
1

The NetLogger Methodology for High Performance Distributed Systems
Performance Analysis

 Brian Tierney, William Johnston, Brian Crowley, Gary Hoo, Chris Brooks, Dan Gunter

Computing Sciences Directorate
Lawrence Berkeley National Laboratory

University of California, Berkeley, CA, 94720

Abstract

We describe a methodology that enables the real-time
diagnosis of performance problems in complex high-per-
formance distributed systems. The methodology includes
tools for generating precision event logs that can be used
to provide detailed end-to-end application and system
level monitoring; a Java agent-based system for managing
the large amount of logging data; and tools for visualizing
the log data and real-time state of the distributed system.
We developed these tools for analyzing a high-perfor-
mance distributed system centered around the transfer of
large amounts of data at high speeds from a distributed
storage server to a remote visualization client. However,
this methodology should be generally applicable to any
distributed system.

This methodology, called NetLogger, has proven
invaluable for diagnosing problems in networks and in
distributed systems code. This approach is novel in that it
combines network, host, and application-level monitoring,
providing a complete view of the entire system.

1.0 Introduction
Developers of high-speed network-based distributed

systems often observe performance problems such as
unexpectedly low network throughput or high latency. The
reasons for the poor performance can be manifold and are
frequently not obvious. It is often difficult to track down
performance problems because of the complex interaction
between the many distributed system components, and the
fact that performance problems in one place may be most
apparent somewhere else. Bottlenecks can occur in any of
the components along the paths through which the data
flow: the applications, the operating systems, the device
drivers, the network adapters on any of the sending or
receiving hosts, and/or in network components such as
switches and routers. Sometimes bottlenecks involve inter-
actions among several components or the interplay of pro-
tocol parameters at different points in the system, and
sometimes, of course, they are due to unrelated network
activity impacting the operation of the distributed system.

While post-hoc diagnosis of performance problems is
valuable for systemic problems, for operational problems
users will have already suffered through a period of
degraded performance. The ability to recognize opera-
tional problems would enable elements of the distributed
system to use this information to adapt to operational con-
ditions, minimizing the impact on users.

We have developed a methodology, known asNetLog-
ger, for monitoring, under realistic operating conditions,
the behavior of all the elements of the application-to-appli-
cation communication path in order to determine exactly
what is happening within a complex system.

Distributed application components, as well as some
operating system components, are modified to perform
precision timestamping and logging of “interesting”
events, at every critical point in the distributed system. The
events are correlated with the system’s behavior in order to
characterize the performance of all aspects of the system
and network in detail during actual operation. The moni-
toring is designed to facilitate identification of bottlenecks,
performance tuning, and network performance research. It
also allows accurate measurement of throughput and
latency characteristics for distributed application codes.

Software agents collect and filter event-based perfor-
mance information, turn on or off various monitoring
options to adapt the monitoring to the current system state,
and manage the large amounts of log data that are gener-
ated.

The goal of this performance characterization work is
to produce high-speed components that can be used as
building blocks for high-performance applications, rather
than having to “tune” the applications top-to-bottom as is
all too common today. This method can also provide an
information source for applications that can adapt to com-
ponent congestion problems.

NetLogger has demonstrated its usefulness with the
Distributed Parallel Storage System (DPSS), which is
described below. NetLogger-assisted analysis revealed the
cause of mysterious intermittent stalls that lowered the
system’s performance below expectations. Pinpointing the
reason for the stalls allowed corrective action to be taken.

* Published in the Proceedings of IEEE HPDC-7’98, 28-31
July 1998 at Chicago, Illinois.

2

Although NetLogger has only been used in a
loosely-coupled, client-server architecture, in principle its
approach is adaptable to any distributed system architec-
ture, such as the processor pool model. The way in which
NetLogger is integrated into a distributed system will, of
course, depend on the system’s design; however, NetLog-
ger’s behavior and utility are independent of any particular
system design.

