
I '

Liiith: A Software Framework for the Rapid Development of Scalable Tools for
Distributed Computing

A.C. Gentile, D.A. Evensky, and R.C. Armstrong
< gentile, evensky, rob>@ca. sandia.gov

Livermore CA

Abstract

The adbmitf98 bas
authmsd by a eonbedor of the

ACcodhglp the United Siat&s Gw.
mwmmf retains a non-esduaive,
r o d W r e e license to p u b u 01 re-

St&E Qoverxrmemt under

Sandia National Laboratories

Lilith is a general purpose tool that provides a highly scalable, easy distribution of user
code across a heterogeneous computing platform. By handling the details of code
distribution and communication, such a framework allows for the rapid development of
tools for the use and manasement of large distributed systems. This speed-up in
development not only enables the easy creation of tools as needed but also facilitates the
ultimate developnient of more refined, hard-coded tools as well. Lilith is written in Java,
providing platform independence and hrther facilitating rapid tool development through
Object reuse and ease of development. We present the user-involved objects in the Lilith
Distributed Object System and the Lilith User M I . We present an example of tool
development, illustrating the user calls, and present results demonstrating Lilith' s
scalablility .

1. rntroduction

code across a heterogeneous computing platform. This capability is of value in the
development of tools to be employed in the use and administration of very large
(thousands of nodes) clusters Because users are only minimally responsible for writing
their user tool code, with Lilith handling the details of propagation and distribution and
ensuring scalablility, Lilith is easy to use and Lilith-based tools can be rapidly developed.

Lilith can be used for the creation of tools employed for both the control of user
processes on the distributed system as well as for general administrative tasks on the
system itself (e.g., creation of user accounts, monitoring of system status). Although there
exist tools to accomplish some of these tasks, they are not scalable or rely on relatively
weak security. Furthermore, the rapid development cycle promotes the building of throw-
away, limited-use tools that may not be cost effective to write using more traditional Unix
tools (e.g., shell commands, rsh). Finally, Lilith-based tools can be written as prototypes in
the ultimate development of more refined, hard-coded tools as well.

Lilith is written in Java. providing platform independence and allowing easy creation of
graphical user interfaces with browser front ends. Java is object-oriented, fbrther
facilitating rapid Lilith-based tool development through object reuse.

2. In Section 3 we describe those objects in the Lilith Distributed Object System with
which the user interads. In Section 4 we discuss an example of tool development,
illustrating calls in the user code. In Section 5 we discuss the start-up of the Lilith

Lilith is a general purpose tool that provides a highly scalable, easy distribution of user

In what follows we describe Lilith's uses, and compare it with other tools in Section

environment and the distribution of the user code. In Section 6 we present results
demonstrating Lilith's scalbility. We discuss results in Section 7. 6 " 0 3 n 2 4 1.qg

http://sandia.gov

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof. nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recorn-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

2. Uses for Lilith and Comparisons with Other Tools
Lilith’s’ principle task is to span a tree of machines executing user-defined code.

Beginning from a single object, Lilith recursively links host objects, LilithHosts, on
adjacent machines until the entire tree is occupied. The LilithHosts propagate down the
tree code objects, called Lilim2, performing user-designated hnctions on every machine
(Figure 1).

Lilith is targeted to be compatible with the Lesion’ object system. Legion has been chosen
over more established object systems, such as COMA‘ , primarily because of the need for
designed-in security, supporting fine security gradations and degrees of control. (Security
in Lilith is in the prototype phase and is discussed in more detail in Ref 5 .) Lilith builds
upon the Legion fiamework by adopting a tree structure for scalability and using Java to
gain first class objects.

This scalable distribution of code makes Lilith ideal for the basis for the development
of tools for controlling user processes and general system administrative tasks to be used
in the management of distributed systems. For example, such tools could allow a user to
first query the system to find the status of the nodes in a system, use that information to
determine which subset of nodes on which to run his code, and finally distribute his code
to those nodes. Although there exist tools to accomplish some of these tasks, they are not
scalable or rely on relatively weak security. The scalable nature of Lilith-based tools in
these tasks vastly improves the time such queries and code distribution would take: a one
second operation performed on a thousand nodes would take 16 minutes under a serial
distribution, as opposed to 10 seconds via a binary tree distribution.

