation involves 3 floating point operations, this algorithm 

generates 34 floating point operations (we use the Lawrence Livermore National Labo­

ratory convention that sin and cos count as 8 operations, and square root as 4). The 

method used by Photon takes a different approach. Rather than directly calculating the 

photon direction using only two random number generations, random planar coordinate 

pairs are generated until they fall within a unit circle, afterwhich the final coordinate is 

calculated based on the pair. 

Again, allowing for 3 floating-point operations in random number generation, one 

iteration of the loop of the algorithm in Figure 4.3 takes 13 floating-point operations. 

The loop must be executed at least once, and with a probability of 1 — 7r/4 the generated 

coordinate pair will lie outside of the unit circle and the process must be started again. 

Calculation of the average number of instructions executed by the loop results in an 
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do 
X = randomO * 2.0 - 1.0; 
y = randomQ * 2.0 - 1.0; 
tmp = x*x + y*y; 

while(tmp > 1) 
z = sqrt(l - tmp); 

Figure 4.3 Photon Generation Algorithm. 

infinite geometric series: 

inst = 13 + 13g + 13g^ + 13g^ + 13g'' + ... 

inst = 13(——) 
l - q  

inst = 16.55 

where q is the probability that the coordinate pair is outside the unit circle. After the 

coordinate pair is determined, the calculation of z adds 5 floating-point operations. The 

resulting operation count is 22, which is 12 fewer operations than the method of Shirley. 

It can easily be shown that both methods generate a uniform distribution of emitted 

photons. In an environment where possibly billions of photons must be emitted, the 

method used by Photon presents a substantial savings. This algorithm was developed 

by John Gustafson at Ames Laboratory in conjunction with this work. Experiments 

show that our photon generation kernel is about twice as fast as the formula presented 

by Shirley and Sillion. 

The above method accounts well for diffuse lighting. In nature, not all lighting is 

diffuse. For example, the light we receive from the sun is very directional in nature. 

Photon simulates this phenomenon by "limiting" or focusing the emitted light. This is 

easily performed by scaling the unit circle in the generation method above. This limits 

the angle of emittance, thus providing a directional quality (see Figure 4.4). 
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Figiire 4.4 Scaling for Directional Lighting 

To accurately simulate sunlight, consider that the sun, from our viewpoint, is a 

disc of approximately one half degree. So, in reference to Figure 4.4, the unit circle 

must be scaled such that 9 is one quarter degree. Therefore, scaling the unit circle 

by 0.005 and generating restricted-angle photons from a plane yields a light source that 

simulates sunlight, and correctly blurs shadows as the distance from the occluding object 

increases. Most rendering programs and graphics packages incorrectly consider the sun 

or any other light as a point light source, thereby producing unrealistically sharp shadows 

(see Figure 2.2). 

Intersection Determination 

Once a photon is generated, the problem breaks down to determining the point 

of closest intersection. This subject is covered in many ray tracing texts and papers 

[55, 16, 33]. There are many approaches to speeding up intersection testing that can 

be applied in this setting, such as bounding volumes [16] and tree structures [38, 17]. 
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However, techniques such as ray coherence [25] are not applicable. 

Increasing the speed of intersection determination holds the most promise for decreas­

ing solution time. It is also this area that offers the most prospects for parallelization. 

Each photon is an independent entity and thus its path can be computed without respect 

to others. The only dependency is accounting for each photon interaction, which will be 

discussed in the next chapter. 

Reflection 

The reflection model used in Photon is based on the work of Xiao He et. al [24]. 

The intent is to make the algorithm as accurate as possible by incorporating the physics 

of surface-light interaction. This model incorporates all the aspects of the BRDF and 

includes polarization and masking/self-shadowing effects. 

Using this model, Photon has the potential to model polarized light which has not 

been a well-explored area in computer graphics. Currently, we are working on deter­

mining the impact of incorporating polarization in computer graphics. This work is 

being done by Sairam Sankaranarayanan who has incorporated the reflection model into 

Photon. 

Four-Dimensional Histograms 

Photon uses adaptive subdivision of histogram bins, as previously described, to dis­

cover the radiance function for a given surface. To allow for the adaptive subdivision, 

each bin is is parameterized. When the bin is split, two daughter bins are created to 

keep a more accurate accounting of the light interactions with the surface. For each 

parameter, a little extra work is performed to determine which daughter bin would have 

tallied the reflected photon. We only split a bin when the two daughter bins probably 

have very different photon counts. 
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Figure 4.5 Dimensions used in Histogram Binning 

As discussed in Chapter 3, the distribution of photons in a given bin is binomial. This 

allows us to calculate the sample standard deviation as cr = y/npq where n is the number 

of photons in the bin and p and q represent the probabilities of a photon being in the left 

or right daughter bin. These probabilities can be approximated asp = l/n and q = 1 —p, 

where I is the number of photons that would be in the left daughter bin. To improve 

accuracy, p is calculated based on the daughter bin with the most photons. When the 

two proposed daughter bins differ by more than 3 times the standard deviation, the bin 

is split. Using the normal approximation to the binomial distribution, 3a gives us 99.7% 

confidence that the two bins have different distributions. In this way. Photon adapts the 

histogram to best reflect the intensity gradient. 

As shown in Equation 1.1, radiance is a function of location and viewing angle. It 

is for this reason that Photon maintains four dimensions for each bin. We use bilinear 

parameters s and t to represent position on the surface; to record the angle of reflection, 

cylindrical coordinates r and 9 are used (see Figure 4.5). The use of cylindrical coor­

dinates as opposed to spherical coordinates (f) and 9 make the computation of diffuse 

reflection probability densities simpler. Color is actually a fifth dimension, but one not 
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Figure 4.6 Photon Data Structure 

subject to hierarchical subdivision in this model. The cylindrical r coordinate is not 

the usual one. It is the projected radial distance within the unit circle of the direction 

vector. 

When splitting a bin, the goal is to also split the photon distribution in half. Given 

that the distribution is uniform, it is clear that splitting along the bilinear parameters 

s and t splits the distribution in half for a nontrapezoidai patch. Trapezoidal patches 

are not split optimally, but will still converge correctly. Likewise, splitting 9 also splits 

a diflFuse surface distribution in half. The last parameter used in splitting the bin is the 

squared radius r of the projected direction angle. This choice was made because splitting 

the elevation angle of spherical coordinates does not split a Lambertian distribution in 

half, nor does splitting the spherical radius. However, splitting the squared radius does 

indeed result in half the area and thus split the distribution in half, for Lambertian 

(diflPuse) surfaces. 