2.0 NetLogger Components
NetLogger consists ofevent logsthat represent the

raw information about system performance, and theNet-
Logger Toolkit that generates and manipulates the logs.

Events and Event Logs
To analyze the performance of a wide-area distributed

system, it is important to log as much information about
the state of the system as possible.Event logscontain
high-resolution, synchronized timestamps taken before
and afterevents(activities of interest). Events may include
application-, operating system-, or network-level activi-
ties; monitoring of operating system and network condi-
tions is an important complement to application-level
monitoring. A distributed system should be instrumented
to log the time at which data is requested and received, and
should record any local processing time.

In this paper, the logical path of anobject(a particular
datum or process flow) through the system is called itslife-
line. This lifeline is the temporal trace of an object through
the distributed system.

NetLogger analysis relies upon every log entry
adhering to a common format (syntax), and the clocks of
all hosts participating in the distributed system being syn-
chronized.

Common logging format
To aid in the processing of the potentially huge

amount of log data that can be generated from this type of
logging, all events should be logged using a common for-
mat. NetLogger uses the IETF draft standard Universal

Logger Message format (ULM).1

ULM format consists of a list of “field=value” pairs.
ULM required fields are DATE, HOST, PROG, and LVL,
followed by optional user defined fields. LVL is the sever-
ity level (Emergency, Alert, Error, Usage, and so on). Net-
Logger adds the field NL.EVNT, which is a unique
identifier for the event being logged, and NL.SEC and
NL.USEC, which are the seconds and microseconds val-
ues returned from the Unixgettimeofday system call.

Here is a sample NetLogger ULM event:

DATE=19980430133038 HOST=dpss1.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
NL.SEC=893968238 NL.USEC=55784
SEND.SZ=49332

This says that a program namedtestprog on host
dpss1.lbl.govperformed the event named SEND_DATA
with a size of 49332 bytes at the time given.

The end of every log event can contain any number of
user-defined elements. These can be used to store any
information about the logged event that may later prove
useful. For example, for a NETSTAT_RETRANSSEGS
event, the data element would be the number of TCP
retransmits since the previous poll time. A
SERVER_START_WRITE event data element, on the
other hand, might contain a data block ID, data set ID, and
a user ID.

2.1 Clock Synchronization: NTP
To analyze a network-based system using timestamps,

the clocks of all systems involved must be synchronized.
This can be achieved by using the Network Time Protocol
(NTP) [10]. By installing a GPS-based NTP server on
each subnet of the distributed system, and running the
xntpd daemon on each host, all host clocks can be syn-
chronized to within about 0.25 ms of each other. It has
been our experience that most application-significant
events can be accurately characterized by timestamps that
are accurate to about 1 ms, well within NTP’s tolerances.
If the closest time source is several IP router hops away,
NTP accuracy will be somewhat less, but probably still
accurate enough for many types of analysis. The NTP web

site2 has a list of public NTP servers that one may be able
to connect and synchronize with.

2.2 NetLogger Toolkit
The NetLogger Toolkit consists of three components:

a library of routines to simplify the generation of applica-
tion-level event logs (for C, C++, and JavaTM), a set of
modified operating system utilities, a set of tools for man-
aging and filtering the log files, and a set of tools to visual-
ize and to analyze the log files.

Event Log Generation Library
A library has been developed to simplify the creation

of application event logs. The library contains routines to
open, write, and close log files. Events can be written to a
local file, the syslog daemon, or a given TCP port on a
given network host.