While Lilith shares some hnctionality with other tools, there are some important
differences that distinguish Lilith. NASA’s LAMS package‘ has been used to control and
modi5 system files in a secure fashion on hundreds of hosts. The software works by
having a daemon running on each host, and sending shell scripts to run on those hosts.
The channel between the send and receiver is encrypted and the script can be signed. The
files on the hosts are owned by root and kept in a directory with only root access. The
scripts are created and built on a master station and sent to each of the slave machines.
This mechanism, while currently used just for scripts it could be generalized to other
programs. While the security aspects are similar, the scaling is O F) rather than O(1ogN)
with Lilith. Also, Lilith is object-oriented and written in a more portable language (Java
vs. C j allowing for more rapid development and deployment.

Platform Computing’s LSF’ is primarily a batch system with the ability to run
interactive jobs within the system. While LSF does have some security, it is weaker than
encrypted and signed messases. It also tends to run as in master/slave mode and suffers
from the same scaling problems as LAMS The latest version does seem to have a notion
of a hierarchy, but it isn’t clear from the documentation how this will affect scaling or
general execution behavior. Of course, LSF is a batch system rather than a distributed
object tool, so the targets are quite different.

distributed systems. These include parallel versions of the traditional U N I X tools and

To provide modular security and support high performance asynchronous operations

Finally there is the Ptools project8. This project has produced many tools of use for

corefile browsers among others. Again, while these may scale better than 0 0 , they are
not general-purpose and lack a flexible security model.

3. User-interactive Objects in the Lilith Distributed Object System

to invent a new distributed object system. Currently, we implement a simple distributed
object system, based on the Legion object system, written in Java. In this way, we have
access to the data at every step and can provide hooks to implement security schemesg.
Furthermore, by writing the object system in Java, we get all the advantages of an object-
oriented language: encapsulation and modularity; the ability to test components separately;
extensibility; and platform independence.

The Lilith Distributed Object System was presented in detail in Ref. 5. Here, then, we
present only those objects with which the user has to be directly concerned. These are the
object encompassing the user’s code, the host objects which maintain the tree and
(indirectly) provide the basic functionality of Lilith, the object by which the user code
communicates with those host objects, and finally the messaging object used in
corrnunications.

Lilim are the Lilith objects that carry user code within them. Lilim, as well as the core
Lilith objects, export well known interfaces which allow the user code to interact with the
Lilith environment. The Lilim run as threads or autonomous processes under the
LilithHosts. Lilith-based tools are created by construction of suitable Lilim. The Lilim
need only be written with the goal of the tool itself in mind; details of code distribution
and communication between nodes in the tree are handled by objects in the Lilith
environment.

The LilithHost object is responsible for protecting the computing resource on which it
is runnins from other Lilith objects and for instantiating Lilith objects on that host. For
purposes here, we define a host to be a system running under a single OS. If Lilith is being
used simply as a platform for remote objects there may be more than one LilithHost per
host. LilithHosts maintain the tree and, via lower level objects, communicate with one
another. Host to host communications are done via an object-oriented Remote Procedure
Call (OOWC). Details of building the tree and instantiating the Lilim are given in Section
5. Details of the OOWC are not germane to this discussion and are discussed in Ref 5.

Lilim interact with the Host Object and each other through the Lilim-Implementation-
CommunicationsObject, aka LICO Thus each node of the tree consists of a LilithHost
with a Lilim running on it, and a LTCO used for communications between the two. The
LICO provide a well defined set of methods by which Lilim can send data up and down to
other Lilim in the tree. LICO pass arguments to the Lilim and gather up their return
messages for passage back up the tree. These methods are discussed in detail in the next
section. By compartmentalizing the interactions of Lilim with Lilith in this way, not only is
the entry-level knowledge needed to use Lilith small but also access to Lilith Objects by a
potentially malicious user is contained. For instance, rogue Lilim cannot by direct call get
illegal control of the lower level objects in the system which provide socket access. This
restriction is enforced though Java Package assignments and checks on the sequence of
classes in the execution stack whenever the SecurityManager is invoked.

The purpose of Lilith is to span user code to large numbers of machines scalably, not

.

Communications are handled through the sending of Message Objects, MOs. The MO
is a seneral-purpose data rack that can hold a list of data objects. It is capable of
marshaling this data into a byte stream and unmarshaling it from a byte stream and
recreating the data in a new MO. Each data item consists of a length, type, and the actual
data. Data is placed into and removed from the MO through a well-defined set of calls
pertaining to the primitive data types such as push/pull/peekInt()”, push/pull/peekString(),
as well as push/pull/peekPl;iO(). Push places an object into the MO, pull removes it from
the MO, and peek returns the value without removing it fi-om the MO. There is aIso hash
table interface which allows the users to assign a label to each item. This interface can be
used to provide random access to internal MO data structures. The methods are
hashedPut(), hashedGet(), and hashedRemove() and they support the Java wrapped types
corresponding the primitive types supported by MO. The total set of user-related calls for
assemblingldisassembling the MO is defined in Table 1.

