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Abstract 
With the growing presence of multimedia-enabled 

systems, we will see an integration of collaborative 
computing concepts into the everyday environments 
of future scientific and technical workplaces. Desktop 
teleconferencing is in common use today, while more 
complex desktop teleconferencing technology that re- 
lies on the availability of multipoint (greater than two 
nodes) enabled tools is now starting to become avail- 
able on PCs. A critical problem when using these col- 
laboration tools as the inability to easily archive mul- 
tistream, multipoint meetings and make the content 
available to others. Ideally one would like the abil- 
ity to capture, record, playback, index, annotate and 
distribute multimedia stream data as easily as we cur- 
rently handle text or still image data. While the ulti- 
mate goal is still some years away, the Argonne Voy- 
ager project is aimed at ezploring and developing me- 
dia server technology needed to provide a flexible vir- 
tual multipoint recording/playback capability. In  this 
article we describe the motirating requirements, archi- 
tecture, implementation, operation, performance, and 
related work. 

1 Introduction 
As multimedia-enabled systems become ubiquitous, 

we will see an integration of collaborative comput- 
ing concepts (the use of multimedia to enable human 
communication and collaboration) into the everyday 
environments of future scientific and technical work- 
places. Today, collaborative computing technologies 
in the form of point-tepoint desktop teleconferenc- 
ing are almost in routine use. More complex desktop 
teleconferencing technology relying on the availability 
of multipoint (greater than two nodes) enabled tools 
have been available on workstations for some time and 
are now starting to become available on PCs. 

A critical problem when using desktop collabora- 
tion tools is the inability to easily archive multipoint 
meetings and make the content available to others, 
(perhaps coworkers unable to attend the real-time ses- 
sion) for later playback or simply for historical or ref- 
erence use. As we make the transition from analog 
video and audio technology, where it is trivial to make 
recordings using commonly available gear, to desk- 
top environments with dizital audio and video, the 

to capture, record, play back, index, annotate, and 
distribute multimediastream data as easily as we cur- 
rently handle text or still-image data. 

While the ultimate goal is still some years away the 
Argonne Voyager project is aimed at exploring and 
developing media server technology needed to provide 
a flexible virtual multipoint recording/playback capa- 
bility. In this article we describe the motivating r e  
quirements, architecture, implementation, operation, 
and performance of the Voyager multimedia server, as 
well as work related the the Voyager project. 

2 Motivation 
A primary motivation for the development of Voy- 

ager is the need to provide a scalabte multistream 
record and playback engine to support archiving and 
retrieval of collaborative interactions. 

Ideally such a system would be fully symmetric (i.e., 
support client-driven real-time recording and play- 
back), would be scalable to dozens or hundreds of 
streams, and would provide the ability simultaneously 
to record multiple associated streams generated in a 
single logical "session" and to support playback of 
multiple streams while maintaining original timing re- 
lat ionships. 

When we initiated the Voyager project, existing 
media servers fell far short of these requirements. 
Some were optimized for playback (requiring nonreal- 
time encoding processing); others were not symmetric 
(not supporting client recording), single stream (or at 
most supporting only one stream each of audio and 
video), not based on IETF standards like RTP, or 
not scalable (based on workstations or regular filesys- 
terns). 

We also wanted to develop a system that would 
integrate with the emerging suite of freely available 
desktop media tools developed a t  Lawrence Berkeley 
National Laboratory by Van Jacobson's group. Voy- 
ager is designed to be used with vic and vat and to 
be managed and operated via the Web. Voyager also 
provides simple recording/playback capability to any- 
one able to participate in a vic/vat session (of course, 
without the video/audio source capability, one is lim- 
ited to the playback functions of Voyager). thereby 
greatly extending the flexibility of these popular desk- 
top tools. One need not be running a local copy of 
Voyager; it can provide recording a playback services need for virtual recording &d playback capabiliti be- 

comes important. Ideally we would like the 
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Desktop teleconferencing often involves many par- 
ticipants. It is not unusual for a typical MBone ses- 
sion to involve four to six participants each multicas- 
ting video and audio to a desktop. Archiving such a 
session is difficult. Depending on the hardware avail- 
able, a user may be able to create an analog video 
signal from a video capture/decode card and record 
that source to a VCR. However, that strategy does 
nothing for the other streams that are most likely be- 
ing decoded in software and displayed on the screen. 
Audio, which is being mixed from all the streams, is 
simpler to record but playback may be problematic. 
Voyager in part is motivated by the desire to record 
a multiparty desktop meeting and be able to play it 
back again. 

Since Voyager development started, it has become 
clear that a generally available server for multistream 
real-time data could also be used to  record and play 
back tracking and interaction data in virtual environ- 
ments such as the CAVE [l]. While the current ver- 
sion of Voyager is not adequate to provide the basis 
for a fully functional VR server (where one desires to 
support recording and playback of entire virtual expe- 
riences), it does provide a much needed starting point 
for VR server research. 

