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Abstract
An MPI library’s implementation of broadcast

communication can significantly affect the performance of
applications built with that library. In order to choose
between similar implementations or to evaluate available
libraries, accurate measurements of broadcast perfor-
mance are required. As we demonstrate, existing methods
for measuring broadcast performance are either inaccu-
rate or inadequate. Fortunately, we have designed an
accurate method for measuring broadcast performance,
even in a challenging grid environment.

Measuring broadcast performance is not easy.
Simply sending one broadcast after another allows them to
proceed through the network concurrently, thus resulting
in inaccurate per broadcast timings. Existing methods
either fail to eliminate this pipelining effect or eliminate it
by introducing overheads that are as difficult to measure
as the performance of the broadcast itself. This problem
becomes even more challenging in grid environments.
Latencies along different links can vary significantly.
Thus, an algorithm’s performance is difficult to predict
from it’s communication pattern. Even when accurate pre-
diction is possible, the pattern is often unknown. Our
method introduces a measurable overhead to eliminate the
pipelining effect, regardless of variations in link latencies.

1. Introduction

MPI collective communication operations allow
communication involving several tasks to be specified
with a single set of function calls. Benchmarking these
collective communications is important. Accurate
measurements allow implementers to evaluate different

algorithmic choices. Users could use the benchmarks to
choose between different available implementations. Also,
accurate and complete measurements could guide use of a
given implementation to improve application perfor-
mance. These choices will become even more important as
grid-enabled MPI libraries [6, 7] become more common
since bad choices are likely to cost significantly more in
grid environments. In short, the distributed processing
community needs accurate, succinct and complete
measurements of collective communications performance.

Since successive collective communications can often
proceed concurrently, accurately measuring them is
difficult. Some benchmarks use knowledge of the commu-
nication algorithm to predict the timing of events and,
thus, eliminate concurrency between the collective
communications that they measure. However, accurate
event timing predictions are often impossible since
network delays and local processing overheads are
stochastic. Further, reasonable predictions are not possible
if source code of the implementation is unavailable to the
benchmarker.

We focus on measuring the performance of broadcast
communication. First, we discuss the performance
properties of collective communications, based on a model
derived from the LogP communication model [4]. Then,
we demonstrate that several methods previously used to
measure broadcast performance not only fail to measure
several important properties but can inaccurately measure
the properties that they do measure. Finally, we present
our method that can accurately measure broadcast perfor-
mance, even in a grid environment.
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2. Collective Communications Model

A method to benchmark implementations of collective
communications needs to measure several properties.
Almost all collective communication benchmarks attempt
to measure the time required to complete the communi-
cation, from its first send until its last receive. Although
this is an important quantity, these methods overlook
several other important properties, such as local
processing overheads and the potential to overlap compu-
tation with communication. In this section, we use a model
of collective communications based on the LogP model to
characterize the important performance properties of
collective communications.

In the LogP model, four parameters capture point-to-
point communication [4]. The send overhead,os, is the
time during which a processor is sending a message, while
the receive overhead,or, is the portion of the time that a
processor is receiving a message that cannot be overlapped
with the message transmission. The (wire) latency,L , is
the time that a message actually spends in transit from its
source to its destination; the more conventional definition
of message latency is equal toos+ L +or. The final
parameter, the gap,g, measures the ability to overlap
computation and communication while fully utilizing the
communication system and is equal to the minimum
interval between consecutive message sends or receives.

We extend the LogP withper processor parameters to
capture collective communications more accurately. Our
extensions apply to both asymmetrical (collective commu-
nications with a root) and symmetrical collective commu-
nications [11]. The per processor overhead is the time,oi,
spent sending and receiving messages by each processor,i,
that participates in the collective communication. The per
processor overheads can be measured with a method
similar to that used to measure the overhead of point-to-
point communications [5]. The minimum interval of time,

gi, between consecutive occurrences of the same collective
communication at processori is the per processor gap,
which can be measured simply by timing repeated
occurences of the operation at each processor.

Figure 1 shows the time line of a 16 task broadcast for
the binomial tree algorithm used in MPICH [8], a popular
implementation of the MPI standard [12]. In our figures,
we assumeL  and the time spent sending or receiving a
message are constant. Our broadcast benchmark method
does not rely on these assumptions, which do not hold in
general, particularly in grid environments, where latency
along different links can vary highly.

Most collective communication benchmarks try to
measureoperation latency, OL , the total time that it takes
to complete the communication. In Figure 1,OL= tf - t0,
the difference between the time at which the last processor
finishes the operation and the time at which the first
processor begins the operation.OL  is the important
latency for collective communications; a method that
measuresOL  without measuringL  would be sufficient.