As previously noted, monitoring of operating system
and network activities complements application-level
monitoring. Indeed, characterizing a distributed system’s
performance requires distinguishing between the “applica-

1. Available from:
ftp://ds.internic.net/internet-drafts/draft-abela-ulm-02.txt 2. See http://www.eecis.udel.edu/~ntp/.

3

tion” and its supporting infrastructure. NetLogger moni-
tors and logs operating system- and network-level events

using versions of the Unix utilitiesnetstatandvmstat3 that
have been modified to support NetLogger.netstatreports
on the contents of various network-related data structures.
vmstatreports statistics on virtual memory, disk, and CPU
activity. Both programs were modified to present only a
relevant subset of their information in the common log-
ging format, andnetstatwas modified to poll and report
continuously (it normally provides only a snapshot of cur-
rent activity). We typically poll at 100 ms intervals. Since
the kernel events are not timestamped, the data obtained
this way represents all events in this interval.

Agents for Event Logging Management
Management of monitoring programs and event logs

for many clients connected to many distributed server
components on many hosts is quite difficult. Our approach
to this problem is to use a collection of software agents [6]
to provide structured access to current and historical infor-
mation.

For this discussion, anagentis an autonomous, adapt-
able entity that is capable of monitoring and managing dis-
tributed system components. Agents provide the standard
interface for monitoring CPU load, interrupt rate, TCP
retransmissions, TCP window size, etc. Agents can also
independently perform various administrative tasks, such
as restarting servers or monitoring processes. Collectively,
a distributed system’s agents maintain a continually
updated view of the global state of the system.

A broker is a special type of agent that manages sys-
tem state information, filters this information for clients,
or performs some action on behalf of a client. The broker
controls agents on each host, telling them which tasks to
perform. The broker also collects event logs from each
agent and merges them together, sorted by time, for use by
the event log visualization tools.

NetLogger’s agents are written in Java, use the Java
Agent Toolkit (JATLite) from Stanford [7], and use the
KQML communication language [4]. JATLite is a set of
Java packages that facilitate the agent framework develop-
ment by providing basic communication tools and tem-
plates based upon TCP/IP and KQML messages.

This agent/broker system provides two main functions
for NetLogger. The agents can start and stop individual
monitoring components, based on which system compo-
nents are currently active. This reduces the amount of log-
ging data collected. The second function is to filter,
collect, and sort the logged events for the analysis tools.

These functions are provided through brokers, which
are implemented as Java applets. One broker monitors
when a server is accessed, and turns on system monitoring
of CPU load, interrupt rate, TCP retransmissions, TCP
window size, and server events, for the duration of the
connection.

A second broker is used to collect and filter the event
logs. An applet shows the user which event log files are
currently available and allows the user to specify which
events to collect over what time range. The broker then
collects the event logs from each agent and merges them,
sorted by timestamp, for use by the event log visualization
tools.

The agent architecture is a crucial component for Net-
Logger because without it, run-time management of the
immense volume of log event data that can be generated
would be infeasible. In addition, the agent architecture is
sufficiently general to be useful for a wide variety of dis-
tributed system management tasks. For example, we are
using the agents to monitor NTP clock synchronization
accuracy. We are also using these agents in other projects
to make sure servers are up, and to help with load balanc-
ing and fault tolerance. We expect to discover new uses for
this agent architecture as we gain experience using it with
different types of applications.

Event Log Analysis and Visualization Tools
Exploratory, interactive analysis of the log

data—especially analysis of the graphical representations
of individual, exceptional events—has proven to be the
most important means of identifying the causes of specific
behavior. In particular, the ability to distinguish, manipu-
late, and analyze lifelines is critical to isolating the loca-
tions of (and thereby the reasons for) unexpected behavior.

NetLogger builds lifelines by combining specified
events from a given set of processes, and represents them
as lines on a graph. The graph plots time (i.e., the times-
tamp from the event log) against a set of events. For exam-
ple, in a client-server distributed system, each
request-response transaction might be represented as a
lifeline; the events on the lifeline might include the
request’s dispatch from the client, its arrival at the server,
the commencement of server processing of the request, the
dispatch of the response from the server to the client, and
the arrival of the response at the client.