3 Previous Work 
3.1 High-Performance Playback Systems 

Commercial requirements are driving the develop- 
ment of large-scale video-on-demand playback sys- 
tems. Today, companies such as Oracle, IBM, and Sun 
are producing systems capable of delivering hundreds 
or thousands of channels of playback. These systems 
are optimized for playback and require that material 
be encoded off-line. A typical system, the IBM Inter- 
active TV [a] ,  has been used in interactive T V  trials for 
several years. It is designed to be scalable in its deliv- 
ery of prerecorded MPEG streams. The IBM system 
uses the IBM multimedia file system and can run on 
IBlM workstations or on the IBM SP2, where it could 
support thousands of viewers. However, these systems 
do not use the Internet for delivery and do not use the 
freely available MBone tools and standards. 
3.2 Internet Standards Based Systems 

Internet standards-based systems meet the criteria 
of using Internet standard protocols for delivery and 
typically use the MBone tools as clients for recording 
and playback. They range from simple command line 
tools for manipulating RTP streams to VCR-like sys- 
tems for recording and playing back MBone streams. 

RTP-record and RTP-play are two simple 
command-line tools distributed as part of the RTP 
toolkit by Henning Schulzrine. These tools allow the 
user to record and play RTP streams. 

In [3], Holfelder describes the MBone VCR, a sys- 
tem for recording and playing back video conferencing 
sessions from the MBone. The MBone VCR uses the 
classic MBone tools (vic, vat, nv, etc.) as clients and 
uses information in the RTP stream to synchronize 
recording and playback. However, the MBone VCR 
is a locally Controlled system and does not show an 
infrastructure designed for large-scale service. 

The Internet Multimedia Jukebox by Almeroth and 
Ammar at Georgia Tech is the result of several years 
of research on multicasting video on demand 4, 51. 

video on a schedule over three channels. Playback 
is initiated from a Web page; but once a session is 
started, it cannot be controlled from the Web page. 
Content is recorded off-line using the RTPdump utility 
and vic and vat. The system runs on a SPARCstation 
but does not show a scalable infrastructure. 

Another video-on-demand system is mMod: the 
multicast media-on-demand system from the Lulea 
University of Technology, Sweden. This system pro- 
vides a nice VCR-like interface and delivers multicast 
or unicast streams. The mMOD system also records 
and plays streams other than the usual audio and 
video, notably, shared Web, whiteboard, and text ed- 
itor sessions. The system runs on Sun workstations 
and Windows NT/95 systems. However, there is no 
demonstrated infrastructure to  support scalability. 

The IMJ runs primarily on campus and distri 6 Utes 

, 

4 Background Technologies 
In this section, we discuss the tools and technologies 

used in the Voyager system. As much as possible, we 
have attempted to  leverage existing technology both 
to reduce the development efforts and to increase the 
portability of the system. 
4.1 The IBM Tiger Shark File System 

Central to the performance of the Voyager server 
is the filesystem into which the media streams are 
stored. Normal Unix filesystems are not designed 
for continuous-time data; under load, a conventional 
file system such as NFS or AFS may provide lower 
throughput and higher response times, thereby caus- 
ing the server to drop incoming data when recording 
or miss playout deadlines on playback. A multime- 
dia filesystem, on the other hand, is designed to sup- 
port the demands of real-time storage and playback of 
continuous-time data streams. 

In the Voyager system we use the Ti er Shark 
filesystem technology from IBM Research f6]. Tiger 
Shark is an IBM multimedia file system for AIX sys- 
tems designed specifically to meet the needs of media 
servers, supporting continuous-time data, scalability, 
high availability, and manageability. 

In the Tiger Shark system, resource overloading is 
prevented by the use of admission control and disk 
scheduling policies. Admission control is a form of 
resource scheduling. When a request for a disk re- 
source is received, the Tiger Shark system makes an 
estimate of the additional load; if there is insufficient 
disk throughput to accommodate the load, the request 
is rejected. 

Real-time disk scheduling is used to optimize disk 
performance by executing disk IO’S in a sequence guar- 
anteed to provide uninterrupted data flows to clients. 
Tiger Shark uses unusually large (256k) block sizes 
for improved disk throughput. Files are striped across 
multiple drives for greater bandwidth to the filesystem 
and for automatic disk load balancing. 

This file striping also provides the scalability of the 
Tiger Shark system. A Tiger Shark filesystem can 



span from a single partition on a shared disk (useful 
for very small servers or for development work), to 
multiple disks on a single machine, to multiple disks 
attached to multiple nodes in a SP2 parallel computer. 
It is important to note that a filesystem is loosely tied 
to the disks that it comprises: more than one node 
can access a given filesystem, and the disks in that 
filesystem can reside on multiple nodes. In order for 
this to be feasible, there must be a global abstraction 
for the disks. 