Several factors make measuringOL  difficult. The
pipelining effect – the potential for overlapping consec-
utive communications – causes many of the inaccuracies
[3]. In addition, the first processor to begin the operation
or the last processor to finish the operation is difficult to
identify in general, even with algorithmic knowledge. For
example, consider a 15 task broadcast in MPICH. Our
model predicts that the last processor to finish the
operation will be one of tasks 7, 11 and 13. The correct
choice varies with each communication due to stochastic
delays and overheads. To overcome this difficulty, our
method measures the operation latency,OLi, to each desti-
nation, i, of the broadcast. The largest of these measure-
ments can be used as a reasonable estimate ofOL .
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Figure 1: Time Line of a 16 Task MPICH Broadcast



3. Existing Benchmark Methods

In this section, we experimentally evaluate four previ-
ously proposed broadcast benchmark methods, which are
shown in Figure 2. Our experiments use the MPICH
binomial tree implementation and two linear broadcast
implementations with which we replaced it. Our results
from testing these implementations with each of the
proposed benchmark methods demonstrate that all of the
methods are insufficient: three of them are inaccurate and
the other is incomplete.

In a linear broadcast, the root sends to some task and
returns. All other tasks wait to receive from their
preceding task and then return after sending the data on
down the line (except the last to receive the data, which
simply returns). Our linear broadcast algorithms are two
simple variations of this algorithm. In ourlinear imple-
mentation, the preceding task of taski is task (i - 1) mod
group size; in our backward implementation, the
preceding task of taski is task (i + 1) mod group size.
Intuitively, it is clear that these two implementations are
essentially identical. Algorithmically,OL  is a linear
function of communicator size for these implementations,

while it is a logarithmic function of the communicator size
for the binomial tree implementation.

We ran our tests in the batch partition of the combined
technology refresh (CTR) SP2 at Lawrence Livermore
National Laboratory. This machine is composed of 332
Mhz 604e 4-way SMP nodes. At the time of our tests, the
batch partition had 305 nodes and the operating system
was AIX 4.3.2. We compiled the various versions of
MPICH for all tests with the -g option and used the default
optimization level. Our tests were run with either 16 tasks
on 4 or 32 tasks on 8 nodes, with MPI tasks assigned in
blocks to nodes and used IBM’s OS bypass mechanism
(user space) for all MPI communication. Tests withn
tasks, withn less than the total number of tasks in the job,
used the firstn tasks. Our test job was the only job running
on those nodes, although other jobs were concurrently
using the network.

For all of our measurements,M  = 100. Each data point
of our graphs is the mean of several (between 8 and 30)
reported measurements; a test was stopped when the
standard deviation of the measurements was less than 3%
of their mean. We found that tests that did not achieve the
cut-off point corresponded with higher measurements.

Figure 2: Broadcast Benchmark Methods
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Since we ran our tests in a production environment, it was
not feasible to obtain exclusive access to the machine and
the inability to achieve the cut-off point indicated a heavily
loaded network (one particular code makes extensive use
of MPI_Alltoallv and, thus causes considerable network
congestion). We repeated all tests until we obtained one
that achieved the cut-off point. Thus, our measurements
correspond to those that would be obtained with a lightly
loaded network.

The send latency benchmark, which measures the time
that the root takes to send several broadcasts [1, 2, also
MPICH performance test suite], actually measuresg0, the
minimum interval between broadcasts at the root. Figure 3
shows the results obtained for our three implementations
with a 256 byte message. Larger (64KB) messages yield
similar results. As our experimental results demonstrate,
g0 is essentially constant for a linear broadcast. Thus, this
benchmark can erroneously lead one to conclude that the
linear broadcasts scale well. We note that the backward
implementation outperforms the linear implemnetation
slightly since off node bandwidth is slightly higher than on
node bandwidth on the CTR machine.

Several researchers use thebroadcast rounds
benchmark method, which measures the time to complete
some large number of broadcast rounds [1, 3, 9]. A
broadcast round consists of one broadcast by each possible
root. Unfortunately, the amount of pipelining is highly

dependent on the order used to cycle over the tasks, as
Figure 4 shows. Broadcast rounds accurately measureOL
if the last node to receive the current broadcast is the root
of the next broadcast, as is the case for a linear broadcast if
the roots are cycled in the opposite order of the broadcast.
However, the pipelining effect is significant if the roots are
cycled in the same order. In general, the broadcast rounds
benchmark does not provide an accurate measurement
with any root order since the last task to receive the
broadcast is stochastically determined for most
algorithms. Figure 6 shows our experimental results for a
256 byte broadcast, using the root order {0, 1,..., size-1}.
Our results, show that the linear implementations can
appear significantly different, under this method; worse,
this method can make the linear and binomial tree imple-
mentations look comparable. Results for a 64k broadcast
are similar. Algorithmic analysis indicates that the
pipelining effect is also significant with the binomial tree
implementation. Our results demonstrate that the
broadcast rounds method is inaccurate, although it does
provide a reliable lower bound ofOL .

Another drawback of this method is that it does not
scale well. Even if the number of rounds (M ) is reduced,
the broadcast rounds method has a tendency to flood the
network. As a result, it is often difficult to obtain data
points with the required standard deviation < 3% of mean.

Figure 3: Send Latency Benchmark
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The broadcast barrier method measures the time
required for a large number of broadcast-barrier pairs [14].
This method eliminates the pipelining effect since the
barriers ensure that two broadcasts are never in progress
concurrently. Thus, it provides a reliable upper bound on
OL . Unfortunately, measuring barrier latency, likeOL  for
a broadcast, is difficult. In addition, even if an accurate
measurement of the barrier cost were available, we could
not simply subtract it from the broadcast measure since a
broadcast can overlap with the barrier before or after it.

