
The Argonne Voyager Multimedia Server

Terrence Disz, Ivan Judson, Robert Olson, and Rick Stevens
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

{ disz j udson,olson,stevens} Qmcs. an1 .gov

Abstract
With the growing presence of multimedia-enabled

systems, we will see an integration of collaborative
computing concepts into the everyday environments
of future scientific and technical workplaces. Desktop
teleconferencing is in common use today, while more
complex desktop teleconferencing technology that re-
lies on the availability of multipoint (greater than two
nodes) enabled tools is now starting to become avail-
able on PCs. A critical problem when using these col-
laboration tools as the inability to easily archive mul-
tistream, multipoint meetings and make the content
available to others. Ideally one would like the abil-
ity to capture, record, playback, index, annotate and
distribute multimedia stream data as easily as we cur-
rently handle text or still image data. While the ulti-
mate goal is still some years away, the Argonne Voy-
ager project is aimed at ezploring and developing me-
dia server technology needed to provide a flexible vir-
tual multipoint recording/playback capability. In this
article we describe the motirating requirements, archi-
tecture, implementation, operation, performance, and
related work.

1 Introduction
As multimedia-enabled systems become ubiquitous,

we will see an integration of collaborative comput-
ing concepts (the use of multimedia to enable human
communication and collaboration) into the everyday
environments of future scientific and technical work-
places. Today, collaborative computing technologies
in the form of point-tepoint desktop teleconferenc-
ing are almost in routine use. More complex desktop
teleconferencing technology relying on the availability
of multipoint (greater than two nodes) enabled tools
have been available on workstations for some time and
are now starting to become available on PCs.

A critical problem when using desktop collabora-
tion tools is the inability to easily archive multipoint
meetings and make the content available to others,
(perhaps coworkers unable to attend the real-time ses-
sion) for later playback or simply for historical or ref-
erence use. As we make the transition from analog
video and audio technology, where it is trivial to make
recordings using commonly available gear, to desk-
top environments with dizital audio and video, the

to capture, record, play back, index, annotate, and
distribute multimediastream data as easily as we cur-
rently handle text or still-image data.

While the ultimate goal is still some years away the
Argonne Voyager project is aimed at exploring and
developing media server technology needed to provide
a flexible virtual multipoint recording/playback capa-
bility. In this article we describe the motivating r e
quirements, architecture, implementation, operation,
and performance of the Voyager multimedia server, as
well as work related the the Voyager project.

2 Motivation
A primary motivation for the development of Voy-

ager is the need to provide a scalabte multistream
record and playback engine to support archiving and
retrieval of collaborative interactions.

Ideally such a system would be fully symmetric (i.e.,
support client-driven real-time recording and play-
back), would be scalable to dozens or hundreds of
streams, and would provide the ability simultaneously
to record multiple associated streams generated in a
single logical "session" and to support playback of
multiple streams while maintaining original timing re-
lat ionships.

When we initiated the Voyager project, existing
media servers fell far short of these requirements.
Some were optimized for playback (requiring nonreal-
time encoding processing); others were not symmetric
(not supporting client recording), single stream (or at
most supporting only one stream each of audio and
video), not based on IETF standards like RTP, or
not scalable (based on workstations or regular filesys-
terns).

We also wanted to develop a system that would
integrate with the emerging suite of freely available
desktop media tools developed a t Lawrence Berkeley
National Laboratory by Van Jacobson's group. Voy-
ager is designed to be used with vic and vat and to
be managed and operated via the Web. Voyager also
provides simple recording/playback capability to any-
one able to participate in a vic/vat session (of course,
without the video/audio source capability, one is lim-
ited to the playback functions of Voyager). thereby
greatly extending the flexibility of these popular desk-
top tools. One need not be running a local copy of
Voyager; it can provide recording a playback services need for virtual recording &d playback capabiliti be-

comes important. Ideally we would like the
The submitted manuscript has h e n authored
by a contractor of the U. S. Government
under contract No. W-31-104ENG-38.
Accordingly, the u. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution. or allow others to do so, for
U. S. Government purpases.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or impIied, or asumes any legal liabli-
ty or mpoirsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

Desktop teleconferencing often involves many par-
ticipants. It is not unusual for a typical MBone ses-
sion to involve four to six participants each multicas-
ting video and audio to a desktop. Archiving such a
session is difficult. Depending on the hardware avail-
able, a user may be able to create an analog video
signal from a video capture/decode card and record
that source to a VCR. However, that strategy does
nothing for the other streams that are most likely be-
ing decoded in software and displayed on the screen.
Audio, which is being mixed from all the streams, is
simpler to record but playback may be problematic.
Voyager in part is motivated by the desire to record
a multiparty desktop meeting and be able to play it
back again.

Since Voyager development started, it has become
clear that a generally available server for multistream
real-time data could also be used to record and play
back tracking and interaction data in virtual environ-
ments such as the CAVE [l]. While the current ver-
sion of Voyager is not adequate to provide the basis
for a fully functional VR server (where one desires to
support recording and playback of entire virtual expe-
riences), it does provide a much needed starting point
for VR server research.