The Virtual Shared Disk (VSD) 171 facility provides 
such an abstraction. In a VSD installation, each disk 
device has a global name, known as a global volume, 
which is accessible on any node in the parallel com- 
puter. If a VSD global volume is accessed on the node 
where its disk resides, the request goes directly to the 
kernel on that node. If the disk resides on a remote 
node, the request is passed over the SP2 switch fabric 
to be handled by the kernel on the remote node. 

VSD uses a low-level communications protocol op- 
timized for performance. Requests are received at the 
communications adapter interrupt level, from which 
the disk access is initiated. This protocol differs from 
traditional file systems such as NFS, which operate by 
scheduling a daemon on the remote node. 

The global disk abstraction allows one to design a 
multimedia fileserver to match the scalability require- 
ments for the application. A server designed to sup- 
port a large number of low-bandwidth streams may 
have many filesystem nodes and relatively few disk 
nodes; while a server htat supports high-bandwidth 
streams will require disk nodes to take advantage of 
the parallelism of the network between the filesystem 
and disk nodes. 

Tiger Shark can take advantage of the global disk 
abstraction in other ways as well. I t  supports disk 
replication, allowing high-demand filesystems to be 
replicated across multiple disks or nodes to support 
the higher demand for the filesystem. Replication 
also provides a measure of fault tolerance, allowing 
a filesystem to remain intact and operational while a 
node is repaired or a faulty disk is replaced. 
4.2 Multimedia Client Technology 

The Voyager project is leveraging the current boom 
in development of multimedia client technology. A 
number of client tools are available for audio and video 
capture and playback. These tools were developed 
largely in the context of the global Multicast Back- 
bone (MBone effort, coordinated by the Internet En- 

The first tools to become available were the nv 
video tool from Xerox PARC, the vat audio tool from 
Lawrence Berkeley National Laboratory (LBNL), and 
the INRIA audio/video conferencing system ivs. Re- 
strictions and incompatibilities in these systems led 
McCanne and Jacobson at LBNL to develop the vic 
[8] tool for delivering packet video over the Internet. 

Vic offers a different model for Internet video from 
those previously shown. Vic is an object-oriented ap- 
plication framework that overcomes limitations of the 
previous systems by offering support for multiple net- 
work abstractions, hardware-based codecs, a confer- 
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ence coordination model, diverse video compression 
algorithms, and the Intra-H.261 compression scheme. 

The development of vic coincided with and pro- 
vided experience and feedback for the evolution of 
the Real-time Transport Protocol (RTP) described be- 
low. Members of the Audio Video Transport Working 
Group of the IETF created RTP payload formats for 
H.261 [9], motion JPEG [lo] and MPEG 1111. 

Commercial vendors are now embracing RTP as 
well. Precept Software markets an RTP audio/video 
tool, targeted toward intranet video applications [12]. 

We chose to use the LBNL tools in the Voyager 
project because of their high quality and robust de- 
sign, free availability, support of network transport 
standards, and support for multiple computers and 
operating systems, including personal computers run- 
ning Microsoft Windows. 
4.3 Standard Protocols 

The Voyager system uses the Internet standard 
real-time transfer protocol (RTP) [13] as the t r a n s  
port protocol for its media streams. RTP is a thin 
protocol designed to support the transport of multi- 
media (including audio and video) streams. An RTP 
media stream actually consists of two packet streams: 
an RTP stream that contains the media data, and 
an RTCP (RTP Control Protocol) stream containing 
information about the quality of service of the RTP 
stream, as well as information about the participants 
in the RTP session. 

RTP has several characteristics that make it ap- 
propriate for the Voyager server. First, through the 
information present in the RTCP stream we can de- 
termine which sets of media originated from the same 
transmitter. For example, if we are recording a session 
where three participants are interacting, each with au- 
dio and video channels, the information in the RTCP 
stream will allow Voyager to determine which audio 
and video streams originate from a given participant. 

In addition, each RTP packet contains the infor- 
mation necessary to compute its place in time in the 
media stream. Each packet carries a timestamp rela- 
tive to a media-specific clock. Periodic RTCP pack- 
ets update the mapping between wallclock time on 
the sender and the media clock for that stream. Voy- 
ager uses the timestamps and the mapping to compute 
playout times for playback of media streams. If multi- 
ple streams are played back, the independent compu- 
tation of playout for each stream results in all streams 

ing played out with their original timing relation- 

timing information to over- 
ced jitter, in order to resyn- 
ams. The only client we are 

pports this feature is the 
, although the developers 
capability in a future re- 

adapt itself to less-than- 
-compliant receivers periodl- 
ckets containing information 
edia stream as it is received. 