We have developed a tool callednlv (NetLogger Visu-
alization) for interactively viewing the NetLogger event
files. nlv can display several types of NetLogger events.
The user can combine multiple different sequences of
events, servers, and graph types (lifeline, load-line, or
point) on a single graph; the display can be modified to
show an arbitrary subset of these elements.nlv graphing
primitives are shown in Figure 1. Thepoint type is used to
graph events such as TCP retransmits that happen at a cer-

3. Bothnetstat(displays network statistics) andvmstat(displays virtual
memory statistics) are tools available on most Unix systems. We have
modified versions for Solaris, FreeBSD, and Linux to date.

4

tain point in time. Theload-line type is used to graph
events such as CPU load that vary over time. Thelifeline
type is used to follow a data object through time.nlv pro-
vides the ability to play, pause, rewind, slow down, zoom
in/out, and so on. Figure 2 shows a samplenlv session.

nlv can be run post-mortem on log file collected after
the application is finished, or can be run in “real-time,”
analyzing live applications. In addition,nlv allows the user
to specify data statistics to display based on formulas
which use standard mathematical operators and event key-
word names.

nlv is implemented in C and Tcl/Tk [12], and uses the
Tcl/Tk extension library called BLT [2]. BLT is a graphics
extension to the Tk toolkit, adding new widgets and geom-
etry managers.

NetLogger tools to analyze log files also includeperl

scripts4 to extract information from log files and to write

data files in a format suitable for usinggnuplot5 to graph
the results. These tools were used to generate the graph in
Figure 2.gnuplotis not as interactive asnlv, but it is more
flexible, and produces cleaner graphs for use in publica-
tions.

3.0 Sample NetLogger Toolkit Use
To illustrate the NetLogger approach, we describe its

use in a high performance distributed system deployed in

the DARPA-funded MAGIC gigabit testbed network6 [5].
MAGIC has a complex, widely distributed application
running over a high-speed ATM network. This is an exam-
ple of an environment in which a complete monitoring
methodology is critical to obtaining expected perfor-
mance.

3.1 MAGIC Application Overview
A real-time terrain visualization application uses the

MAGIC network to access multi-gigabit image data sets
from the Distributed-Parallel Storage System (DPSS). The
DPSS provides an economical, high-performance, widely
distributed, highly scalable architecture for caching large
amounts of data that can be accessed by many different
users. It allows real-time recording of, and random access
to, very large data sets. In the MAGIC testbed, DPSS sys-
tem components are distributed across several sites sepa-
rated by more than 2600 Km of high speed network, using
IP over ATM.

The terrain visualization application, calledTerraVi-
sion, lets a user explore/navigate a “real” landscape repre-
sented in 3D by using ortho-corrected, one meter per pixel
images and digital elevation models (see [9]). TerraVision
requests from the DPSS, in real time, the sub-images
(“tiles”) needed to provide a view of a landscape for an
autonomously “moving” user. This requires aggregated
data rates as high as 100 to 200 Mbits/sec. The DPSS is
easily able to supply these data rates. Terravision typically
sends a request for 50 to 100 50 KByte tiles every 200 mil-
liseconds.

The combination of the distributed nature of the
DPSS, together with the high data rates required by Ter-
raVision and other DPSS clients, make this a good system
with which to test and analyze high-speed network-based
systems.

3.2 NetLogger and the DPSS
To understand how NetLogger works within the Ter-

raVision-DPSS distributed system, it is necessary to
understand the architecture of the DPSS.

4. See: http://www.metronet.com/perlinfo/perl5.html

event E
event D
event C
event B
event A

time

point

load-line

lifeline

event

event

 Figure 1:nlv graphing primitives

 Figure 2: Sample nlv display

5. See: http://www.cs.dartmouth.edu/gnuplot_info.html
6. See: http://www.magic.net/

5

DPSS Architecture
The DPSS is essentially a “logical block” server

whose functional components are distributed across a
wide-area network. The DPSS uses parallel operation of
distributed servers to supply high-speed data streams. The
data is declustered (dispersed in such a way that as many
system elements as possible can operate simultaneously to
satisfy a given request) across both disks and servers. This
strategy allows a large collection of disks to seek in paral-
lel, and all servers to send the resulting data to the applica-
tion in parallel, enabling the DPSS to perform as a
high-speed data server.