3 Previous Work
3.1 High-Performance Playback Systems

Commercial requirements are driving the develop-
ment of large-scale video-on-demand playback sys-
tems. Today, companies such as Oracle, IBM, and Sun
are producing systems capable of delivering hundreds
or thousands of channels of playback. These systems
are optimized for playback and require that material
be encoded off-line. A typical system, the IBM Inter-
active TV [a] , has been used in interactive T V trials for
several years. It is designed to be scalable in its deliv-
ery of prerecorded MPEG streams. The IBM system
uses the IBM multimedia file system and can run on
IBlM workstations or on the IBM SP2, where it could
support thousands of viewers. However, these systems
do not use the Internet for delivery and do not use the
freely available MBone tools and standards.
3.2 Internet Standards Based Systems

Internet standards-based systems meet the criteria
of using Internet standard protocols for delivery and
typically use the MBone tools as clients for recording
and playback. They range from simple command line
tools for manipulating RTP streams to VCR-like sys-
tems for recording and playing back MBone streams.

RTP-record and RTP-play are two simple
command-line tools distributed as part of the RTP
toolkit by Henning Schulzrine. These tools allow the
user to record and play RTP streams.

In [3], Holfelder describes the MBone VCR, a sys-
tem for recording and playing back video conferencing
sessions from the MBone. The MBone VCR uses the
classic MBone tools (vic, vat, nv, etc.) as clients and
uses information in the RTP stream to synchronize
recording and playback. However, the MBone VCR
is a locally Controlled system and does not show an
infrastructure designed for large-scale service.

The Internet Multimedia Jukebox by Almeroth and
Ammar at Georgia Tech is the result of several years
of research on multicasting video on demand 4, 51.

video on a schedule over three channels. Playback
is initiated from a Web page; but once a session is
started, it cannot be controlled from the Web page.
Content is recorded off-line using the RTPdump utility
and vic and vat. The system runs on a SPARCstation
but does not show a scalable infrastructure.

Another video-on-demand system is mMod: the
multicast media-on-demand system from the Lulea
University of Technology, Sweden. This system pro-
vides a nice VCR-like interface and delivers multicast
or unicast streams. The mMOD system also records
and plays streams other than the usual audio and
video, notably, shared Web, whiteboard, and text ed-
itor sessions. The system runs on Sun workstations
and Windows NT/95 systems. However, there is no
demonstrated infrastructure to support scalability.

The IMJ runs primarily on campus and distri 6 Utes

,

4 Background Technologies
In this section, we discuss the tools and technologies

used in the Voyager system. As much as possible, we
have attempted to leverage existing technology both
to reduce the development efforts and to increase the
portability of the system.
4.1 The IBM Tiger Shark File System

Central to the performance of the Voyager server
is the filesystem into which the media streams are
stored. Normal Unix filesystems are not designed
for continuous-time data; under load, a conventional
file system such as NFS or AFS may provide lower
throughput and higher response times, thereby caus-
ing the server to drop incoming data when recording
or miss playout deadlines on playback. A multime-
dia filesystem, on the other hand, is designed to sup-
port the demands of real-time storage and playback of
continuous-time data streams.

In the Voyager system we use the Ti er Shark
filesystem technology from IBM Research f6]. Tiger
Shark is an IBM multimedia file system for AIX sys-
tems designed specifically to meet the needs of media
servers, supporting continuous-time data, scalability,
high availability, and manageability.

In the Tiger Shark system, resource overloading is
prevented by the use of admission control and disk
scheduling policies. Admission control is a form of
resource scheduling. When a request for a disk re-
source is received, the Tiger Shark system makes an
estimate of the additional load; if there is insufficient
disk throughput to accommodate the load, the request
is rejected.

Real-time disk scheduling is used to optimize disk
performance by executing disk IO’S in a sequence guar-
anteed to provide uninterrupted data flows to clients.
Tiger Shark uses unusually large (256k) block sizes
for improved disk throughput. Files are striped across
multiple drives for greater bandwidth to the filesystem
and for automatic disk load balancing.

This file striping also provides the scalability of the
Tiger Shark system. A Tiger Shark filesystem can

span from a single partition on a shared disk (useful
for very small servers or for development work), to
multiple disks on a single machine, to multiple disks
attached to multiple nodes in a SP2 parallel computer.
It is important to note that a filesystem is loosely tied
to the disks that it comprises: more than one node
can access a given filesystem, and the disks in that
filesystem can reside on multiple nodes. In order for
this to be feasible, there must be a global abstraction
for the disks.

The Virtual Shared Disk (VSD) 171 facility provides
such an abstraction. In a VSD installation, each disk
device has a global name, known as a global volume,
which is accessible on any node in the parallel com-
puter. If a VSD global volume is accessed on the node
where its disk resides, the request goes directly to the
kernel on that node. If the disk resides on a remote
node, the request is passed over the SP2 switch fabric
to be handled by the kernel on the remote node.

VSD uses a low-level communications protocol op-
timized for performance. Requests are received at the
communications adapter interrupt level, from which
the disk access is initiated. This protocol differs from
traditional file systems such as NFS, which operate by
scheduling a daemon on the remote node.