smitter can analyze the RTCP packets received 



and compute the packet loss rate, network jitter, and 
other parameters affecting the transmission. Given 
this information, Voyager can scale back send rates or 
even initiate the translation of the data stream to a 
lower-bandwidth format. 
4.4 Format Translation 

We are experimenting with technologies to perform 
real-time translation of media data formats in Voy- 
ager. The current implementation uses the vgw video 
transcoding engine [14] to perform real-time transla- 
tion of video streams stored in motion JPEG format 
to H.261 format to  enable Voyager users to use the 
server over low-bandwidth links (for example, wide- 
area networks or ISDN connections). 
4.5 Perl 

Perl (Practical Extraction and Report Language) 
is an interpreted language incorporating the best fea- 
tures of C, sed, awk, and sh, making it quickly acces- 
sible to a broad audience. Perl is very popular and 
is described in the well-known O’Reilly Camel (Pro- 
gramming Perl) [15] and Llama (Learning Perl) [16] 
books. 

Perl is widely used for system administration and 
management tasks, but we also want to use Perl for 
programs that coordinate the execution of multiple 
processors or that implement or access servers that 
execute elsewhere in the Internet. Perl’s socket in- 
terface provides some support for these applications, 
but the socket code tends to be low level, messy, and 
nonportable. 
4.6 The Nexus Multithreaded Runtime 

Nexus is a portable library providing the multi- 
threading, communication, and resource management 
facilities required to implement advanced languages, 
libraries, and applications in heterogeneous parallel 
and distributed computing environments. Its inter- 
face provides multiple threads of control, dynamic pro- 
cessor acquisition, dynamic address space creation, a 
global memory model via interprocessor references, 
and asynchronous events. Its implementation sup- 
ports multiple communication protocols and resource 
characterization mechanisms that allow automatic se- 
lection of optimal protocols. 

Nexus [17] has been a joint development project 
between Argonne National Laboratory and the USC 
Information Sciences Institute. The Aerospace Cor- 
poration is also a partner in Nexus development. 

Nexus provides the management and control mech- 
anisms required by the Voyager system in implement- 
ing a distributed media server. Unfortunately, Nexus 
is not designed to be used at  the application level, 
but rather as a target for compilers and libraries. A 
method of encapsulating the Nexus features into the 
Perl framework was needed. As part of the Voyager 
project, Nexus and Perl were combined into a module 
called nPerl. 
4.7 nPerl 

nPerl is Perl 5 plus the multiprocessing and com- 
munication facilities of Nexus. The Nexus module 
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of nPerl uses portable process management and com- 
munication functions provided by the Nexus library. 
nPerl is intended for programs that coordinate the ex- 
ecution of multiple processors, or that implement or 
access servers that execute elsewhere in the Internet. 
For example, it allows one to use the Perl language to 

0 create and manage multiple processes 

0 attach to other active nPerl computations, 

0 establish remote references between processes, 

0 make remote procedure call to procedures and 

Hence, nPerl is a Perl 5 module that provides con- 
venient, high-level, portable mechanisms for writing 
parallel and distributed programs. 

The Nexus library used to implement the Nexus 
module provides process management and communi- 
cation mechanisms on a wide variety of workstations 
and parallel computer systems. It also provides secu- 
rity and simple fault tolerance mechanisms for nPerl. 
4.8 Database Technologies 

An important component of the Voyager system is 
the relational database used for configuration and co- 
ordination of the system as a whole. To enhance the 
portability of the system, we use the freely available 
(to noncommercial users mSQL database server d e  

tralia. The programmatic interface to the database, 
however, has been developed by using the portable 
DBI API developed in the Perl community. This al- 
lows the system to be ported to another database 
server with little difficulty. 
4.9 ACE 

The lowest level of the Voyager system is a set of 
daemons that shuttle data between the node network 
interfaces and the Tiger Shark filesystem. We use the 
ACE [18, 191 C++ class library in the implementation 
of these daemons to provide a measure of portability 
and simplicity. 

We use the ACE network socket abstractions to 
hide the required details of low-level socket code. The 
Reactor abstraction is used to efficiently implement 
an event-driven model of execution in the daemons. 
This model is applied naturally to this application, 
as the daemons are, by nature, event driven: pack- 
ets arrive from possibly multiple sources on the net- 
work, requiring demultiplexing; the implementation of 
synchronized multistream playback requires accurate 
timer-based handler invocation. 

and 

methods defined in other processes. 

veloped by David J.  Hug b es at Bond University, Aus- 

5 Design Capabilities and Experi- 
ments 

A major goal for the Voyager project is to  enable 
research in distributed media systems. Voyager should 
support the following kinds of experiments: 

0 recording and playback of multiple video/audio 
conference streams 



0 recording narration audio/video and scan con- 

recording VR tracking data for analysis or play- 

0 support video e-mail by enabling transmission of 

verted video for tutorials 

back 

playback URLS 

6 Voyager Architecture 
The design of the Voyager architecture reflects the 

goals of the project: the server must be scalable, it 
must allow symmetry of recording and playback, and 
any data recorded must be immediately available. 