The DPSS is implemented using multiple low-cost,
“off-the-shelf” medium-speed disk servers. The servers
use the network to aggregate multiple outputs for high per-
formance applications. All levels of parallelism are
exploited to achieve high performance, including disks,
controllers, processors/memory banks, and the network.

A typical DPSS consists of several (e.g., four) Unix
workstations, each with several (e.g., four) SCSI III disks
on multiple (e.g., two) SCSI host adapters. Each worksta-
tion is also equipped with a high-speed network interface.
A DPSS configuration such as this can deliver an aggre-
gated data stream to an application of about 400 Mbits/s
(50 Mbytes/s), using these components, by exploiting the
parallelism provided by approximately four disk servers,
16 disks, eight SCSI host adapters, and four network inter-
faces.

Other papers describing the DPSS, including one
describing the implementation in detail [17], are available
at http://www-itg.lbl.gov/DPSS/papers.html.

DPSS Timing Facility
The DPSS and several of its clients have been instru-

mented to collect time stamps at all important events. A
request for a data block takes the following path through
the DPSS (see Figure 3). Arequest list(list of data blocks)
is sent from the application to the name server (“START”),
where the logical block names are translated to physical
addresses (server:disk:disk offset). Then the individual
requests are forwarded to the appropriate disk servers. At
the disk servers, the data is read from disk into local cache,
and then sent directly to the application, which has con-
nections to all the relevant servers. Timestamps are gath-
ered before and after each major function, such as name
translation, disk read, and network send.

For DPSS applications, the timestamps are sent, with
the data block, to the requesting application. The event
information is not logged at the time it is collected: rather,
it is carried along with the data back to the application and
then logged. This post-path logging eliminates the need to
correlate information for individual objects from multiple
logs. This was done because at the time the NetLogger
agents did not exist.

NetLogger Analysis of the DPSS
To date, the most useful analysis technique for Net-

Logger data has been to construct and examine individual
lifelines. Lifelines are characterized by the time of the
actions, events, or operations in all of the system compo-
nents.

A DPSS application call can generate NetLogger
events such as this:

DATE=19980430133038 HOST=dpss1.lbl.gov
PROG=tv_rcvr LVL=Usage NL.EVNT=APP_RECEIVE
NL.SEC=893968238 NL.USEC=55784
DPSS.SERV=131.243.2.94 DPSS.SID=806
DPSS.BID=160.175.0.0 DPSS.SES=0
DPSS.BSZ=49332

This event shows that DPSS applicationtv_rcvr on
host dpss1.lbl.govgenerated this message. The event
shows a block of size 49332 with block id 160,175,0,0 was
received from a server at address 131.243.2.94 at the pre-
cise time given.

Figure 4 illustrates the general operational character-

istics of the DPSS with the TerraVision application7.
DPSS events, together with TCP retransmit events, are
plotted on the vertical axis and the corresponding times on
the horizontal axis. Each line corresponds to the life of a
data request, from application request to application
receipt. Each line style in the graphs represents data from a
different DPSS disk server. These lifelines have character-
istic shapes and relationships that represent how the vari-
ous algorithms in the system operate and interact in the

7. Results in Figure 4 are from a four year old DPSS server platform (a
60 MHz Sun SS10 with SCSI II disks). Current servers and disks are
more than twice as fast; typical throughput is 10 MBytes/sec per DPSS
disk server)

 Figure 3: DPSS Performance Monitoring Points

Writer

memory cache

- recv block list
- search cache

disk
reader

disk
reader

disk
reader

disk
reader

to
 o

th
er

 D
P

S
S

se
rv

er
s

request blocks

receive blocks
TS

TS

TS TS

TS

TS

TS

TS

TS

TS = time stamp

DPSS disk server

START

fr
om

 o
th

er
D

P
S

S
 s

er
ve

rs

DPSS Request
Manager

6

face of different environmental conditions (e.g., network
congestion).