For each geometrical primitive, a bin tree is maintained to record photon counts. The 
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Figure 4.7 Harpsichord Practice Room 

result is a forest of bin trees which is depicted in Figure 4.6. Above the forest is an octree 

decomposition of the geometry. This data structure is capable of recording the answer 

of a global illumination model with the color of every patch as a function of the position 

on the patch and the viewing direction. In this way, we have a discrete representation 

of the radiance L for all points in a scene. A purely diffuse surface requires only planar 

bin subdivisions while a specular surface requires more angular bin subdivisions. 

Our method can correctly solve a global illumination model that contain mirrors. 

This can be seen in the Harpsichord Practice Room (Figure 4.7). While the defining 

geometry is not complex, the patch geometry has 150,000 view-dependent polygons, and 

it demonstrates some very important concepts. The scene depicts a harpsichord in a 

room with skylights and a mirrored music shelf. Note the reflection in the mirror. We 

must stress that this is not the result of a single view-dependent solution. This mirror 
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Figure 4.8 Cornell Box with Mirror 

can be viewed from all angles correctly as the radiance for all angles is stored in the bin 

tree for the mirror. Note also that we have not resorted to the usual trick of constructing 

a duplicate room on the other side of the mirror. The mirror is like any other surface, but 

with a richer set of histogram information. Also notice that the shadowing produced by 

the skylights is slightly blurred in contrast to the protruding shadow of the harpsichord 

which is sharper. 

Figure 4.8 shows the Cornell Box, named after the seminal research in radiosity done 

at Cornell University. Floating in the center of the room is a mirror, added for purposes 

of testing Photon. As with all specular surfaces rendered by Photon, the mirror can be 

viewed from all angles without recomputation or a full ray tracing pass. Note that in 

all figures, there is no Gouraud shading performed on the individual patches. This was 

purposely done to show the adaptive nature of Photon as well as to preserve integrity. 
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Rays go to first visible surface only. 

Figure 4.9 Viewing Stage 

Viewing Simulation Results 

The approach to computer graphics taken by Photon is to break the rendering process 

into two pieces: simulation and viewing. Approaches such as ray tracing combine and 

confuse the pieces. Ray tracers compute the light intensity value of a pixel on the view 

plane and do not consider all the light interactions. Radiosity, conversely, computes the 

light interactions but does not consider the view point and thus the specular interactions. 

Photon determines all the light interactions and stores them in a database. Once the 

simulation is finished, all that remains is to determine what is displayed. It is much like 

turning on the lights in a room and then walking in. When the lights are turned on, all 

the interactions take place. Walking into the room places the viewer in the environment 

where the light can enter the eye. Thus, all that is needed is to determine what is seen. 

This can be reduced to a single-step ray trace (see Figure 4.9). 

Once the point of closest intersection is determined, the color seen must be calcu­

lated. This is done by determining the bin parameters of a photon that would have 



Figure 4.10 Different Viewpoints Using the Same Answer File 

traveled along the path from the object to the viewpoint. Since s and t cannot be easily 

determined from an arbitrary point on a patch, we recursively determine which half of 

the current bin the point is in and traverse the tree. When a leaf node is reached, the 

displayed color is calculated based on the ratio of the number of reflected photons in 

the bin and the total number of photons. The tree traversal and intersection determi­

nation is performed by the routines Determinelntersection and DetermineBin which 

are shared between the simulation and viewing programs. 

Figure 4.10 demonstrates one of the advantages of Photon. This figure depicts a series 
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of viewpoints from the same scene. Although the viewpoint is changing, no recalculation 

of the global illumination is needed. All scenes were generated from the same solution 

file. 

Summary 

We have created a new algorithm for global illumination. The algorithm, called 

Photon, is based on Monte Carlo simulation of light transport in a scene. Photon gener­

ation, intersection testing, and reflection calculation combine to make up the bulk of the 

time in a Photon simulation. A new method for photon generation is used which takes 

fewer operations. Intersection testing is a well-studied topic addressed in ray tracing; 

it presents the greatest possibility for speedup via optimization and parallelism. The 

reflection model employed by Photon is based on the work of Xia He et al. This model 

incorporates physical optics and describes all the surface-light interactions. It includes 

polarization of light which is currently being studied as to its effects on computer-

generated images. The photon data structure used here appears to be unique in its 

representation of global light properties of a scene. The structure accurately represents 

the discrete form of the radiance function for every surface. Finally, a scene can be 

viewed by simply determining what is seen given a viewpoint and perspective. 
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5 PARALLELIZATION OF PHOTON 

The parallelization of a program must begin at algorithm design time. Parallelization 

of an inherently sequential algorithm will yield little parallelism. For example, parallel 

hierarchical radiosity efforts have met with little success. This is a major reason that 

we chose Monte Carlo methods for Photon. The Monte Carlo algorithm is inherently 

parallel corresponding to the parallel nature of global illumination. This chapter will 

focus on the relevant issues pertaining to the parallelization of Photon. 

Two parallel programming models will be considered here: shared memory and dis­

tributed memory. Photon has been parallelized for both the shared memory model and 

the distributed memory model. Both models have their advantages and disadvantages 

which will be discussed with respect to Photon. 

Parallelization Issues 

Performance 

When discussing parallel programming, one must have a measure of performance 

for comparing approaches and for demonstrating their respective advantages. For our 

purposes, we will use speedup as a comparator. Speedup can be defined in many ways. 

Roughly speaking, speedup is the ratio of the speed of a parallel version and the speed 

of a sequential version of an algorithm. The problems surrounding "speedup" include 

how to define speed and when to measure the speed. One can consider a time-based 

measure of speed by measuring how long it takes to complete a fixed task. We will 
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term this fixed-size speedup. Another approach is to consider a work based approach, 

i.e. how much work can be done in a given amount of time. We will term this fixed-time 

speedup[19, 21]. The problem with these two approaches and others like them is how to 

determine the size or duration in fixing the given metric. Examination of a program at 

different execution durations can, and often does, yield different speedup results. 

We have chosen to present the full speedup picture as a function of execution time. 