The Voyager system has four major components: 

0 User interface, which users interact with to 

0 Computational backend to the user interface 

0 Set of distributed server daemons 

0 Distributed filesystem 

A relational database serves as the means for tying 
the parts of the system together, providing a common 
repository for Voyager data. 
6.1 User Interface 

The user interface for the Voyager system is a 
forms-based page from which users select functions 
and sessions, launch clients, start sessions, etc. We 
use custom MIME types [20] (application/x-voyager, 
application/x-voyager-capture) with helper apps to  in- 
voke media clients. Media clients can be any RTP me- 
dia client; however, we use vic/vat and have used the 
Precept tools. 

Figure 1 shows three typical pages in a Voyager ses- 
sion. The first shows the session list and the selecting 
of a session. The second shows session information 
and a button to press to start the session. The last 
page shows the result of selecting the Launch Media 
Clients button and pressing the Play button. In this 
figure are windows for vic and vat, showing the play- 
back of the selected session. 
6.2 Backend 

The interface between the forms-based Web inter- 
face and the rest of the Voyager system is a set of 
CGI scripts. These scripts parse the forms output, 
perform allocation of the distributed server resources, 
and distribute the requests to the core of the server. 

The process of allocating server resources uses the 
performance data we have collected from benchmark- 
ing the components of the Voyager system to define 
admission policies for the system as a whole. The per- 
formance parameters of the hardware are stored in the 
Voyager database, as is information about the load be- 
ing placed on the system at that time. When a request 
for the server arrives, the backend is able to determine 
with a database query if and where the request can be 
serviced. The information returned from the query is 
used to request the server core to create a playback or 
recording session. 

browse, create, and view media sessions 

Figure 1: Voyager Web Interface 



6.3 Server Core 
The core of the server is a set of processes dis- 

tributed across the filesystem nodes of the parallel 
computer serving Voyager. A process known as the 
metadaemon runs at  all times on every filesystem 
node. The metadaemon is responsible for handling 
requests for session startup from the interface back- 
end. Each metadaemon registers itself with the Voy- 
ager database, inserting into the database the informa- 
tion that backend processes need to connect to it. The 
metadaemons periodically update a heartbeat data 
item in the database as well, so that the rest of the 
system can detect the failure of a metadaemon and re- 
frain from attempts to  schedule sessions with the failed 
metadaemon. This strategy also allows a recovery pro- 
cess to attempt to restart the failed metadaemons. 

Upon receipt of session recording and playback re- 
quests, the metadaemon creates recording and play- 
back daemons and monitors their status. These dae- 
mons handle the streaming of data between the net- 
work and the multimedia filesystem on which the data 
is stored. Like the metadaemon, they insert into the 
database the information needed for a backend process 
to connect directly to them. 

The Voyager recording daemon listens on a set of 
network ports for incoming multimedia data. The 
incoming packets are demultiplexed based on their 
RTP synchronization source identifier (a integer which 
uniquely distinguishes the streams generated by RTP 
clients). The recorder writes the packets in the stream 
to disk exactly as they appeared in the stream. Packet 
headers providing framing information are also writ- 
ten, since the RTP packet header does not specify the 
packet length (this responsibility was delegated to the 
protocol providing RTP transport). Since the media 
timestamp is included in the RTP packet headers, con- 
tained in the media file is the information necessary 
to reproduce the original timing of the stream. When 
the session is finished, a metadata file is written for 
each stream with information about the length, start 
time, and the initial mapping of media timestamp to 
recording wallclock time. This information is also en- 
tered into the Voyager database. 

The Voyager playback daemon has the more diffi- 
cult problem of reproducing both the original packet 
playout timing for each stream and the time relation- 
ships that hold between streams. The playback dae- 
mon, as it reads the stream from disk, computes for 
each packet of each stream the wallclock time at  which 
the packet should be transmitted over the network. 
The computation of this playout time requires the fol- 
lowing parameters: 

e F ,  media timestamp frequency 
0 N s y n c h ,  the wallclock value for the synchroniza- 

0 Rsyneh,  the RTP timestamp corresponding to 

0 Nnow.  current wallclock time 
0 Np[aystart, wallclock time at which this playback 

tion instant 

Nsynch 

began 

We first compute the wallclock starting time of the 
stream: 

Then, given an RTP timestamp 8, we can compute 
its location in the stream in absolute wallclock time 
Ni : 

The offset of the packet in the stream in wallclock 
time No is then 

We now compute the delay D needed before playing 
the packet: 