Referring to Figure 4, TerraVision sends a list of data
block requests every 200 ms, as shown by the nearly verti-
cal lines starting at theapp_sendmonitor points. The ini-
tially single lifelines fan out at theserver_inmonitor point
as the request lists are resolved into requests for individual
data blocks. Each block request is first represented indi-
vidually in the read queue (start_read).

Using these lifeline graphs it is possible to glean
detailed information about individual operations within
the disk servers. For example, when two lifelines cross in
the area betweenstart_readand end_read, this indicates
that a read from one disk was faster that a read from
another disk. (This phenomenon is clearly illustrated for
the server represented by the crossing solid lines in
Figure 4 at “A”.) This faster read might be from a disk
with faster seek and read times, or it might be due to two
requested blocks being adjacent on disk so that no seek is
required for the second block. In Figure 4 we can also see:

• at “B”, two different characteristic disk reads (one
with an 8 ms read time and one with a 22 ms read
time);

• at “C”, the average time to cache a block and enter
it into the network write queue is about 8.6 ms;

• at “D”, the time to parse the incoming request list
and see if the block is in the memory cache is about
5 ms;

• at “E”, the overall server data read rate (four disks
operating in parallel) is about 8 MB/sec;

• at “F”, the actual throughput for this server while
dealing with a set of real data requests is about 39
Mb/s (this throughput is receiver-limited);

• at “G”, there are two cache hits (blocks found in
memory) as a result of previously requested, but
unsent, data being requested.

WAN Experiment
NetLogger was used to find an ATM switch buffer

overflow problem in an experiment over the MAGIC ATM

app_send

master_in

master_out

server_in

start_read

end_read

start_write

app_receive

TCP_retrans

8000 8200

B: fast disk
read:
8 ms

C: 20 block average time to
write blocks to network:

8.65 ms

D: 20 block average time to locate
a block (in cache, or not?): 5 ms

F: time for 20 blocks to get from one server writer
to the application reader

total: 204 ms, avg: 10.2 ms; 38.5 Mb/sec

B: typical
disk read:

22 ms

E: time to read 20 blocks from three disks
total:123 ms, avg: 6.15 ms
8 MBy/sec (63.7 Mb/sec)

G: cache hits

Time (ms)

M
on

ito
r

 p
oi

nt
s

A: one
disk read
faster than
the other

 Figure 4: DPSS Performance Detail From a Two Server LAN Experiment

7

WAN. A detailed analysis of this experiment is in [17]. We
were using three DPSS servers sending data to one appli-
cation, and getting terrible throughput of only 2-3
Mbits/second, while we knew each server to be capable of
about 50 Mbits/sec. Using NetLogger, we saw some
extraordinarily long delays (up to 5500 ms to send one
TCP packet!). These long delays were almost always
accompanied by one or more TCP retransmit events. This
causes the entire server to stall, because once a block is
written to the TCP socket, TCP will re-send the block until
transmission is successful. The server continues when the
retransmission is successful, letting the next write proceed.

NetLogger analysis led us to closely examine the net-
work topology to try to determine what might cause the
TCP retransmits. While the ATM switch at the Sprint
TIOC was not reporting buffer overflows, it seemed likely
that this was the case. Closer examination found that this
switch had small output buffers (about 13K bytes), but the
network MTU (minimum transmission unit) is 9180 bytes
(as is typical for ATM networks). In this application the
three server streams converged at that ATM switch, so that
three sets of 9 KByte IP packets were converging on a link
with less than half of that amount of buffering available,
resulting in most of the packets (roughly 65%) being
destroyed by cell loss due to buffer overflows at the switch
output port.