MOs also cany with them an id field (MOUUID) used for identification of the MO
and for matching sends and returns. The MOUUID is in the form of a user-defined String.
MUUulDs are setheturned using set/getMOUUID (see Table 1). Use of the MOUUIDs is
described in more detail in the next section.

In the next two sections we discuss starting the Lilith environment, instantiating the
Lilim, and the methods LICO provides by which the Lilim interacts with Lilith. We begin
in Section A with LICO since users will more often be sending Lilim down existing trees in
independently started Lilith environments. Section 5 then covers Lilith start-up and Lilim
distribution.

4. LICO API and Example Lilim
The LICO provides a tiumber of methods for distributing data down the tree and for

processing results up the tree In this section, we discuss these methods, and present an
example of their use.

getAsg(), get(), and scatterToChildren().These methods are illustrated in Figure 2. The
call getArg() is used by a Lilim to get data, in the form of an MO, initially sent down with
the Lilim bytecode. (Details ofLilim distribution are discussed in the next section.) Data
sent in this manner can be, for example, general command line options to the user code.
Sending this information down with the Lilim reduces the number of messages required. In
order to support multiple concurrent Lilim, the data for each Lilim are distinguished by a
unique String tag, called a MOUUD Thus getArg() takes as an argument a MOUUID
and returns from the LICO the corresponding MO. Tagging of the MO occurs either via
the call MO.setMOLKItD() where the tag is a user-defined String or by specifying the
MOUUID in the MO’s constructor (See Table 1).

Tagging of MOs via the MOWID is also used for matching up messages sent from
parent Lilim to child Lilim and vice versa. (Although the terms “parent” and “child” are
more accurately used in terms of the LilithKosts which maintain the tree, the extension of
this terminology to the Lilim residing on those hosts is straightforward and unambiguous.)

The methods get() and scatterToChildren() are used in tandem to get messages from
the parent Lilim and send messages down to the child Lilim. A Lilim sends a message to

The LICO API is given in Table 2. Methods used in distributing data down the tree are

its children via LICO.scatterToChildren() using a tagged MO as its argument. This
method puts each MO into the LICO corresponding to each child. A Lilim gets an MO
from its LICO via LICO.get() using the appropriate MOUUID tag as the argument. (Thus
get() is hnctionally similar to getArg() except that getArg() refers only to those messages
send down with the Lilim, while get() refers to messages that sent during the running of
the Lilim.)Messages can then be sent reezirsivdy down the tree by each Lilim first calling
LICO.get(myTAG) and then calling scatterToChildren(myM0) where myM0 has been
tagged with the same tag, myTAG. (This will be illustrated in the example later in this
section.) Communications both down and up the tree are thus only with the levels in the
tree directly above or below the current level.

Processing results up the tree also are performed recursively. In this case the methods
put() and gatherFromChildren() are used in tandem. These methods are illustrated in
Figure 3. A Lilim calls gatherFromChildren0 with a tagged MO as its argument to receive
an MO array containing all MO results from its children. This method gathers tagged MOs
from each of the children’s LICOs. The call gatherFromChildren() blocks execution in the
Lilim until returns from all the children have come into that Lilim’s LICO. The same Lilim
then makes its own results available to its own parent by calling LICO.put() with an
argument of its own identically tagged MO Note that a child Lilim calls LICO.put() in
anticipation of the parent calling gatherFrornChildren() to collect that MO. Thus the
processes of sending messages down the tree and of gathering returns back up the tree are
both initiated by the parent.

The recursive up and down calls and tagging are illustrated in an example using a
distributed sort. This usage capitalizes on the fact that it is faster to sort a set of presorted
sets than to sort an entire unsorted list from scratch. In this case the downward processing
will consist of each Lilim getting a list of numbers to sort, subdividing that list into pieces
for itself and its children to sort, and then sending those pieces down to its children. After
a Lilim has sorted its own piece, it then processes the results back up the tree by.
gathering the children’s sorted list, combining their results with its own via a merge sort,
and then passing the combined sorted list up to its parent The relevant pseudo-code is as
follows-

public Class Lsorter implements Lilim{
private LIcO rnyLICo; // field for LICO with which this Lilim

communicates
...

public void r u n () {
MO tmpMO = myLICO-get (TAG1) ; /* gets an MO from the LICO

containing the list of numbers to be sorted */

._. /* Code here which:
1) Unpacks MO to get array of numbers to sort via calls to

tmpMO.pullInt () ;
2) Divides array into subarrays for self and children.