Both the playback and recording daemons axe writ- 
ten in C++ using the ACE Reactor abstraction to pro- 
vide event handling. In the recorder, incoming packets 
trigger packet handlers that write the data to disk, In 
the player, each data stream has an associated play- 
out timer that clocks the playout. The daemons are 
also Nexus applications, allowing their manipulation 
via the Web user interface, via the server cgi scripts. 
In this way the user can stop and start the playback 
and can signal the beginning and ending of a recording 
session. 
6.4 Multimedia Filesystem 

system, described earlier. 
6.5 Database 

A critical component of the Voyager system is the 
relational database used throughout the system. All 
system-wide configuration information is contained in 
the database, as well as records for each session stored 
on the database. Each active playback and recording 
session has a record during the duration of the session. 

The system configuration records store information 
about all multimedia filesystems configured on the 
server, including their maximum and currently avail- 
able capacity. The mapping of filesystems to filesys- 
tem nodes is also stored, and allows the Voyager sys- 
tem to determine the nodes on which a particular ses- 
sion is available. 

The session record stores descriptive data about 
the session, such as a title and description, as well 
as ownership information and detailed information on 
the location of the session on the fileserver and the 
per-stream metadata. The ownership information al- 
lows the owner of a session to modify the session via 
the Web, editing or deleting the title and description, 
if desired. 

We use the database to  provide the information for 
a browsing interface to the Voyager server. Since all 
information about the current state of the system is 
available, we can use it to provide a catalog that en- 
sures that, for example, the only sessions displayed for 
use are filesystems that are currently availale. 

Voyager uses the IBM Tiger Shark multimedia file 
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Figure 2: The Sequence of Control Flows Within the Voyager System. 

6.6 Voyager Operation 
Figure 2 illustrates the operation of the Voyager 

server by following the server through the creation 
of a recording session. We assume that the user has 
browsed the Voyager Web pages to find a recording 
setup form, which he has filled out with information 
about the session to be recorded - title, description, 
media streams required, perhaps approximate band- 
width and recording time. The invocation of the form 
results in the following events: 

1. The Web browser sends the form data to the 
Voyager web server, invoking the backend record 
setup script. 

2. The record setup script parses the form data and 
queries the database for an appropriate node on 
which to place this record session. This query 
is structured to  incorporate the information the 
database contains about current filesystem space 
availability, server loading, network connectivity, 
and any other factors affecting the placement of 
a recording session. 

3. The database returns the Nexus attachment in- 
formation for an appropriate metadaemon. 

4. The setup script attaches to the metadaemon, re- 
questing it create a recording daemon for this ses- 
sion. 

5 .  The core daemon requests information, such 
as anticipated duration and bandwidth re- 
quirements, about the record session from the 
database. 

6. The database returns the information. 

7. The core daemon returns the Nexus URL to the 
record setup script. 

8. The record setup script returns a Web page with a 
link to a voyager document. This document con- 
tains the information that an RTP media client 
needs to send data to the Voyager recording dae- 
mon. 

9. The Web client, with the assistance of a Voyager 
helper application running on the client machine, 
invokes the media clients, passing them the a p  
propriate information for contacting the Voyager 
server. 



10. The media clients begin capture, sending their 
data directly to the recording daemon on the Voy- 
ager server. 

11. The recording daemon writes the media data to 
the multimedia filesystem. 

6.7' Implementation Notes 
The Voyager server is implemented as a set of com- 

municating processes, using the Nexus runtime library 
as the communications substrate. The majority of the 
programs involved are written in Perl 5 using a bind- 
ing of Nexus to  Perl. This Nexus binding allows a form 
of remote method invocation, allowing the fairly com- 
plex communications to be implemented with relative 
ease. The low-level daemons that handle the trans- 
port of data between the network and the filesystem 
are implemented in C++ using the ACE object ori- 
ented toolkit to encapsulate the network socket code 
and to provide a reactive programming model for the 
stream handling. 

Database service is provide by the freely available 
(to noncommercial sites) mSQL server. All access to 
the database is through the per1 database API, DBI. 

7 Experiments and Results 
We installed a large Voyager server at the Super- 

computing '95 conference in San Diego in December 
1995. This system consisted of a 28-node IBM SP2, 
configured as 8 diskful nodes with 500 GB of SSA 
disk, and 20 filesystem nodes. Scattered throughout 
the convention center were 18 capture workstations 
connected to the Voyager server via an OC3 ATM net- 
work. 

The goal of the Voyager installation at  the confer- 
ence was to record all of the technical sessions that 
were presented, as well as presentations at the virtual 
reality technology demonstrations and ad hoc record- 
ings from the show floor. 