The global disk abstraction allows one to design a
multimedia fileserver to match the scalability require-
ments for the application. A server designed to sup-
port a large number of low-bandwidth streams may
have many filesystem nodes and relatively few disk
nodes; while a server htat supports high-bandwidth
streams will require disk nodes to take advantage of
the parallelism of the network between the filesystem
and disk nodes.

Tiger Shark can take advantage of the global disk
abstraction in other ways as well. I t supports disk
replication, allowing high-demand filesystems to be
replicated across multiple disks or nodes to support
the higher demand for the filesystem. Replication
also provides a measure of fault tolerance, allowing
a filesystem to remain intact and operational while a
node is repaired or a faulty disk is replaced.
4.2 Multimedia Client Technology

The Voyager project is leveraging the current boom
in development of multimedia client technology. A
number of client tools are available for audio and video
capture and playback. These tools were developed
largely in the context of the global Multicast Back-
bone (MBone effort, coordinated by the Internet En-

The first tools to become available were the nv
video tool from Xerox PARC, the vat audio tool from
Lawrence Berkeley National Laboratory (LBNL), and
the INRIA audio/video conferencing system ivs. Re-
strictions and incompatibilities in these systems led
McCanne and Jacobson at LBNL to develop the vic
[8] tool for delivering packet video over the Internet.

Vic offers a different model for Internet video from
those previously shown. Vic is an object-oriented ap-
plication framework that overcomes limitations of the
previous systems by offering support for multiple net-
work abstractions, hardware-based codecs, a confer-

gineering Tas 1 Force.

ence coordination model, diverse video compression
algorithms, and the Intra-H.261 compression scheme.

The development of vic coincided with and pro-
vided experience and feedback for the evolution of
the Real-time Transport Protocol (RTP) described be-
low. Members of the Audio Video Transport Working
Group of the IETF created RTP payload formats for
H.261 [9], motion JPEG [lo] and MPEG 1111.

Commercial vendors are now embracing RTP as
well. Precept Software markets an RTP audio/video
tool, targeted toward intranet video applications [12].

We chose to use the LBNL tools in the Voyager
project because of their high quality and robust de-
sign, free availability, support of network transport
standards, and support for multiple computers and
operating systems, including personal computers run-
ning Microsoft Windows.
4.3 Standard Protocols

The Voyager system uses the Internet standard
real-time transfer protocol (RTP) [13] as the t r a n s
port protocol for its media streams. RTP is a thin
protocol designed to support the transport of multi-
media (including audio and video) streams. An RTP
media stream actually consists of two packet streams:
an RTP stream that contains the media data, and
an RTCP (RTP Control Protocol) stream containing
information about the quality of service of the RTP
stream, as well as information about the participants
in the RTP session.

RTP has several characteristics that make it ap-
propriate for the Voyager server. First, through the
information present in the RTCP stream we can de-
termine which sets of media originated from the same
transmitter. For example, if we are recording a session
where three participants are interacting, each with au-
dio and video channels, the information in the RTCP
stream will allow Voyager to determine which audio
and video streams originate from a given participant.

In addition, each RTP packet contains the infor-
mation necessary to compute its place in time in the
media stream. Each packet carries a timestamp rela-
tive to a media-specific clock. Periodic RTCP pack-
ets update the mapping between wallclock time on
the sender and the media clock for that stream. Voy-
ager uses the timestamps and the mapping to compute
playout times for playback of media streams. If multi-
ple streams are played back, the independent compu-
tation of playout for each stream results in all streams

ing played out with their original timing relation-

timing information to over-
ced jitter, in order to resyn-
ams. The only client we are

pports this feature is the
, although the developers
capability in a future re-

adapt itself to less-than-
-compliant receivers periodl-
ckets containing information
edia stream as it is received.

smitter can analyze the RTCP packets received

and compute the packet loss rate, network jitter, and
other parameters affecting the transmission. Given
this information, Voyager can scale back send rates or
even initiate the translation of the data stream to a
lower-bandwidth format.
4.4 Format Translation

We are experimenting with technologies to perform
real-time translation of media data formats in Voy-
ager. The current implementation uses the vgw video
transcoding engine [14] to perform real-time transla-
tion of video streams stored in motion JPEG format
to H.261 format to enable Voyager users to use the
server over low-bandwidth links (for example, wide-
area networks or ISDN connections).
4.5 Perl

Perl (Practical Extraction and Report Language)
is an interpreted language incorporating the best fea-
tures of C, sed, awk, and sh, making it quickly acces-
sible to a broad audience. Perl is very popular and
is described in the well-known O’Reilly Camel (Pro-
gramming Perl) [15] and Llama (Learning Perl) [16]
books.