Other NetLogger Analysis
NetLogger has also used to successfully analyze sev-

eral other high performance distributed applications,
including a high-energy nuclear physics (HENP) data
analysis system called Star Analysis Framework (STAF)
[15], designed to process one terabyte of data per day [8].
Using NetLogger we were able to verify correct parallel
performance for reading and writing data, and were able to
do accurate throughput measurements.

Adding NetLogger to an Application
To add NetLogger event logs to an existing applica-

tion, it is best to have access to the application source
code. However, it is possible to do some monitoring with-
out the source code by writing NetLogger wrappers for
various system components. We recommend generating an
event log entry for all of the following: before and after
disk or network I/O, and before and after any significant
CPU computation. Generating a log entry is easy using the
NetLogger library. Only three basic calls are required:
NetLoggerOpen(), NetLoggerWrite(), and NetLogger-
Close() [11].

For example, a call ofNetLoggerWrite might be:
NetLoggerWrite (lp, "EVENT_NAME",
"F1=%d F2=%d F3=%; F4=%.2f",
data1, data2, string, fdata);

The first argument is a handle returned byNetLog-
gerOpen; the second is the NetLogger event keyword; the

third argument is the format for the user-defined logging
data fields, and the remaining arguments are a list of data
to fill in the format if argument three.

4.0 NetLogger Overhead
When used carefully, NetLogger adds very little over-

head to existing programs. The NetLogger client library
call to generate a NetLogger event log takes between 0.2
and 0.5 milliseconds on must current systems, so one
should only try to use NetLogger monitoring on events
that take at least a few milliseconds. Also, one must be
careful not to affect the normal operation of the system
being monitored.

For example, to avoid NFS overhead, NetLogger data
should be written to local disks only. Also, the logs files
themselves should be monitored to ensure they do not con-
sume all available disk space. Also, don’t send log mes-
sages over a 10 Mbits/sec ethernet network, as NetLogger
messages themselves can generate a few megabits per sec-
onds of network traffic.

We have observed that it is also important for it to be
easy to turn logging on and off. Otherwise one will need a
lot a disk space! For example, a five minute run of Ter-
raVision connected to a two server DPSS generates about
10 MBytes of log files.

5.0 Related Work
There are several research projects addressing net-

work performance analysis. For example, see the list of
projects and tools on the Cooperative Association for
Internet Data Analysis (CAIDA) Web site [3]. However,
we believe that the NetLogger approach is unique in com-
bining application, system, and network -level monitoring
together.

There are quite a few packages such as Pablo [13],
Paradyn [14], Upshot [18], and others [1] which are
designed to do performance analysis of distributed pro-
cessing. However these systems are aimed at determining
the efficiency of PVM / MPI -style distributed-memory
parallel processing, and in general do a coarse-grained
analysis of the system, with a focus on processor utiliza-
tion. NetLogger does a fine-grained analysis of the system
and its components, and focuses on precise detailed analy-
sis of data movement and messaging. Current NetLogger
visualization tools would not work as well on data from a
large number of nodes in a PVM/MPI-style system, but
could be useful for a detailed analysis of a small number
of nodes.

6.0 Future Work
Our goal is to use NetLogger to automatically detect

performance problems and, when possible, to use the
information from real-time analysis of NetLogger data to

8

compensate for or correct the problem. It might even be
possible to predict potential problems and respond before
they arise.

We expect our agent architecture to be extremely use-
ful for meeting this goal. For example, agents can not only
provide standardized access to comprehensive monitoring,
but also perform tasks such as characterizing event/lifeline
patterns based on types of system (mis)behavior, as well as
correlating analysis of collections of events in order to
detect other types of patterns, thereby providing the basis
for adaptive behavior for both the systems and the agents.

The monitoring mechanisms should themselves be
adaptive. While detailed analysis of complex problems
requires comprehensive data, it is not possible to routinely
collect and cache all the data that might be needed.
Instead, the monitors must adapt their behavior to the
operating state of the system, detecting and/or responding
to problems and preserving and making available data at
the appropriate scope and granularity.