A single simulation is broken up into batches of photons. After each batch. Photon 

calculates the processing rate in number of simulated photons per second. The particular 

batch sizes will be discussed below. By plotting this speed versus time, a trace of 

the program speed can be displayed. Placing execution traces of different number of 

processors on the same graph reveals speedup. One can interpolate fixed-time speedup 

by examining the graph values at a set time. For ease of reading, we have added a 

speedup scale on the right side of each graph. Speedup is defined as 1.0 for the best 

serial version of the program (not the parallel version run on one processor). 

Another related metric for parallel programs is scalability. A successful paralleliza-

tion is scalable in time and memory. In other words, a truly scalable program runs twice 

as fast on twice as many processors and uses, at most, twice as much memory. This is 

not always a realizable goal. To the extent that it is realizable is a measure of scalability. 

Random Number Generation 

Monte Carlo techniques are based on the use of random numbers. There has been 

much research done in this area to insure that pseudo-random number sequences emulate 

a true random sequence (see [30]). When parallelizing a program that uses random 

numbers, one must insure that two processors are not using the same random number 

sequence. Otherwise there is a duplication of effort. Again much research has been 

done in this area (see [1, 5, 12]). The basic idea is to split the pseudo random sequence 

into subsequences. Using knowledge about the random number generator, a processor 
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Table 5.1 Test Geometry Sizes 

Geometry Defining Polygons View-Dependent Polygons 
Cornell Box 30 397,000 
Harpsichord Practice Room 100 150,000 
Computer Laboratory 2000 350,000 

divides the sequence into P equal parts, where P is equal to the number of processors. It 

then calculates the beginning point in the appropriate subsequence. This is termed the 

leapfrog method. The particular random number generator used by Photon has a period 

of 2"^^, which is divided into subsequences for the number of processors, thus yielding 

individual periods of 2'^^/F. 

Test Configurations 

When testing a program and generating speedup results, it is important to test 

under a variety of conditions. Photon has been designed to run on a wide variety of 

supercomputing platforms. It can be run on a traditional supercomputer, a shared 

memory multiprocessor, and a cluster of workstations, and has been tested on each of 

the platforms. For purposes of determining scalabiUty beyond 16 processors. Photon was 

run on an ensemble of up to 64 processors of an IBM SP2. The other two platforms were 

an SGI Power Onyx and a cluster of SGI Indy workstations. The latter two platforms 

demonstrate Photon's ability to adapt to the communication medium. 

All speedup graphs in this chapter are based on three input files to Photon: the 

Cornell Box, the Harpsichord Practice Room, and the Computer Laboratory. The ge­

ometry files range in complexity from 30 polygons for the Cornell Box, to 100 polygons 

for the Harpsichord Practice Room, to approximately 2000 polygons for the Computer 

Laboratory. Table 5.1 shows the resulting number of mesh polygons after subdivision. 

It is important to note here that while the polygon counts for the geometries seem small, 

these are the defining polygons and not the resulting mesh polygons after subdivision. 
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Figure 5.1 The Computer Laboratory 

Most rendering programs count the mesh polygons as the total number of geometry 

polygons. Also note that these are view-dependent polygons. Each polygon possibly 

contains multiple angle-dependent bins. The number of view-dependent polygons is dis­

proportionately high for the Cornell Box due to the large mirror in the center of the box 

and the simulation has been run much longer to generate a higher level of detail. 

The rooms were chosen for their varying degree of content as well as surface types. 

The Cornell Box (Figure 4.8) and the Harpsichord Practice Room (Figure 4.7) have 

previously been shown. Figure 5.1 shows the rendered geometry of the Computer Lab. 

Shared Memory Parallelization 

Shared memory parallelization of Photon is relatively simple. The geometry data 

structure becomes a shared database with multiple processors accessing and modifying 
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forall iprocessor = 1 to nprocessors do 
for iphot = 1 to nphot/nprocessors do 

GeneratePhoton(&photon, &bin); 
UpdateBinCount (&bin); 
absorbed = FALSE; 
while(not absorbed) 

DetermineIntersection(photon, &:poly); 
DetennineBin(photon, &bin, poly); 
if (Reflect (&photon, bin) == TRUE) 

UpdateBinCount(&:bin); 
if (NeedsSplit(bin) == TRUE) 

Lock(bin); 
Split (&:bin); 
UnLock(bin); 

else 
absorbed = TRUE; 

endwhile 
endfor 

endforall 

Figure 5.2 Shared Memory Algorithm. 

it. As in all shared memory programming, one must minimize memory conflicts. All 

updates to the database must be mutually exclusive. This is an area of extensive research 

in database and operating system theory [32, 47]. Mutually exclusive access is insured 

through the use of semaphores to lock access to nodes in the bin forest (as described 

previously in Figure 4.6), and follows a multiple reader, single writer protocol. 

When Photon starts a simulation in shared memory, multiple processes start up and 

share access to the geometry and bin forest. When a bin needs to be split, it locks access 

to the bin, splits it, and then releases the lock as can be seen in Figure 5.2. The forall 

loop is a parallel construct that executes the loop statements on all processors. During 

the splitting phase, all other processes may read any other part of the bin forest except 

the bin that is being modified. This is to promote as much parallelism as possible. 
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Distributed Memory Parallelization 

Programming Photon for distributed memory systems introduces two inter related 

issues: data distribution and load balancing. Unlike the parallel Density Estimation 

algorithm [57] which uses two parallel programs, Photon is paralleUzable in both storage 

and work requirements. Each processor performs the same algorithm generating and 

tracing photons through the scene. Since the data structure is distributed, the processors 

must communicate to update the bin forest and synchronize. This algorithm is presented 

in Figure 5.3. The statements in bold type are changes from the original serial algorithm 

that will be discussed below. 

The Message Passing Interface standard (MPI) [34] was chosen for all interprocessor 

communications. This choice gave us the greatest flexibility and portability. Many 

supercomputers now have a native implementation of MPI. It also allows us to run 

Photon on our network of workstations. 

Data Distribution 

The data structure used by Photon for storing the histogram bins is made up of 

two distinct sections: the geometry description and the histogram bin forest. While 

the memory requirements to store the geometry information for a given scene remain 

constant throughout the run, the memory requirements for the bin forest tend to be 

nearly 0(n) in the number of photons. Figure 5.4 clearly shows that after an initial 

buildup of memory, the size of the bin forest tends to increase sub-linearly. The bin 

forest is the largest data structure in memory and thus the target for distribution. For 

this implementation, the bin forest was chosen for distribution among the processors 

and the geometry was replicated across all processors. 