Perl is widely used for system administration and
management tasks, but we also want to use Perl for
programs that coordinate the execution of multiple
processors or that implement or access servers that
execute elsewhere in the Internet. Perl’s socket in-
terface provides some support for these applications,
but the socket code tends to be low level, messy, and
nonportable.
4.6 The Nexus Multithreaded Runtime

Nexus is a portable library providing the multi-
threading, communication, and resource management
facilities required to implement advanced languages,
libraries, and applications in heterogeneous parallel
and distributed computing environments. Its inter-
face provides multiple threads of control, dynamic pro-
cessor acquisition, dynamic address space creation, a
global memory model via interprocessor references,
and asynchronous events. Its implementation sup-
ports multiple communication protocols and resource
characterization mechanisms that allow automatic se-
lection of optimal protocols.

Nexus [17] has been a joint development project
between Argonne National Laboratory and the USC
Information Sciences Institute. The Aerospace Cor-
poration is also a partner in Nexus development.

Nexus provides the management and control mech-
anisms required by the Voyager system in implement-
ing a distributed media server. Unfortunately, Nexus
is not designed to be used at the application level,
but rather as a target for compilers and libraries. A
method of encapsulating the Nexus features into the
Perl framework was needed. As part of the Voyager
project, Nexus and Perl were combined into a module
called nPerl.
4.7 nPerl

nPerl is Perl 5 plus the multiprocessing and com-
munication facilities of Nexus. The Nexus module

System

of nPerl uses portable process management and com-
munication functions provided by the Nexus library.
nPerl is intended for programs that coordinate the ex-
ecution of multiple processors, or that implement or
access servers that execute elsewhere in the Internet.
For example, it allows one to use the Perl language to

0 create and manage multiple processes

0 attach to other active nPerl computations,

0 establish remote references between processes,

0 make remote procedure call to procedures and

Hence, nPerl is a Perl 5 module that provides con-
venient, high-level, portable mechanisms for writing
parallel and distributed programs.

The Nexus library used to implement the Nexus
module provides process management and communi-
cation mechanisms on a wide variety of workstations
and parallel computer systems. It also provides secu-
rity and simple fault tolerance mechanisms for nPerl.
4.8 Database Technologies

An important component of the Voyager system is
the relational database used for configuration and co-
ordination of the system as a whole. To enhance the
portability of the system, we use the freely available
(to noncommercial users mSQL database server d e

tralia. The programmatic interface to the database,
however, has been developed by using the portable
DBI API developed in the Perl community. This al-
lows the system to be ported to another database
server with little difficulty.
4.9 ACE

The lowest level of the Voyager system is a set of
daemons that shuttle data between the node network
interfaces and the Tiger Shark filesystem. We use the
ACE [18, 191 C++ class library in the implementation
of these daemons to provide a measure of portability
and simplicity.

We use the ACE network socket abstractions to
hide the required details of low-level socket code. The
Reactor abstraction is used to efficiently implement
an event-driven model of execution in the daemons.
This model is applied naturally to this application,
as the daemons are, by nature, event driven: pack-
ets arrive from possibly multiple sources on the net-
work, requiring demultiplexing; the implementation of
synchronized multistream playback requires accurate
timer-based handler invocation.

and

methods defined in other processes.

veloped by David J. Hug b es at Bond University, Aus-

5 Design Capabilities and Experi-
ments

A major goal for the Voyager project is to enable
research in distributed media systems. Voyager should
support the following kinds of experiments:

0 recording and playback of multiple video/audio
conference streams

0 recording narration audio/video and scan con-

recording VR tracking data for analysis or play-

0 support video e-mail by enabling transmission of

verted video for tutorials

back

playback URLS

6 Voyager Architecture
The design of the Voyager architecture reflects the

goals of the project: the server must be scalable, it
must allow symmetry of recording and playback, and
any data recorded must be immediately available.

The Voyager system has four major components:

0 User interface, which users interact with to

0 Computational backend to the user interface

0 Set of distributed server daemons

0 Distributed filesystem

A relational database serves as the means for tying
the parts of the system together, providing a common
repository for Voyager data.
6.1 User Interface

The user interface for the Voyager system is a
forms-based page from which users select functions
and sessions, launch clients, start sessions, etc. We
use custom MIME types [20] (application/x-voyager,
application/x-voyager-capture) with helper apps to in-
voke media clients. Media clients can be any RTP me-
dia client; however, we use vic/vat and have used the
Precept tools.

Figure 1 shows three typical pages in a Voyager ses-
sion. The first shows the session list and the selecting
of a session. The second shows session information
and a button to press to start the session. The last
page shows the result of selecting the Launch Media
Clients button and pressing the Play button. In this
figure are windows for vic and vat, showing the play-
back of the selected session.
6.2 Backend

The interface between the forms-based Web inter-
face and the rest of the Voyager system is a set of
CGI scripts. These scripts parse the forms output,
perform allocation of the distributed server resources,
and distribute the requests to the core of the server.