7.0 Conclusions
In order to achieve high end-to-end performance in

widely distributed applications, a great deal of analysis
and tuning is needed. The top-to-bottom, end-to-end
approach of NetLogger is proving to be a very useful
mechanism for analyzing the performance of distributed
applications in high-speed wide-area networks; NetLog-
ger’s graphic representation of system performance is
especially useful and informative.

We envision that this type of monitoring will be a crit-
ical element in building reliable high-performance distrib-
uted systems. Experience with event-oriented monitoring
leads us to believe that this is a very promising approach,
especially when the focus is on the applications and mid-
dleware.

Acknowledgments
We gratefully acknowledge the contributions made by

many MAGIC project colleagues, and by STAF developer
Craig Tull. The work described in this paper is supported
by DARPA, Computer Systems Technology Office and by
the Director, Office of Energy Research, Office of Basic
Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098. This is report no.
LBNL-41786.

References
[1] S. Browne, J. Dongarra, K. London, “Review of

Performance analysis tools for MPI Parallel Programs”.
http://www.cs.utk.edu/~browne/perftools-review/.

[2] BLT; See: http://www.tcltk.com/blt/.

[3] CAIDA: http://www.caida.org/Tools/taxonomy.html.

[4] T. Finin et. al., DRAFT Specification of the KQML Agent
Communication Language, unpublished draft, 1993.
http://www.cs.umbc.edu/kqml/.

[5] B. Fuller and I. Richer “The MAGIC Project: From
Vision to Reality,” IEEE Network, May, 1996, Vol. 10,
no. 3.

[6] M. Genersereth and S. Ketchpel, Software Agents,
Communication of the ACM, July, 1994.

[7] JATLite: http://java.stanford.edu/java_agent/html.

[8] W.E. Johnston, W. Greiman, G. Hoo, J. Lee, B. Tierney,
C. Tull, D. Olson, “High-Speed Distributed Data
Handling for On-Line Instrumentation Systems.”
Proceedings of IEEE/ACM Supercomputing 97.
http://www-itg.lbl.gov/DPSS/papers.html.

[9] S. Lau and Y. Leclerc, “TerraVision: a Terrain
Visualization System,”, Technical Note 540, SRI
International, Menlo Park, CA, Mar. 1994.
http://www.ai.sri.com/~magic/terravision.html.

[10] D. Mills, “Simple Network Time Protocol (SNTP)”, RFC
1769, University of Delaware, March 1995.
http://www.eecis.udel.edu/~ntp/.

[11] NetLogger API:
http://www-didc.lbl.gov/NetLogger/api.html.

[12] J. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley,
1994. See: http://www.tcltk.com.

[13] Pablo Scalable Performance Tools,
http://vibes.cs.uiuc.edu/.

[14] Paradyn Parallel Performance Tools,
http://www.cs.wisc.edu/~paradyn/.

[15] STAF: http://www.rhic.bnl.gov/STAR/html/ssd_l/
staf_l/STAF-current/.

[16] B. Tierney, W. Johnston, H. Herzog, G. Hoo, G Jin, and J.
Lee, “System Issues in Implementing High Speed
Distributed Parallel Storage Systems”, Proceedings of the
USENIX Symposium on High Speed Networking, Aug.
1994, LBL-35775.
http://www-itg.lbl.gov/DPSS/papers.html.

[17] B. Tierney, W. Johnston, G. Hoo, J. Lee, “Performance
Analysis in High-Speed Wide-Area ATM Networks:
Top-to-Bottom End-to-End Monitoring”, IEEE Network,
May, 1996, Vol. 10, no. 3. LBL Report 38246, 1996.
http://www-itg.lbl.gov/DPSS/papers.html

[18] The Upshot Program Visualization System:
http://www-c.mcs.anl.gov/home/lusk/upshot/.