Each processor is assigned a section of the bin forest (see Figure 5.5). That processor 

is responsible for maintaining the photon tallies and splitting bins when and where 
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for iphot = 1 to nphot/batchsize do 
for jphot = 1 to batchsize do 

Generate?hoton(&:photon, &bin); 
UpdateBinCount(&bin); 
absorbed = FALSE; 
while(not absorbed) 

DetermineIntersection(photon, &poly); 
DetermineBin(photon, &bin, poly); 
if (Reflect(&:photon, bin) == TRUE) 

if(bin.ProcessorID == My ED) 
UpdateBinCount (&:bin); 
if (NeedsSplit(bin) == TRUE) 

Split (&bin); 
else 

EnQueue(photon, &Q[bin.ProcessorID]); 
else 

absorbed = TRUE; 
endwhile 

endfor 
for iprocessor = 1 to nprocessors do 

if (iprocessor != MylD) 
SendQ(iprocessor, Q[i], sizeof(Q[i])); 

endfor 
for i = 1 to nprocessors - 1 do 

ReceiveQ(&TempQ, ANYPROCESSOR, size) 
for j = 1 to size do 

DeterniineBin(TempQ[i], &:bin); 
UpdateBinCount(&bin); 
if (NeedsSpIit(bin) == TRUE) 

Split (&bin); 
endfor 

endfor 
endfor 

Figure 5.3 Distributed Memory Algorithm. 



47 

10 20 30 
Data staicture size in Mbytes 

Figure 5.4 Memory Requirements for the Haxpsichord Practice Room 
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necessary. To do this, every reflected photon must be forwarded to the processor which 

owns the bin. To save on message overhead and increase performance, photons are 

queued and batched for transmission. This results in an all-to-all communication period 

following each particle tracing phase. When a set of photons are received, all that is 

required is to determine the bin of interaction and update the appropriate parameter 

tallies, splitting bins where necessary. 

Load Balancing 

Due to the nature of the algorithm, naive load balancing for Photon can lead to 

disastrous results. Consider a darkly painted room with only a spotlight that is focused 

on the floor. If the floor is assigned solely to processor 0, that processor will have to do 

all the work as all the photons generated must be passed to processor 0 to update tally 

counts. Clearly this limits parallelism. The same thing can happen in a more general 

environment. If a major percentage of the light receiving polygons are assigned to one 

processor, parallelism will be restricted. 

Avoiding the above situation is important to promote scalability. In the current 

implementation, initially all processors are eissigned ownership of the entire geometry. 

During this load balancing phase, k photons are generated and traced through the scene. 

The parameter k has been chosen to best generate a good (not optimal) balance. Due to 

the random nature of Photon, it appears that k does not depend on the size of geometry. 

However, more research needs to be done in this area. No tallying is performed until the 

photons have been traced. Then each processor goes through the photons in the same 

order, thus producing the same bin forest. At this point, we are able to use the photon 

counts for each bin to determine an appropriate load balance. The period of redundant 

work lasts less than a second and is quickly made up in higher parallel performance. 

Finding an optimal load balance is then reduced to the bin packing problem which has 

been shown to be NP-Complete [15]. However, a good approximation can be reached 
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Table 5.2 Total Photons Processed using Naive 
Load Balancing Versus Bin Packing. All 
counts are in thousands of photons. 

Processor Naive Load Balance Bin Packing 
0 47.9 29.4 
1 34.5 28.9 
2 35.6 29.8 
3 25.6 29.4 
4 32.7 29.6 
5 24.9 29.1 
6 35.1 28.7 
7 32.8 29.0 

using the Best-Fit algorithm. Essentially, a bin is added to the processor with the 

smallest photon count. While this is a greedy algorithm, it has produced good results. 

If one processor must process more photons than another, it will take more time per batch 

and force the remaining nodes to wait. Ideally, all nodes would process the same number 

of photons and thus not have idle time waiting for communication from an overloaded 

processor. Table 5.2 shows a comparison of the number of photons processed by each 

processor using naive load balancing versus bin packing. It shows that load balancing 

using bin packing is clearly superior to naive balancing. Consider, for example, processor 

number 5 processes half as many photons as processor 0 using naive load balancing. This 

means that processor 5 must have spent a lot of idle time waiting for processor 0 to finish. 

Load balancing using bin packing more evenly distributes the work and thus lessens idle 

time. 

Communication vs. Computation 

Another aspect of load balancing in a distributed computing environment is match­

ing communication with computation. Photon simulates light transport in batches of 

photons followed by a period of communication. If the batches are too large or too small, 

it could be detrimental to performance. If batches are too small, most of the communi-
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Table 5.3 Simulation Batch Sizes 

SGI Power Onyx IBM SP2 SGI Indy Cluster 
500 500 500 
750 750 750 

1125 675 1125 
1687 1012 1125 
1518 1012 1125 
2277 910 1125 
3415 1365 1012 
3073 1365 1012 
4609 1228 1012 
4148 1842 1012 
6222 1657 1518 
7558 1657 1518 

11337 1657 1518 

cation time will be spent in latency, thus slowing down the simulation. Likewise, overly 

laxge batches may spend too much time in transmission, due to large message sizes, and 

thus slow down the simulation. 

Photon attempts to match batch size to communication medium. This is accom­

plished by a growing batch size to maximize overall simulation speed. Batch size starts 

with just 500 photons per processor and grows as long as overall speed is increased. 

When a decrease in simulation speed is detected, the batch size is reduce by 15 percent. 

Table 5.3 shows the resulting sequence of batch sizes for the three compute platforms. In 

each case, the simulation was performed on 8 processors using the Harpsichord Practice 

Room geometry. 

Results 

Previously, the implementation specifics of two parallel implementations of Photon 

have been discussed. We now present and compare the resulting performance of the 

algorithms. Note that in all cases, when a single processor performance is given, it 



51 

u (D w 
(0 
c 
o 
o 
Q. 

T3 O (D 
Q. W 

20000• 

15000-

10000-

5000-

8 Processors 
4 Processors 
2 Processors 
1 Processor - 2 

Q. 3 •D (D O 
Q. 
CO 

0.1 10 
Time 

100 1000 

Figure 5.6 Shared Memory Speedup Results (Cornell Box) 

is generated using the best serial version of the code. It is not merely the parallel 

code running on a single processor. Often, researchers present relative speedup figures 

by executing the code on a single processor and repeatedly doubling the number of 

processors but always using the same code. 