3) Packs arrays for children into MO [I kids piecesMO via

4) Set hIOUUI6 on each MO to TAGl via
calls to kids piecesMO[i] .pushInt(int)

kids - piecesMO [i] . setMOUUID (TAGl)
*I

myLICG- scatterT0Children (k i d s piecesMO) ; /* Scatters MO’s
with arrays for children to sort */

sort (myArray) ; /* sort own piece using own sort method */
kids - piecesMO = rnyLICG.gatherFromChildren(TAG2);/*

gather MO’s containing sorted arrays fi-om children */

... /* Code goes here which unpacks sorted arrays from kids - piecesMO
and places them intokidsArrays*/

finalArray = mergesort (myarray, kidsArrays) ; /* merge sort
all sorted arrays *I

... I* Code here which:
1) Packs final array into tmpM0
2) Sets h/lOUUTD tag on tmpMO to TAG2

myLICG. put (tmpMO) ; I* Put MO containing final sorted array into LICO
*/

for parent to gather */

In the above example, the packing and unpacking of messages is not explictly shown -
these are straightforward calls to push/pullInt() and setMOUUID(). The key thing to note
is the usage of the tags in the operation of the recursive calls. TAGl is used to obtain the
correct MO fiom the parent via get(), and is therefore also used to make the MO sent
from the parent in scatterToChildren0; thus TAGl is used for the signaling in sending the
messages down the tree. Similarly, TAG2 is used in put() and gatherFromChildren() on the
sending returns back up the tree.

Many tools can be written usins this basic structure. In the most general case, the code
section handling the sort can be replaced with code to execute a shell script that performs
some action on each node. The sequence of calls to scatter information down the tree and
gather it back up, as well as the tagging, can be reused unchanged. Only the packing and
unpacking of the messages will have to be tailored to reflect the specific types involved.

5. Lilith Client Operation

Hosts, and the distribution of Lilim down the tree. The tree, once built, can support
In this section we discuss the start-up of the LilithHosts, the building of the tree of

multiple sequential or concurrent Lilim; in many cases, then, users will not be responsible
for starting Hosts or building trees, but will merely be taking advantage of preexisting
trees. (In such cases the user need only be concerned with the information pertaining to
the call sendLilim() discussed below).

In order to start the Lilith environment, the LilithHosts must be started upon all
participating systems. This can be done by several mechanisms. The most simple of these
is that all LilithHosts are started externally to Lilith and the root LilithHost takes a list of
these hosts and their ports and protocols and connects them into a tree. The syntax for
each host in the list is the LilithObjectAddress (LOA), a host:port:protocol tuple. (Lilith
supports both TCP and UDP.) There is also a start-up mechanism in which initially only
the root LilithHost is started and the other Hosts participating in the tree are started as the
tree is built. In this case, the running LilithHost takes the list, starts its immediate children,
and passes them the list of their descendants. This process is then repeated, building the
entire tree in a scalable fashion.

Lilith provides utility classes that can parse a specified file on the client. The format of
the file is a <label> and <LU-4>, one tuple per line, and lines that indicate the children for
the specified LilithHost. A sample file might look like:

cpl bach.sandia.gov:2300:TCP
cp2 mozart.sandia.gov:23OO:TCP
cp3 chopin.sandia.gov:23OO:TCP
ccl cooltime.ca.sandia.gov:3456:TCP
tree: ccl children cpl cp2
tree: cp2 children cp3

The client can use these classes to construct the list to send to the root host. Initially the
client must create a stub object to access the root LilithHost; this is done by:

LilithHost root =
new LilithHostStub ("HOSTl:2345:UDP") ;

The tree is most simply built by creatins the list of hosts (usually using the utility
classes) and passing that to the root's buildtree method, (the detailed mechanism of
building the tree is described in Ref 5)

/ * create String called TreeList containing
list of addresses * /

root .buildtree (TreeList) ;