The process of allocating server resources uses the
performance data we have collected from benchmark-
ing the components of the Voyager system to define
admission policies for the system as a whole. The per-
formance parameters of the hardware are stored in the
Voyager database, as is information about the load be-
ing placed on the system at that time. When a request
for the server arrives, the backend is able to determine
with a database query if and where the request can be
serviced. The information returned from the query is
used to request the server core to create a playback or
recording session.

browse, create, and view media sessions

Figure 1: Voyager Web Interface

6.3 Server Core
The core of the server is a set of processes dis-

tributed across the filesystem nodes of the parallel
computer serving Voyager. A process known as the
metadaemon runs at all times on every filesystem
node. The metadaemon is responsible for handling
requests for session startup from the interface back-
end. Each metadaemon registers itself with the Voy-
ager database, inserting into the database the informa-
tion that backend processes need to connect to it. The
metadaemons periodically update a heartbeat data
item in the database as well, so that the rest of the
system can detect the failure of a metadaemon and re-
frain from attempts to schedule sessions with the failed
metadaemon. This strategy also allows a recovery pro-
cess to attempt to restart the failed metadaemons.

Upon receipt of session recording and playback re-
quests, the metadaemon creates recording and play-
back daemons and monitors their status. These dae-
mons handle the streaming of data between the net-
work and the multimedia filesystem on which the data
is stored. Like the metadaemon, they insert into the
database the information needed for a backend process
to connect directly to them.

The Voyager recording daemon listens on a set of
network ports for incoming multimedia data. The
incoming packets are demultiplexed based on their
RTP synchronization source identifier (a integer which
uniquely distinguishes the streams generated by RTP
clients). The recorder writes the packets in the stream
to disk exactly as they appeared in the stream. Packet
headers providing framing information are also writ-
ten, since the RTP packet header does not specify the
packet length (this responsibility was delegated to the
protocol providing RTP transport). Since the media
timestamp is included in the RTP packet headers, con-
tained in the media file is the information necessary
to reproduce the original timing of the stream. When
the session is finished, a metadata file is written for
each stream with information about the length, start
time, and the initial mapping of media timestamp to
recording wallclock time. This information is also en-
tered into the Voyager database.

The Voyager playback daemon has the more diffi-
cult problem of reproducing both the original packet
playout timing for each stream and the time relation-
ships that hold between streams. The playback dae-
mon, as it reads the stream from disk, computes for
each packet of each stream the wallclock time at which
the packet should be transmitted over the network.
The computation of this playout time requires the fol-
lowing parameters:

e F , media timestamp frequency
0 N s y n c h , the wallclock value for the synchroniza-

0 Rsyneh, the RTP timestamp corresponding to

0 Nnow. current wallclock time
0 Np[aystart, wallclock time at which this playback

tion instant

Nsynch

began

We first compute the wallclock starting time of the
stream:

Then, given an RTP timestamp 8, we can compute
its location in the stream in absolute wallclock time
Ni :

The offset of the packet in the stream in wallclock
time No is then

We now compute the delay D needed before playing
the packet:

Both the playback and recording daemons axe writ-
ten in C++ using the ACE Reactor abstraction to pro-
vide event handling. In the recorder, incoming packets
trigger packet handlers that write the data to disk, In
the player, each data stream has an associated play-
out timer that clocks the playout. The daemons are
also Nexus applications, allowing their manipulation
via the Web user interface, via the server cgi scripts.
In this way the user can stop and start the playback
and can signal the beginning and ending of a recording
session.
6.4 Multimedia Filesystem

system, described earlier.
6.5 Database

A critical component of the Voyager system is the
relational database used throughout the system. All
system-wide configuration information is contained in
the database, as well as records for each session stored
on the database. Each active playback and recording
session has a record during the duration of the session.

The system configuration records store information
about all multimedia filesystems configured on the
server, including their maximum and currently avail-
able capacity. The mapping of filesystems to filesys-
tem nodes is also stored, and allows the Voyager sys-
tem to determine the nodes on which a particular ses-
sion is available.

The session record stores descriptive data about
the session, such as a title and description, as well
as ownership information and detailed information on
the location of the session on the fileserver and the
per-stream metadata. The ownership information al-
lows the owner of a session to modify the session via
the Web, editing or deleting the title and description,
if desired.

We use the database to provide the information for
a browsing interface to the Voyager server. Since all
information about the current state of the system is
available, we can use it to provide a catalog that en-
sures that, for example, the only sessions displayed for
use are filesystems that are currently availale.

Voyager uses the IBM Tiger Shark multimedia file

Backend

Server
Daemons

a m

Figure 2: The Sequence of Control Flows Within the Voyager System.

6.6 Voyager Operation
Figure 2 illustrates the operation of the Voyager

server by following the server through the creation
of a recording session. We assume that the user has
browsed the Voyager Web pages to find a recording
setup form, which he has filled out with information
about the session to be recorded - title, description,
media streams required, perhaps approximate band-
width and recording time. The invocation of the form
results in the following events:

1. The Web browser sends the form data to the
Voyager web server, invoking the backend record
setup script.

2. The record setup script parses the form data and
queries the database for an appropriate node on
which to place this record session. This query
is structured to incorporate the information the
database contains about current filesystem space
availability, server loading, network connectivity,
and any other factors affecting the placement of
a recording session.

3. The database returns the Nexus attachment in-
formation for an appropriate metadaemon.

4. The setup script attaches to the metadaemon, re-
questing it create a recording daemon for this ses-
sion.

5 . The core daemon requests information, such
as anticipated duration and bandwidth re-
quirements, about the record session from the
database.