Relative speedup is useful to see the scalability of a program, but it does not show 

if the program was worth parallelizing. Comparison with the best serial algorithm 

demonstrates the advantages and disadvantages of parallelism. One will notice in the 

graphs to come that often the serial performance is more than half of the performance on 

two processors. This is due to the parallel overhead from memory contention or message 

passing. 

SGI Power Onyx 

Figures 5.6 through 5.8 show the resulting performance for the shared memory version 

of Photon on an 8-processor SGI Power Onyx. These graphs show a typical parallel 
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Figure 5.7 Shared Memory Speedup Results (Harpischord Practice Room) 
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Figure 5.8 Shared Memory Speedup Results (Computer Laboratory) 
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processing phenomenon: As the geometry size increases, so also does the scalability. For 

small geometries, using more than two processors is a waste. Large geometries, on the 

other hand, seem to have excellent scaling properties. This can be attributed to the fact 

that with a large geometry, processors spend more time in other areas of the bin forest 

or program code. One might think that subdividing a small geometry to create more 

polygons would improve speedup and thus improve performance. This is not the case. 

Notice that as the geometry size increases, the scalability increases, but the absolute 

performance is reduced. 

SGI Indy Cluster 

The SGI Indy cluster demonstrates the scalability of Photon in a message passing en­

vironment. This version of the code queues photons to be sent to other processors in the 

all-to-all communication phase. Notice that communication overhead and slower proces­

sors force the initial time to the right and reduce performance. Although performance is 

lost, scalability is increased. Often, when a program is parallelized for distributed mem­

ory, the memory bottlenecks are removed, making it possible to nm faster and scale 

better. This is the case with Photon. Each processor is free to work in its own memory 

space and thereby reduce memory contention. 

IBM SP-2 

Figures 5.12 through 5.14 show the performance graphs for the IBM SP-2. The 

results are similar to the SGI Indy cluster, except that the reduced scaling between 2 

and 4 processors is not expected. Beyond 4 processors, the graphs show that Photon 

seems to scale well. The reason for the performance hit that is taken by moving from 2 to 

4 processors is theorized to be due to communication overhead. Unlike the Indy cluster, 

the SP-2 requires that asynchronous messaging be buffered, which adds an extra memory 

copy and buffer management overhead to each message. In a configuration of 2 nodes. 
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Figure 5.9 Indy Cluster Speedup Results (Cornell Box) 
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Figure 5.10 Indy Cluster Speedup Results (Harpsichord Practice Room) 
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Figure 5.11 Indy Cluster Speedup Results (Computer Laboratory) 

each processor only sends one message per batch. In this case the communication may 

be overlapped with computation and thus hidden. Increasing the number of processors 

increases the buflfer management and memory copy overhead to the point that it can no 

longer be hidden. This is why the absolute performance of configurations of more than 

two processors is shifted down. However, performance after the shift appears to scale 

well. 

Visualizing Performance 

Performance differences are often hard to express and visualize. In this section, we 

present two new ways of visualizing and comparing computer performance. We believe 

they are unique in their representation and highly informative. 

First, Figure 5.15 shows a table of performance graphs, a 4-dimensional graph-of-

graphs data representation. Each graph is a log-log plot of the data on the same xy 

scale. The horizontal outer-graph scale increases in complexity of the geometry scene. 
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Figure 5.14 SP-2 Speedup Results (Computer Laboratory) 

and the vertical outer-graph scale increases in processor coupling. Note how the time 

to the first data point increases as coupling decreases. This is due to slower message 

passing speeds. The graph shows that as the complexity of the geometry scene increases, 

scalability also increases. However, the overall performance is decreased. 

Finally, Figure 5.16 gives a visual feel for speedup. Photon was used to generate 

a scene on 2, 4, and 8 processors. In each case the simulation was run on an SGI 

Power Challenge for approximately two minutes using the distributed memory version 

of Photon. It is easy to see the improved quality due to higher photon simulation counts. 

Note especially the improvement in the mirror, and in shadows under the harpsichord 

and skylight. 

SummEiry 

Photon has been parallelized for both shared memory and message-passing environ­

ments. The shared memory version of Photon works best on large problem sets where 
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memory contention is minimal. The distributed memory parallel algorithm is scalable. 

Finally, two new methods of visualizing performance indicate several dimensions of pared-

lelism, throughput, and answer quality. We believe these are very useful representations 

of the advantages and disadvantages of parallelism. 
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6 CONCLUSION AND FUTURE WORK 

We have presented a parallel implementation of a global illumination algorithm. 

The speedup graphs show that it is scalable. Photon solves the Rendering Equation by 

determining the radiance at each point, and it does this without the need for storing 

huge ray history files. Photon is written using MPI, and can therefore be run on a 

variety of supercomputers as well as inexpensive clusters of workstations. 

Photo-realism 

The question may be asked, "Does Photon solve the Rendering Equation?" Since 

Photon is based on quantum light transport simulation from the light source, it has the 

potential to account for all lighting effects. At this time polarization is being added, 

and we foresee the ability to add fluorescence. It is our belief that polarization will play 

a large role in the realism of a rendered scene. 

Only those algorithms that account for all lighting effects can truly claim to solve the 

Rendering Equation. Photon correctly solves for the radiance for each discrete area and 

direction. As the discrete areas and angle ranges shrink, Photon converges to a solution 

for the radiance at every point in a scene, and therefore will converge to a solution to 

the Rendering Equation. 
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Massive Parallelism 

Currently, the octree representation of the geometry is replicated on all nodes. This 

could limit the size of the input geometry. Distribution of the geometry would allow 

computation of a global illumination solution for very complex scenes. It would also 

lend itself to more massive parallehsm. 

The choice of an octree representation of the geometry is especially beneficial for 

distribution. The octree data structure orders the intersection testing for a given photon 

such that we only test polygons in the space the photon is traveling through. When an 

intersection is detected, it is the closest intersection and further testing is not needed. 

In a distributed environment, a photon is then only passed to those processors that are 

responsible for the space the photon is traveling through. The photons can then be 

queued and sent in a batch to the appropriate processors, thus reducing communication 

overhead. A bounding box data structure would require all processors to calculate 

intersection points, and then the closest intersection must be determined. The result is 

a global reduction operation for each photon, which is far too expensive. 