Among other things, we learned that it's very hard 
to orchestrate such an event. We used a staff of volun- 
teers to man the video cameras and start and stop the 
recording processes for each event. We had to train 
the volunteers, distribute the cameras and worksta- 
tions in the morning and retrieve and secure all the 
equipment each night. We were successful in record- 
ing a smaller number of sessions than we wanted to, 
but did successfully capture the keynote speech, many 
CAVE demonstrations and some technical sessions. 

We have also demonstrated very small Voyager 
server installations at two other conferences. Al- 
though not an optimal configuration, the Tigershark 
filesystem performs quite adequately sharing a disk 
partition with the operating system on a workstation 
disk drive. Hence, a fast workstation with a large disk 
and an ATM adapter can perform quite well as a Voy- 
ager server for a small number of streams. 

At the DOE2000 Research and Development Inte- 
gration workshop in February 1996, we demonstrated 
the multistream recording capability of a Voyager 
server running on an IBM RS/6000 590 workstation. 
An  IBM RS/SOOO 42T with an ATM adapter and pair 
of IBM Ultimedia Video capture cards served as the 

capture and playback client. In the same exhibit as the 
Voyager server was an Immersadesk. The NTSC video 
output from the SGI Onyx Reality engine that drove 
the Immersadesk was attached to one capture card; to  
the other was a handheld video camera. We recorded 
several hours of the two video streams plus an audio 
stream captured from the camera microphone. With 
such a configuration we were able to record the inter- 
actions of the participants of the Immersadesk demo 
as well as unimpeded video of the display they were 
watching. 

A similar setup was installed at the Supercomput- 
ing '96 conference in Pittsburgh in December 1996. 
This installation used a four-processor IBM RS/6000 
G30 workstation as a Voyager server, and an RS/6000 
41T configured with an ATM network adapter and two 
Ultimedia Video adapters. 

8 Performance and Scalability 
We have defined a number of Voyager system 

benchmarks in order to  quantify the performance char- 
acteristics and degree of scaling possible with the hard- 
ware we have in place. This information will be used 
to tune the hardware and software configurations and 
to define the admission policies used in the server. 
8.1 Test Environment 

The current Voyager hardware consists of a 12-node 
IBM SP2. Eight nodes are SP1 thin nodes each with 
a TB2 switch adapter card and a IBM Turboways 
155Mb/s OC3 ATM adapter. Four nodes are SP2 
wide nodes, each with two fast/wide SCSI adapters 
and TB2 switch adapter card. Distributed across the 
eight SCSI adapters are 36 two-gigabyte SCSI disks. 

Client hardware used in the tests consists of three 
IBM RS/6000 41T workstations, two with IBM Tur- 
boways 155Mb/s OC3 ATM adapters, one with a Fore 
Systems MCA-200 155Mb/s OC3 ATM adapter. 

The eight thin nodes are connected to a Newbridge 
VIVID Workgroup ATM switch. The client worksta- 
tions are connected to a Fore Systems ASX-200 ATM 
switch. The two switches are linked via a direct OC3 
connection. When performing benchmarks directing 
large numbers of streams to a single node, we used the 
three workstations and the rest of the ATM-equipped 
nodes as data sources, running multiple streams on 
each source. 
8.2 Experiments 

The benchmarks we have designed attempt to  
quantify the bandwidth limits in the system and to 
constrain the total number of media streams that the 
system can support. The interfaces we are testing 
include the raw disk bandwidth available to a node, 
the available bandwidth from filesystem nodes to disk 
nodes through the multimedia filesystem and VSD 
subsystem, the available bandwidth into and out of the 
node through the ATM adapter, and the bandwidth 
available when performing simultaneous 1 /0  on the 
ATM adapter and multimedia filesystem on a filesys- 
tern node. 

The first set of benchmarks we performed aimed to 
determine roughly the raw disk bandwidth available. 
The Unix program dd was used to write a stream or' 



Table 1: Raw disk Derformance Table 2: Node network Derformance 
Number and A ggregate Per-disk 

Type of Disks Bandwidth Bandwidth 
1 local 3.58 3.58 

I 2 local 1 7.04 I 3.52 
3 local 10.42 3.47 
4 local 13.14 3.28 
1 VSI) 2.80 2.80 

1 2 V S D  I 4.43 I 2.22 
3 VSD 4.81 1.60 
4 VSD 5.56 1.39 

zero bytes to the raw disk device. We varied the block 
size in powers of two from 1K blocks to 4096K blocks 
(Figure 3). The asymptotic bandwidth for a single 
disk is roughly 3.6 MB/s. As we write to multiple 
disks on the same node, the bandwidth to each disk 
remains roughly the same, degrading slightly. 

We also ran this test on the raw VSD devices on 
a filesystem node. Because the Tigershark filesystem 
writes to the disk device with 256 Kbyte blocks, we 
ran all tests with a blocksize of 256 Kbytes. 