6. The database returns the information.

7. The core daemon returns the Nexus URL to the
record setup script.

8. The record setup script returns a Web page with a
link to a voyager document. This document con-
tains the information that an RTP media client
needs to send data to the Voyager recording dae-
mon.

9. The Web client, with the assistance of a Voyager
helper application running on the client machine,
invokes the media clients, passing them the a p
propriate information for contacting the Voyager
server.

10. The media clients begin capture, sending their
data directly to the recording daemon on the Voy-
ager server.

11. The recording daemon writes the media data to
the multimedia filesystem.

6.7' Implementation Notes
The Voyager server is implemented as a set of com-

municating processes, using the Nexus runtime library
as the communications substrate. The majority of the
programs involved are written in Perl 5 using a bind-
ing of Nexus to Perl. This Nexus binding allows a form
of remote method invocation, allowing the fairly com-
plex communications to be implemented with relative
ease. The low-level daemons that handle the trans-
port of data between the network and the filesystem
are implemented in C++ using the ACE object ori-
ented toolkit to encapsulate the network socket code
and to provide a reactive programming model for the
stream handling.

Database service is provide by the freely available
(to noncommercial sites) mSQL server. All access to
the database is through the per1 database API, DBI.

7 Experiments and Results
We installed a large Voyager server at the Super-

computing '95 conference in San Diego in December
1995. This system consisted of a 28-node IBM SP2,
configured as 8 diskful nodes with 500 GB of SSA
disk, and 20 filesystem nodes. Scattered throughout
the convention center were 18 capture workstations
connected to the Voyager server via an OC3 ATM net-
work.

The goal of the Voyager installation at the confer-
ence was to record all of the technical sessions that
were presented, as well as presentations at the virtual
reality technology demonstrations and ad hoc record-
ings from the show floor.

Among other things, we learned that it's very hard
to orchestrate such an event. We used a staff of volun-
teers to man the video cameras and start and stop the
recording processes for each event. We had to train
the volunteers, distribute the cameras and worksta-
tions in the morning and retrieve and secure all the
equipment each night. We were successful in record-
ing a smaller number of sessions than we wanted to,
but did successfully capture the keynote speech, many
CAVE demonstrations and some technical sessions.

We have also demonstrated very small Voyager
server installations at two other conferences. Al-
though not an optimal configuration, the Tigershark
filesystem performs quite adequately sharing a disk
partition with the operating system on a workstation
disk drive. Hence, a fast workstation with a large disk
and an ATM adapter can perform quite well as a Voy-
ager server for a small number of streams.

At the DOE2000 Research and Development Inte-
gration workshop in February 1996, we demonstrated
the multistream recording capability of a Voyager
server running on an IBM RS/6000 590 workstation.
An IBM RS/SOOO 42T with an ATM adapter and pair
of IBM Ultimedia Video capture cards served as the

capture and playback client. In the same exhibit as the
Voyager server was an Immersadesk. The NTSC video
output from the SGI Onyx Reality engine that drove
the Immersadesk was attached to one capture card; to
the other was a handheld video camera. We recorded
several hours of the two video streams plus an audio
stream captured from the camera microphone. With
such a configuration we were able to record the inter-
actions of the participants of the Immersadesk demo
as well as unimpeded video of the display they were
watching.

A similar setup was installed at the Supercomput-
ing '96 conference in Pittsburgh in December 1996.
This installation used a four-processor IBM RS/6000
G30 workstation as a Voyager server, and an RS/6000
41T configured with an ATM network adapter and two
Ultimedia Video adapters.

8 Performance and Scalability
We have defined a number of Voyager system

benchmarks in order to quantify the performance char-
acteristics and degree of scaling possible with the hard-
ware we have in place. This information will be used
to tune the hardware and software configurations and
to define the admission policies used in the server.
8.1 Test Environment

The current Voyager hardware consists of a 12-node
IBM SP2. Eight nodes are SP1 thin nodes each with
a TB2 switch adapter card and a IBM Turboways
155Mb/s OC3 ATM adapter. Four nodes are SP2
wide nodes, each with two fast/wide SCSI adapters
and TB2 switch adapter card. Distributed across the
eight SCSI adapters are 36 two-gigabyte SCSI disks.

Client hardware used in the tests consists of three
IBM RS/6000 41T workstations, two with IBM Tur-
boways 155Mb/s OC3 ATM adapters, one with a Fore
Systems MCA-200 155Mb/s OC3 ATM adapter.

The eight thin nodes are connected to a Newbridge
VIVID Workgroup ATM switch. The client worksta-
tions are connected to a Fore Systems ASX-200 ATM
switch. The two switches are linked via a direct OC3
connection. When performing benchmarks directing
large numbers of streams to a single node, we used the
three workstations and the rest of the ATM-equipped
nodes as data sources, running multiple streams on
each source.
8.2 Experiments

The benchmarks we have designed attempt to
quantify the bandwidth limits in the system and to
constrain the total number of media streams that the
system can support. The interfaces we are testing
include the raw disk bandwidth available to a node,
the available bandwidth from filesystem nodes to disk
nodes through the multimedia filesystem and VSD
subsystem, the available bandwidth into and out of the
node through the ATM adapter, and the bandwidth
available when performing simultaneous 1 /0 on the
ATM adapter and multimedia filesystem on a filesys-
tern node.