Photon is a new and unique approach to computer graphics. If computers continue to 

follow Moore's Law, many algorithms that seem barely viable today will become routine 

for computers of the future. We expect that the approach to rendering described herein 

will be used more widely as memory sizes grow and computer performance increases. 
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Abstract 

This paper presents an algorithm that solves the Ren­
dering Equation to any desired accuracy, and can be run 
in parallel on distributed memory or shared memory com­
puter systems with excellent scaling properties. It appears 
superior in both speed and physical correctness to recent 
published methods involving bidirectional ray tracing or 
hybrid treatments of diffuse and specular surfaces. Like 
"progressive radiosity" methods, it dynamically refines 
the geometry decomposition where required, but does 
so without the excessive storage requirements for "ray 
histories." 

Keywords Global illumination, parallel rendering, 
Monte Carlo. 

1. Introduction 

In 1986, Kajiya [6] proposed a unifying equation for ren­
dering. This equation, known as the Rendering Equation, 
has become widely accepted in the computer graphics field. 
The solution to the Rendering Equation yields the solution 
to the global illumination problem. Virtually all computer 
graphics programs are based on highly simplified versions 
of the Rendering Equation that trade realism for speed. Dis­
tributed computing now offers enough speed to solve the 
Rendering Equation without compromise. 

The solution to the global illumination problem has 
many applications, e.g. architectural rendering. In general 
terms, the global illumination problem is the determination 
of the color and intensity of light given off from every point 
in an environment in every direction. This contrasts with 
ray u-acing, which attempts to estimate the light seen from 
one viewpoint. Global illumination is key to virtual reality 

'This work was supported by the Applied Mathematical Sciences Pro­
gram of the Ames Laboratory, U.S. Department of Energy under contract 
number W-7405-ENG-82 

Figure 1. Definition of Radiance 

efforts since correct views can be displayed quickly as the 
viewpoint moves. 

The physical quantity desired for global illumination is 
the radiance, L, at point x, in direction rp, described in the 
following equation [7, 10]: 

where V" is a direction described by a vector or a {6, (i>) pair 
in spherical coordinates. The quantity I is the radiant in­
tensity computed as: 

where w is the solid angle originating at the point and $ is 
the radiant flux (See Figure 1). 

Equation I shows that radiance is a function of position, 
X, and viewing angle, (0, <fi). Therefore the solution to the 
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global illumination problem must also be a function of posi­
tion and viewing angle, and any algorithm proposed to solve 
the global illumination problem must present a solution that 
is likewise dependent on position and viewing angle. 

With this background, we can now examine the vari­
ous global illumination algorithms with distributed com­
puting issues in mind. Radiosity methods such as [5] pro­
duce an answer that is based on ideal diffuse surfaces. In 
other words the radiance L is independent of the angle of 
emlttance. In light of this fact, many [9, 14] have added 
a secondary ray tracing path to account for viewing angle-
dependent illumination. This does not accurately account 
for the semi-diffuse reflections that occur in nature. Re­
cently, Aupperle [1] has extended radiosity to account for 
specular effects using three-point light transport. However, 
due to the tightly coupled nature of these progressive ra­
diosity methods, parallelization has met with little success 
[12]. 

Ray tracing from the viewpoint, as introduced by Whit-
ted [15], was partly introduced to reduce the heavy com­
putational requirements of forward ray tracing. The idea 
was to compute only what was being viewed. Ray trac­
ing methods are backward in that they start from the viewer 
and estimate the radiance by summing the effects of light 
sources on the point of closest intersection. Complexity in­
creases with the number of light emitters whose effects must 
be added. Ray tracing is not physically correct because ra­
diance depends on the light input from all surfaces, not just 
light emitters. One advantage of ray tracing is that it par­
allelizes trivially if each processor can contain the entire 
geometry description. However, it never converges to the 
correct answer for realistic surfaces and thus the parallel ef­
ficiency is moot. 

Veach and Guibas [13] have extended ray tracing by us­
ing Monte Carlo methods to evaluate the bidirectional re­
flectance distribution function (BRDF). At each ray-surface 
intersection, the BRDF is sampled by emitting an appropri­
ate distribution of rays and summing their contribution. For 
a diffuse surface, the distribution examined would be widely 
scattered, but for a specular surface the distribution would 
be much more narrow. This method seems to correctly solve 
for the radiance given a single viewpoint; repositioning re­
quires recomputation. 

With the ever increasing power and speed of today's 
computers coupled with the diminishing cost of memory, 
researchers [8, 4] have returned to tracing light from the 
light source through the scene. Methods such as these use 
Monte Carlo techniques to simulate the particle transport of 
light through a scene. As the light passes through the scene, 
each interaction with a surface is recorded. Viewing is ac­
complished by summarizing the interactions and computing 
a color for each point in the scene. 

The Density Estimation algorithm proposed by Shirley et 

al. [8] goes through three phases: particle tracing, density 
estimation, and meshing. In the particle tracing phase, pho­
tons are generated and the light transport is simulated. Each 
interaction is recorded in a "hit point" file in mass storage, 
thus saving the ray history of each photon. The density es­
timation phase processes the hit point file and generates an 
approximate irradiance function, H, for each surface, and 
the meshing phase generates a set of Gouraud-shaded poly­
gons which can then be used for viewing. 

H is only a function of position on a geometric primi­
tive, viewing angle is assumed constant. Thus Density Esti­
mation produces a view-independent solution to the global 
illumination problem that does not include specular effects. 
In order to account for the viewing angle dependence, a 
separate ray-tracing pass is performed for each viewpoint. 
While the pictures produced are appealing to the eye, the 
ray-tracing pass cannot correctly account for partially spec­
ular transmissions, because the light could come from more 
than one point. Also, the hit point file size is very large. If 
each photon requires 100 bytes of storage, a realistic scene 
might consume a terabyte of storage. These huge files must 
be distilled to find H. The method presented below reduces 
the storage requirement substantially by distilling photon 
information in histograms. 

Tne Density Estimation algorithm has been parallelized 
[16] to increase the speed of the simulation. Parallelization 
was accomplished by two algorithms: The first handles the 
particle tracing phase while the second performs the den­
sity estimation and mesh generation. Due to the nature of 
the problem, the speedup obtained in the parallel particle 
tracing was quite impressive: approximately 15 on 16 pro­
cessors for one geometry. However, for the same geome­
try the parallel density estimation and meshing phase only 
reached a speedup of approximately 8.5 for the same 16 
processors. The authors admit that the density estimation 
and meshing phase speedup is limited by the time needed to 
process the surface with the largest number of "hit points." 
In some cases, the speedup in this phase was a mere 4.5 for 
16 processors. 