Table 1 summarizes the disk bandwidth for the raw 
disk tests. 
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Figure 3: Raw disk bandwidth 

We turn now to the performance of the ATM net- 
work on the SP node. The first benchmarks are tar- 
geted at determining the number of streams the node 
can sustain if it is performing no disk I/O. For each ex- 
periment, we fix the bandwidth per stream and block 
size, varying the number of streams being fed into or 
out of the node. We measure the CPU use on the node 
and the packet loss rate. Figure 4 is a representative 
plot of such a run. Note that the sum of user and sys- 
tem CPU utilization is roughly linear with respect to 
the number of streams, up to full utilization. Hence, 
we can compute a best-fit line for the CPU utilization 
and determine a value for the percentage CPU utiliza- 
tion per stream. Note also that the packet loss rate be- 
gins to rise when full CPU utilization is reached. The 
point a t  which the packet loss begins to rise defines 

Block %CPU per Max 
Size Stream Streams 
4096 10.5 9 
8192 6.6 14 
512 2.0 50 
4096 12.6 8 
8192 8.2 12 
512 2.7 37 
1024 1.5 66 

Table 3: Node network/filesystem performance 

I 1  
1 
2 
2 

I i  
5Mb/s 
128Kb/s 
5Mb/s 4096 
5Mb/s 8192 
128Kb/s 
5Mb/s 4096 
5Mb/s 8192 

%CPU per 
Stream 
18.6 
13.3 
7.5 
18.3 
11.8 
2.7 
18.2 
11.2 

Max 
Streams 
5 
7 
37 
5 
8 
37 
5 
8 

the maximum number of streams a node can sustain. 
We summarize these results in Table 2. 
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Figure 4: Node network-only performance 

The final benchmarks measure the machine loading 
and packet loss when both the network and the Tiger- 
Shark filesystem are being driven simultaneously. This 
is a very close approximation to the actual operation 
of the Voyager server. These experiments were per- 
formed with a number of different filesystem config- 
urations. A representative plot of these benchmarks 
can be seen in Figure 5. The results are summarized 
in Table 3. 
8.3 Conclusions 

From the studies described above, we can draw sev- 
eral conclusions about the performance characteristics 
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Figure 5: Node network/disk performance 

of the Voyager hardware as currently installed. The 
most important limiting factor in the scalability of the 
system is the relatively high cpu loading induced by 
ATM network traffic. The theoretical maximum num- 
ber of 5 Mb/s streams that a single 155 Mb/s OC3 
ATM connection could serve is 31. The overhead in- 
curred by the operating system in the best case holds 
us to less than half that number, while bringing the 
CPU to full utilization. 

The bandwidth from filesystem node to the disk 
nodes is limited by the maximum bandwidth of the 
TB2 switch adapter, roughly 320 Mb/s. While this is 
larger than the incoming ATM bandwidth, the VSD 
subsystem is not able to utilize all switch bandwidth 
due again to the overhead of the IP protocol process- 
ing. The raw VSD bandwidths shown in Figure 1 
show very poor scaling. This may be due to these 
bandwidth limits. We can see from the bandwidths 
available to the raw disk drives that scalability at this 
level does not appear to be a problem. 

It  must be noted that there are a large number of 
configuration parameters in the system we are observ- 
ing. The AIX operating system allows the tuning of 
the network protocol processing parameters; the TB2 
hardware, Tiger Shark, and the VSD subsystem all 
have configuration mechanisms that interact in subtle 
ways. We view this performance data as a way to be- 
gin the process of determining the optimal tuning of 
the system as a whole. 

9 Concluding Remarks 
In the Voyager system, we have built and deployed 

a scalable multistream multimedia recorder and play- 
back engine, using standards-based RTP and MBone 
tools. We use the IBM Tiger Shark file system to pro- 
vide support for continuous-time data and have lever- 
aged a large number of freely available tools to  con- 
struct the system. We have demonstrated scalability 
and have shown raw performance figures. 

Although Voyager is available for playback on our 

Web site today ’, it has not so far been available for 
ad hoc recording by our colleagues. We will soon be 
providing a richer user interface, upgrading the SP2 
on which it runs, re-evaluating performance figures, 
and making Voyager available on a continuing basis to  
the scientific community. There are also a number of 
straightforward performance improvements and new 
features which we plan to add to make Voyager a truly 
useful tool. 

Future research on Voyager centers on adding new 
types of streams and incorporating Voyager into a mul- 
timedia virtual world server for archiving and replay- 
ing virtual experiences. We expect to  be able to  record 
computational steering sessions, including simulation 
checkpoints. With such a system, a user playing back 
a session can diverge from the original experiences, 
at which time Voyager would restart the simulation, 
allowing the user to explore in different directions. Fi- 
nally, we would like to be able to provide annotation 
methods and search mechanisms in the engine to  fa- 
cilitate discovery and playback. 
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