The user then creates and sends the Lilim down the tree. (This is also the starting point
for cases where the user is taking advantage of a preexisting tree.) The Lilim is a Java
class file with a class that implements a Lilim interface in the package lilim. These Lilim
objects are loaded using a Lilim specific ClassLoader object. The client reads this class
into a byte array when it is executed, and sends it as an argument of
LilithHost.sendLilim(). The client can also send initial data that the Lilim can read with
getA-rg() by speci9ing a tagsed MO as the second argument to the call:

byte [I mylilirn = new b y t e [LILIM LENGTH] ;
/ / read class file, named "dostuff.class" into mylilim

MO initial data = new MO ("initdata4567") ;
initial data.pushInt (30) ;
root.sendLilimi"dostuff",mylilim, initial - data) ;

The user then starts the Lilim on the hosts by:
root. runLilim ("dostuf f") ;

The client can send down additional data to the Lilim and get results fiom the Lilim
using LilithHost. scatterToChild(MO), and MO LilithJ3ost. gatherFromChild(String). On
the server side, these methods simply call LICO.put(M0) and LICO.get(String)
respectively on the LICO corresponding to that host. That these methods are reminiscent
of the communcations between parent and child Lilim discussed in the previous section is
not suprising; in fact, LICO. scatterToChildren() and LICO .gatherFromChildren() call
these Host methods as part of their functionality. From the child Lilim's perspecitive, calls
initiated by the client or by the parent Lilim appear the same - the Lilim has only to
interact with the LICO via LICO.get(Stnng) and LICO.put(M0) to get the scattered
information or to return idonnation irrespective of the initiator of the caller. Tagging the
MU'S for LilithHost's scatter and gather calls thus proceeds identically to the tagging for
the LICO's scatter and gather calls. For example:

- *

MO additional data = new MO("more data 042376") ;
additional data .hashedput ("first int",

root.scatterToChild(additiona1 - data);
new Integer (1021) 1 ;

This will be picked up by the child calling:
MO data2 = myLICO.get ("more data 042376") ;

6. Scaling Behavior
To demonstrate the scaling behavior of Lilith we consider the scaling behavior of Lilith

in two cases: constant work per processor (increasing total work) and constant total work.
In both these cases, we first establish the tree. Then, the wall clock time is measured in the
client, and the Lilim is sent to the server tree. M e r the server returns to the client, the
wall clock time is again measured and the results are tabulated for varing number of
servers In each server, the Lilim is first sent to its children, the Lilirn is then instantiated
and executed locally, and finally the results from the children are collected. Timings were
generated on a 32 processor SGI Origin 2000 and only one server was run per processor.

total work. The outer plot is 100 random prime numbers generated per processor; inset is
500. This calculation was chosen since each node could be assigned the same seed,
guaranteeing the same amount of work per node. We observe the expected overall
logarithmic scaling. The StGp-like behavior occurs due to increasing the tree depth through
addition of nodes such that additional time is required for communications. The steps are
still seen for the case of greater work/processor, although curve flattens out. As the ratio
of lvork to communications time increases, the work overwhelms the communication time
causing all nodes to essentially run in parallel. It is no suprise that the greatest benefit of

Figure 4 shows the scaling behavior for constant work per processor, i.e., increasing

the logarithmic scaling thus comes in cases where the communications/work ratio is kept
Small.

Figure 5 shows the scalins behavior for constant total work, i.e., decreasing work per
processor. This plot shows the timings for calculation of a fixed total number of random
numbers. In this case, the total number of primes generated per Host decreases as the
number of participating Hosts increases. As expected, the overall time for the calculation
decreases and logarithmic scaling is again observed.

7. Results and Conclusions

4 and 5. Timings obtained by use of Lilith to send the Lilim down the tree exhibit
logarithmic behavior. This scalability enhances the ability of users and administrators to
fbnction when using a very large (thousands of nodes) cluster. Ideally, a one-second
operation to be performed on 1000 processors will take 16 minutes to execute in the
traditional serial fashion, contrasting with the approximately 10 seconds for the same
operation under Lilith.

heterogeneous computing platform. By handling the details of code distribution and
communication, such a framework allows for the rapid development of tools for the use
and manasement of distributed systems.

We have presented an example tool, illustrating Lilith-based tool development and use
of the Lilith User API. We have shown that Lilith has excellent scaling behavior. Lilith fills
a gap in the repertoire of tools for current, and planned computing environments,
particularly environments consistins of high-performance commodity computers
connected by low-latency, sigabit networks.

Results for constant work per processor and constant total work are shown in Figures

Lilith’s purpose is to provide a highly scalable, easy distribution of user code across a

Work supported by the U. S. Department of Energy under contract DE-AC04-
94AI.35000.