The first set of benchmarks we performed aimed to
determine roughly the raw disk bandwidth available.
The Unix program dd was used to write a stream or'

Table 1: Raw disk Derformance Table 2: Node network Derformance
Number and A ggregate Per-disk

Type of Disks Bandwidth Bandwidth
1 local 3.58 3.58

I 2 local 1 7.04 I 3.52
3 local 10.42 3.47
4 local 13.14 3.28
1 VSI) 2.80 2.80

1 2 V S D I 4.43 I 2.22
3 VSD 4.81 1.60
4 VSD 5.56 1.39

zero bytes to the raw disk device. We varied the block
size in powers of two from 1K blocks to 4096K blocks
(Figure 3). The asymptotic bandwidth for a single
disk is roughly 3.6 MB/s. As we write to multiple
disks on the same node, the bandwidth to each disk
remains roughly the same, degrading slightly.

We also ran this test on the raw VSD devices on
a filesystem node. Because the Tigershark filesystem
writes to the disk device with 256 Kbyte blocks, we
ran all tests with a blocksize of 256 Kbytes.

Table 1 summarizes the disk bandwidth for the raw
disk tests.

14
' 1 .& c --------------- 2dsP --

3dsP a-
12 4d* -*

Figure 3: Raw disk bandwidth

We turn now to the performance of the ATM net-
work on the SP node. The first benchmarks are tar-
geted at determining the number of streams the node
can sustain if it is performing no disk I/O. For each ex-
periment, we fix the bandwidth per stream and block
size, varying the number of streams being fed into or
out of the node. We measure the CPU use on the node
and the packet loss rate. Figure 4 is a representative
plot of such a run. Note that the sum of user and sys-
tem CPU utilization is roughly linear with respect to
the number of streams, up to full utilization. Hence,
we can compute a best-fit line for the CPU utilization
and determine a value for the percentage CPU utiliza-
tion per stream. Note also that the packet loss rate be-
gins to rise when full CPU utilization is reached. The
point a t which the packet loss begins to rise defines

Block %CPU per Max
Size Stream Streams
4096 10.5 9
8192 6.6 14
512 2.0 50
4096 12.6 8
8192 8.2 12
512 2.7 37
1024 1.5 66

Table 3: Node network/filesystem performance

I 1
1
2
2

I i
5Mb/s
128Kb/s
5Mb/s 4096
5Mb/s 8192
128Kb/s
5Mb/s 4096
5Mb/s 8192

%CPU per
Stream
18.6
13.3
7.5
18.3
11.8
2.7
18.2
11.2

Max
Streams
5
7
37
5
8
37
5
8

the maximum number of streams a node can sustain.
We summarize these results in Table 2.

{
t

&. 7 +
ldb C W t

U u r C W +-
KwndCRI +J-- waacw -*-

UaW+K*rnd CRI A-
Packel LW - - -

Figure 4: Node network-only performance

The final benchmarks measure the machine loading
and packet loss when both the network and the Tiger-
Shark filesystem are being driven simultaneously. This
is a very close approximation to the actual operation
of the Voyager server. These experiments were per-
formed with a number of different filesystem config-
urations. A representative plot of these benchmarks
can be seen in Figure 5. The results are summarized
in Table 3.
8.3 Conclusions

From the studies described above, we can draw sev-
eral conclusions about the performance characteristics

1

0. E

0.6

.s
8
Y

0.4

0.2

0

Figure 5: Node network/disk performance

of the Voyager hardware as currently installed. The
most important limiting factor in the scalability of the
system is the relatively high cpu loading induced by
ATM network traffic. The theoretical maximum num-
ber of 5 Mb/s streams that a single 155 Mb/s OC3
ATM connection could serve is 31. The overhead in-
curred by the operating system in the best case holds
us to less than half that number, while bringing the
CPU to full utilization.

The bandwidth from filesystem node to the disk
nodes is limited by the maximum bandwidth of the
TB2 switch adapter, roughly 320 Mb/s. While this is
larger than the incoming ATM bandwidth, the VSD
subsystem is not able to utilize all switch bandwidth
due again to the overhead of the IP protocol process-
ing. The raw VSD bandwidths shown in Figure 1
show very poor scaling. This may be due to these
bandwidth limits. We can see from the bandwidths
available to the raw disk drives that scalability at this
level does not appear to be a problem.

It must be noted that there are a large number of
configuration parameters in the system we are observ-
ing. The AIX operating system allows the tuning of
the network protocol processing parameters; the TB2
hardware, Tiger Shark, and the VSD subsystem all
have configuration mechanisms that interact in subtle
ways. We view this performance data as a way to be-
gin the process of determining the optimal tuning of
the system as a whole.