2. Photon 

Like Zareski et al. [16] the tightly coupled nature of 
progressive radiosity and its poor prospects for parallelism 
turned us to Monte Carlo light transport simulation. Its 
inherent parallelism and ability to account for all lighting 
effects promise a scalable solution to Kajiya's Rendering 
Equation. 

We have created an algorithm which we call Photon that 
simulates light transport through a scene by emitting pho­
tons from each light source. The photon is then traced 
through the scene until it is probabilistically absorbed. Each 
time the photon is reflected, a count is maintained which 
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r" 

Figure 2. Dimensions used in histogram bin­
ning 

records the number of reflected photons. The count is 
recorded in a data structure known as a bin. A bin is a de­
scription of a geometry subset along with the number of 
photons that have been reflected from that subset. 

2.1. Four-Dimensional Histograms 

A bin is parameterized to allow for adaptive subdivision. 
When the bin is split, two daughter bins are created to keep 
a more accurate accounting of the light interactions on the 
surface. For each parameter, a little extra work is performed 
to determine which daughter bin would have tallied the re­
flected photon. We refer to this as "speculative binning." 
Since the split could occur in any of the parameters, the 
speculative binning guides the choice of which to split. A 
bin is split when the two daughter bins would probably have 
very different photon counts. "Very different" is determined 
using statistical properties of Monte Carlo simulations (See 
[11]). The result is that we split where there is the largest 
gradient. 

As shown in (1) radiance is a function of location and 
viewing angle. It is for this reason that Photon maintains 
four dimensions for each bin. We use bilinear parameters 
s and t to represent position on the surface; to record the 
angle of reflection, cylindrical coordinates are used (See 
Figure 2). The use of cylindrical coordinates as opposed 
to spherical coordinates makes the computation of diffuse 
reflection probability densities simpler. Color is actually a 
fifth dimension, but one not subject to hierarchical subdivi­
sion in this model. 

This data structure is capable of recording the answer of 
a global illumination model with the color of every patch as 

Figure 3. Harpsichord Practice Room 

a function of the position on the patch and the viewing di­
rection. In this way, we have a discrete representation of the 
radiance L for all points in a scene. A purely diffuse surface 
requires only planar bin subdivisions while a specular sur­
face requires more angular bin subdivisions. Our method 
can correctly solve a global illumination model that contain 
mirrors. This can be seen in the Harpsichord Practice Room 
(Figure 3). The back of the bookcase is a mirror which re­
flects the music book. This mirror can be viewed from all 
angles correctly as the radiance for all angles is stored in 
the bin tree for the mirror. Note that we have not resorted to 
the usual trick of constructing a duplicate room on the other 
side of the mirror. The mirror is like any other surface, but 
with a richer set of histogram information. 

3. Parallel Implementation 

Unlike the Density Estimation algorithm [ 16] which uses 
two parallel programs. Photon is parallelizable in both stor­
age and work requirements. Each processor performs the 
same algorithm generating and tracing photons through the 
scene. To eliminate duplication of work, each processor 
starts with a distinct random number seed that guarantees 
no overlap of random number sequences between proces­
sors. The random number generator scales to any parallel 
ensemble of 2^ processors and has a period of 2^^. 

A naive method of parallelization would be to allow each 
processor to work on the entire geometry, and determine 
splittings without global knowledge. At the end of the sim­
ulation, each processor would contribute its bin forest which 
must be coalesced into a single representation. This has two 
signiflcant drawbacks: First, it fails to distribute storage re­
quirements and does not scale with respect to memory use. 
Second, different processors arrive at different adaptive bin-



WEH im mmm mmi 

67 

elc. 

^ Octree representation 
of geometry description 

• DeHning polygons 

A 4-D Bin Tree 

Figure 4. Photon data structure 

nings, which cannot be merged without considerable extra 
computation. We chose to distribute the largest data struc­
tures as well as the work in order to provide scalability. 

MPI [2] was chosen for all interprocessor communica­
tions. This choice gave us the greatest flexibility and porta­
bility. Many supercomputers now have a native implemen­
tation of MPI. It also allows us to run Photon on our network 
of SGI Indy workstations, and on a Pentium Pro cluster. 

3.1. Data Distribution 

Figure 4 shows the data structure used by Photon for 
storing the histogram bins. It is made up of two distinct sec­
tions: the geometry description, and the histogram bin for­
est. While the memory requirements to store the geometry 
information for a given scene remain constant throughout 
the run, the memory requirements for the bin forest tend to 
be 0{n) in the number of photons. Figure 5 clearly shows 
that after an initial buildup of memory, the size of the bin 
forest tends to increase linearly. However, it requires far 
less storage (1 to 2 orders of magnitude) than if complete 
ray histories are recorded. For this implementation, the bin 
forest was chosen for distribution among the processors and 
the geometry was replicated across all processors. 

Each processor is assigned a section of the bin forest. 
That processor is responsible for maintaining the photon tal­
lies and splitting the bin when and where necessary. In order 
to do this, every reflected photon must be forwarded to the 
processor which owns the bin. To save on message over­
head and increase performance, photons are queued and 
batched for transmission. This results in an all-to-all com­
munication period following each particle tracing phase. 
When a set of photons are received, all that is required is 
to determine the bin of interaction and update the appropri-

& 
•q 

10 20 30 
Data structure size in Mbytes 

Figure 5. Memory requirements 

ate parameter tallies, splitting bins where necessary. 

3.2. Load Balancing 

Due to the nature of the algorithm, naive load balancing 
for Photon can lead to disastrous results. Consider a darkly 
painted room with only a spotlight that is focused on the 
floor. If the floor is assigned to a processor 0, that proces­
sor will have to do all the work as all the photons generated 
must be passed to processor 0 to update tally counts. Clearly 
this limits parallelism. The same thing can happen in a more 
general environment. If a major percentage of the light re­
ceiving polygons are assigned to one processor, parallelism 
will be restricted. 

Avoiding the above situation is important to promote 
scalability. In the current approach, initially all processors 
are assigned ownership of the entire geometry. During this 
load balancing phase, k photons are generated and traced 
through the scene. No tallying is performed until the pho­
tons have been traced. Then each processor goes through 
the photons in the same order, thus producing the same bin 
forest. At this point, we are able to use the photon counts 
for each bin to determine an appropriate load balance. 