Figures and Tables

Figure 1 : User code, contained in Lilim, propagate down the tree of LilithHosts.

MO METHOD ACTION
void pushXXX”{yyy) adds item yyy of type XXX to the MO
x-xx pullXxr{) removes an item of type from the

MO
returns the value of the item of type XXX

at position m (integer) from the MO
withozJt removins it from the MO _ _ ~

adds object yyy to be specified in the hash
‘

Object hashedPut’(String, yyy)
table interface by the String value
returning the previous object.

by the String value when placed in using
hashedput(). This method does not

w. Object hashedGeth(Strinpj returns a reference of the object specified

V

remove the object from the MO.
Object hashedRemoveb(S tring) returns the value of the object specified by

the String value when placed in using
the hash table interface, hashedput().
This method removes the object from
the MO.

this MO.

enumerate over all the keys in the hash
table.

boolean hashedlsEmpty()

Enumeration hashedKeys0

returns true if there are no hashed items in

returns an object that allows the user to

void setMO-WID(Stnng)
Strins setMOUUID()

sets the MOUUID to the String value
returns the MOUUID value of this MO

Table 1: MO User -API. "Valid types for XXX are all the primitive types, as well as String,
ByteArray (for byte[]), and MO. bValid types for the hash table interface are all the
wrapped types as well as String, ByteArray, and MO. These are returned as class Object
references and must be cast to the desired class.

LICO METHOD ACTION
MO get(String)

void put(M0)
void scatterToChildren@~Of])
MO[] gatherFromChildren((String)

&IO getArg(String)

returns an MO from LICO with MOUUTD

puts MO into LICO
scatters M0[] to children
returns MO's from children corresponding

to MOUUID equal to the String value
returns initial MO sent down with Lilim

with MOUUID equal to the String value

equal to the String value

- - -,.

Table 2: LICO User API. Methods in the LICO called by the Lilim.

-3 scatterTo ...()

f

Figure 2: Methods involved in sending data down the tree.

Figure 3: Methods involved in returning data back up the tree.

28500

28000

27500 -
E
a, 27000
E
F

26500

26000

25500

25000

i

i '-t 1 3 m R
- ..̂

5 10 15 23 25 30
I I I I I I

0 ' 5 10 15 20 25 30

Number of processors

Figure 4: Scaling behavior for constant work per processor, i.e. increasing total work.
Lager plot is 100 prime numbers generated per processor; inset is 500. Scaling is overall
logarithmic. Steps occur due to increasing tree depth such that additional time is required
for communications. Steps are still seen for increasing worWcommunications time, though
curve flattens out.

Observed -9-

Theoretical -

1 10
Number of Processors

Figure 5 : Scaling behaiiior for constant total work (a fixed total number of random
numbers calculated) , i.e., decreasing work per processor. Overall time for the calculation
decreases with logarithmic scaling.

1

5

6

Y

9

Lilith is the mythological "Mother of D(a)emons".
Lilini (the children of Lilith) will be used for both the plural and singular name of the first cIass
objects that are sent down tirc tree.
A S . Grinishaw and W.A. Wdf. "Legion -- A View From 50,000 Feet", Proceedings of the Fifth IEEE
Inlernational Symposium on High Performance Distributed Computing. IEEE Computer Society Press,
Los Alamitos, California August 1996. and references therein.
Coininon Object Request Broker Architecture. by the Object Management Group (OMG). see
~urp: / /v i~~~~.om~.org .
D. A. Evensky, A. C . Gentile, L. J. Camp. and R. A. Armstrong, "Lilith: Scalable Execution of User
Code for Distributed Compuring". Proceeding of the 6b IEEE International Syinposium on High
Performance Distnbuled Cornpnting, Portland, OR August 1997.
Login Account Management System (LAMS), Final Report on Subcontract CSCIATD-WR-MV-
NAS2-9005, Matt Bishop. N3rional Aeronautics and Space Administration, Ames Research Center.
Moffett Field. CA 94035-1000.
Lozid Sharing Faciliry (LSF), see lmp://www.platfonn.com.
Thc Parallel Tools Consortium (Ptools). see http://~~~~~.ptooIs.org.
This i s not possible in the current impleinentations of Legion or Java's Remote Method Invocation
(RMI). though t h y may well prove suitable in the future.

http://lmp://www.platfonn.com

l o Method calls will be given as “functionname()” with the arguments only specified when germane to
the discussion.