9 Concluding Remarks
In the Voyager system, we have built and deployed

a scalable multistream multimedia recorder and play-
back engine, using standards-based RTP and MBone
tools. We use the IBM Tiger Shark file system to pro-
vide support for continuous-time data and have lever-
aged a large number of freely available tools to con-
struct the system. We have demonstrated scalability
and have shown raw performance figures.

Although Voyager is available for playback on our

Web site today ’, it has not so far been available for
ad hoc recording by our colleagues. We will soon be
providing a richer user interface, upgrading the SP2
on which it runs, re-evaluating performance figures,
and making Voyager available on a continuing basis to
the scientific community. There are also a number of
straightforward performance improvements and new
features which we plan to add to make Voyager a truly
useful tool.

Future research on Voyager centers on adding new
types of streams and incorporating Voyager into a mul-
timedia virtual world server for archiving and replay-
ing virtual experiences. We expect to be able to record
computational steering sessions, including simulation
checkpoints. With such a system, a user playing back
a session can diverge from the original experiences,
at which time Voyager would restart the simulation,
allowing the user to explore in different directions. Fi-
nally, we would like to be able to provide annotation
methods and search mechanisms in the engine to fa-
cilitate discovery and playback.

Acknowledgments
This work was supported by the Mathematical, In-

formation, and Computational Sciences Division sub-
program of the Office of Computational and Technol-
ogy Research, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38.

References
[l] C. Cruz-Neira, D.J.Sandin, and T.A. DeFanti,

“Surround-screen projection-based virtual real-
ity: The design and implementation of the
CAVE,” in Computer Graphics (Proceedings
of SIGGRAPH ’93). ACM SIGGRAPH, August

[2] R. Haskin and F. Stein, “A system for the de-
livery of interactive television programming,” in
Proceedings of the IEEE Computer Conference,
1995. IEEE, March 1995, pp. 209-214.

[3] W. Holfelder, “MBone VCR - video conference
recording on the MBone,” in ACM Multimedia 95
- Electronic Proceedings. ACM, November 1995,
ACM Press.

[4] K. Almeroth and M. Ammar, “On the perfor-
mance of a multicast delivery video-on-demand
service with discontinuous VCR actions.” in In-

1993, pp. 135-142.

ternational Conference on Communications (ICC
95). IEEE, June 1995.

[SI K. Almeroth and $1. Ammar, “On the use of
multicast delivery to provide a scalable and in-
teractive video-on-demand service,” Journal on
Selected Areas of Communication, , no. August,
1996.

[6] R. Haskin and F. Schmuck, “The tiger shark file
system,” in Proceedings of the IEEE Computer
Conference, 1996. IEEE, March 1996.

http://voyager.rncs.anl.gov/Voyager

http://voyager.rncs.anl.gov/Voyager

.

[7] T. Agerwala, J . L. Martin, J. H. Mirza, D. C.
Sadler, D. M. Dias, and M. Snir, “SP2 systems
architecture,” IBM Systems Journal, vol. 34, no.
2, 1995.

[8] S. McCanne and V. Jacobsen, “Vic: A flexible
framework for packet video,” in ACM Multimedia
95, November 1995, pp. 511-522.

[9] T. Turletti and C. Huitema, “RTP payload for-
mat for H.261 video streams,” October 1996, Net-
work Working Group, RFC 2032.

[lo] L. Berc, W. Fenner, R. Frederick, and S. Mc-
Canne, “RTP payload format for JPEG-
compressed video,” October 1996, Network
Working Group, RFC 2035.

[ll] D. Hoffman, G. Fernando, and V. Goyal, “RTP
payload format for MPEGl/MPEG2 video,” Oc-
tober 1996, Network Working Group, RFC 2038.

Precept IP/TV Viewer
Users Manual, Precept Software, Inc., initial re-
lease edition, June 1996, Part Number 201.

[13] H. Schulzrinne, “RTP profile for audio and video
conferences with minimal control,” January 1996,
Network Working Group, RFC 1890.

[14] E. Amir, S. McCanne, and H. Zhang, “An appli-
cation level video gateway,” in ACM Multimedia
95, November 1995.

[15] Larry Wall, Tom Christiansen, and Randall
Schwartz, Programming Perl, O’Reilly and As-
sociates, 1996.

[16] Randall Schwartz, Learning Perl, O’Reilly and
Associates, 1993.

[17] ” I . Foster, C. Kesselman, and S. Tuecke”, “”the
Nexus approach to integrating multithreading
and communication” 1)) JPDC, vol. 37, pp. ”70-
82”, 1996.

[IS] Douglas C. Schmidt, “The adaptive communica-
tion environment an object-oriented network pro-
gramming toolkit for developing communication
software,” in Proceedings of Sun Users Group
Conference, December 1993.

[19] Douglas C. Schmidt, Pattern Languages of Pro-
gram Design, chapter Reactor: An object behav-
ioral pattern for concurrent event demultiplexing
and event handler dispatching, Addison-Wesley,
1995.

[12] Inc. Precept Software,

[20] N. Freed and N. Borenstsien, “Multipurpose in-
ternet mail estensions (MIME) part two: Me-
dia types,” Sovember 1996, Network Working
Group, RFC 2046.