Finding an optimal load balance is then reduced to the 
bin packing problem which has been shown to be NP-
Complete [3]. However, a good approximation can be 
reached using the Best-Fit algorithm. Essentially, a bin 
is added to the processor with the smallest photon count. 
While this is a greedy algorithm, it has produced good re­
sults. Table 1 shows a comparison of the number of pho­
tons processed by each processor using naive load balancing 
versus bin packing. It shows that load balancing using bin 
packing is clearly superior to naive balancing. Consider, for 
example, processor number 5 processes half as many pho­
tons as processor 0 using naive load balancing. The proces­
sors are identical, therefore processor 5 spent a lot of idle 
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Table 1. Photons processed using naive load 
balancing versus bin packing. All counts are 
in thousands of photons. 

Processor Naive Load Balance Bin Packing 
0 47.9 29.4 
I 34.5 28.9 
2 35.6 29.8 
3 25.6 29.4 
4 32.7 29.6 
5 24.9 29.1 
6 35.1 28.7 
7 32.8 29.0 

Table 2. Test Geometry Sizes 
Geometry Polygons Patches Photons 
Cornell Box 
Harpsichord Room 
Computer Lab 

33 
97 

2,000 

397,000 
150,000 
350,000 

3 billion 
1.5 billion 

I billion 

20000 
8 Processors 
4 Processors — 
2 Processors 
1 Processor 

18000 

16000 

S 14000-
0) 

g 12000-

^ 10000-

8000-

6000-co 

4000-

2000-

0.1 1 10 100 1000 
Tme 

Rgure 6. Speedup for Cornell Box 

time waiting for processor 0 to finish. Load balancing us­
ing bin packing more evenly distributes the work and thus 
lessens idle time. 

4. Results 

Three separate geometry descriptions were used in test­
ing Photon: the Cornell Box, the Harpsichord Practice 
Room, and the Computer Laboratory. The rooms were cho­
sen for their varying complexity as well as surface types. 
The rooms are shown on the color plate. Note that there is 
no Gouraud shading performed on the individual patches. 
This was purposely done to show the adaptive nature of 
Photon as well as to preserve calculation integrity. All 
speedup results were generated on an 8-processor SGI Indy 
Cluster and an IBM SP-2. Table 2 shows the resulting num­
ber of patches for each geometry with the respective number 
of simulated photons. 

All speedup graphs show a time scale plot of per­
formance. We chose this representation to demonstrate 
speedup because it clearly shows that speedup is not a con­
stant; it varies with problem size and time. The startup 
overhead for load balancing and data distribution must be 
accounted for. 

Figure 16 shows the Cornell Box. Floating in the center 
of the room is a mirror. As with all specular surfaces, the 
mirror can be viewed from all angles without recomputa-
tion or a full ray tracing path. The geometry consists of 30 
defining polygons and has approximately 397,000 patches. 
The performance results are shown in Figure 6. 
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Figure 7. Speedup for Harpsichord Practice 
Room 
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The Harpsichord Practice Room in Figure 3 and in Fig­
ures 12 through 15 is defined by approximately 100 poly­
gons. The rendering uses about 100,000 to 200,000 subdi­
visions depending on the number of photons generated. It 
depicts a harpsichord in a room with skylights and a mir­
rored music shelf. While the geometry is not complex, it 
demonstrates some very important concepts. First note the 
reflection in the mirror. We must stress that this is not the 
result of a single view dependent solution. The mirror can 
be viewed from all angles. Also not the light from the sky­
lights on the floor. Most rendering programs incorrectly 
consider the sun as a point light source, thereby producing 
sharp shadows. Photon considers the sun as a source cover­
ing the scene and collimated to a range of 0.5 degree. We 
also treat ambient light from the sky with appropriate color, 
intensity, and directionality. This produces sharp shadows 
when the occluding object is near the shadowed surface and 
fiizzy shadows when the occluder is farther away. The ef­
fect is clearly evident when examining the shadow from the 
harpsichord versus the outline of the skylights on the floor. 

Figure 7 shows the performance results for the Harpsi­
chord Practice Room. The superiinear speedup for two pro­
cessors is due to cache effects. When moving from one 
processor to two processors, a smaller working set is used 
per processor, allowing faster access to memory and thereby 
increasing speed. 

The final speedup curve found in Figure 8 shows the 
results for simulation of the Computer Lab. The scene is 
made up of approximately 2000 polygons. A graphical rep­
resentation of the geometry can be found in Figure 17. The 
speedup for this geometry is more uniform because there 
is a more even distribution of light through the room. This 
allows the load to be nearly uniform across the processors. 

Figures 9 through 11 show the performance graphs for 
the IBM SP-2. The results are similar to the SGI Indy clus­
ter, except that the reduced scaling between 2 and 4 proces­
sors is not expected. Beyond 4 processors, the graphs show 
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that Photon seems to scale well. The reason for the perfor­
mance hit that is taken by moving from 2 to 4 processors 
is theorized to be due to communication overhead. Unlike 
the Indy cluster, the SP-2 requires that asynchronous mes­
saging be buffered, which adds an extra memory copy and 
buffer management overhead to each message. In a config­
uration of 2 nodes, each processor only sends one message 
per batch. In this case the communication may be over­
lapped with computation and thus hidden. Increasing the 
number of processors, increases the buffer management and 
memory copy overhead to the point that it can no longer be 
hidden. This is why the absolute performance of configu­
rations of more than two processors is shifted down. How­
ever, performance after the shift appears to scale well. 

Figures 12 through 14 give a visual feel for speedup. 
Photon was used to generate a scene on 2, 4, and 8 proces­
sors. In each case the simulation was run for approximately 
two minutes. It is easy to see the improved quality due to 
higher photon simulation counts. 

5. Conclusions and Future Work 

We have presented a parallel implementation of a global 
illumination algorithm. The speedup graphs show that it is 
scalable. Photon solves the Rendering Equation by deter­
mining the radiance at each point, and it does this without 
the need for storing huge ray history files. Photon is written 
using MPI, and can therefore be run on a variety of super­
computers as well as inexpensive clusters of workstations. 

Since Photon is based on quantum light transport simula­
tion from the light source, it has the potential to account for 
all lighting effects. At this time polarization is being added, 
and we foresee the ability to add fluorescence. It is our be­
lief that polarization will play a large role in the realism of 
a typical scene. 

Currently, the octree representation of the geometry is 
replicated on all nodes. This could limit the size of the ge­
ometry that is used. Distribution of the geometry would al­
low computation of a global illumination solution for very 
complex scenes. It would also lend itself to more massive 
parallelism. 
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