We tested the broadcast barrier method using the linear
barrier shown in Figure 5. In this linear barrier, communi-
cation starts with task 0 and travels twice around the task
ring. The barrier finishes the second time that the commu-
nication reaches taskn - 2, when all tasks are guaranteed
that all other tasks have reached the barrier. Pipelining can
vary significantly with this barrier. The linear broadcast

overlaps with the second half of the preceding barrier and
the first half of the following one. Alternatively, the
backward implementation has almost no overlap since its
messages travel in the opposite direction.

Figure 7 shows results for 256 byte and 64K broadcasts
for each of the implementations using this barrier; we also
include results for MPICH’s standard binomial tree
algorithm and hypercube barrier implementation. When
broadcast messages are small, the pipelining effects and

Figure 4: Order Dependence of Pipelining Effect
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the cost of the barrier dominate this method’s measure-
ments, which are similar to those of the broadcast rounds
method. Larger broadcast messages reduce the importance
of the obscuring effects; however, they again dominate if

we use 64K messages in the barrier. Our results demon-
strate that this method is unsatisfactory: it is highly depen-
dent on the library’s barrier implementation;
measurements can be dominated by the barriers; and we

256 byte broadcast

64k broadcast

Figure 7: Broadcast Barrier Benchmark
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cannot simply subtract some measure of the barrier perfor-
mance since the barriers can overlap with the broadcasts.

In thebroadcast acknowledge method, each task sends
an explicit acknowledgments to the root [13]. This method
also provides a reliable upper bound onOL  since the root
does not begin the next broadcast until it has received an
acknowledgment from every other task. Unlike the
broadcast barrier method, the broadcast acknowledge
method always evaluates different broadcast implementa-
tions with the same (pseudo) barrier. This method can
work well for small numbers of tasks, as the results for a
256 byte broadcast shown in Figure 8 demonstrate.
However, many of the acknowledgments overlap with the
broadcast. Since the amount of overlap varies with the
broadcast implementation, it is not possible to correct for
the overhead introduced by the acknowledgments
accurately. Our results in the next section show that the
overhead dominates the measurement for large number of
tasks since it increases linearly with communicator size.

4. An Accurate Method

Our method accurately measures broadcast perfor-
mance because we do not attempt to measureOL . Instead,
we observe that a method can be designed that accurately
measuresOLi, the operation latency for an individual task
i. We can use the maximum of these measurements as a
reasonable estimate ofOL  in order to provide a succinct
measure of performance as the number of tasks increases
and for comparison purposes to other broadcast
benchmark methods.

Figure 8: Broadcast Acknowledge Benchmark
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Figure 9 shows our method for measuringOLi, which
we repeat for each possiblei. In our method, taski sends
an acknowledgment to the root. The root does not begin
the next broadcast until it receives this acknowledgment.
We can accurately correct for the overhead of the acknowl-
edgment since it is exactly the latency of a single point-to-
point message fromi to the root.

Our method works for a simple reason - it eliminates
the pipelining effect only along the broadcast path from
the root to the taski. Broadcasts that are concurrently in
progress along other paths do not affect our measurement.
Our method relies on the assumptions that the acknowl-
edgment does not arrive at the root before the root has
finished the broadcast and that no taskj  on i’s broadcast
path delays the next broadcast. These assumptions hold if
the measured time,Ei is greater than the broadcast gap,gj
for any taskj , including the root, oni’s broadcast path.
Since these requirements are violated only ifj  is sending
more messages for the broadcast, they must hold for
largestEi, the basis of our estimate ofOLi. The require-
ments hold for alli for most broadcast implementations
although some implementations, such as a flat broadcast in
which the root sends directly to every other task, can vio-
late this assumption. We have designed a method for mea-
suring OLi accurately when this assumption is violated.
The benchmarker must knowi’s broadcast path in order to

use this method. We are designing a method to determine
this information when source code is unavailable.

Figure 10 shows our estimates ofOL  for a 256 byte
broadcast agree with our algorithmic analysis. Figure 11
compares the results of the different methods with the
binomial tree implementation. Our estimates always fall
between the lower bound provided by the broadcast
rounds method and the upper bounds obtained from the
broadcast barrier and broadcast acknowledge methods. At
about 20 tasks, acknowledgment overhead dominates the
measurements of the broadcast acknowledge method. The
broadcast rounds method consistently underestimatesOL
by a factor of two, while the broadcast barrier method
overestimates it by an even larger factor. Our max(OLi)
method scales well and conforms to our expectation of flat
performance between powers of two.

5. Conclusions

Broadcast communication is an important factor in the
performance of message passing applications. Therefore,
reliable measurement of broadcast performance is an
important criteria for evaluating message passing libraries.
Our results demonstrate that previously proposed
broadcast benchmark methods cannot measure even a
simple linear broadcast reliably. The pipelining effect of

Figure 10: Maximum OL i Benchmark Results
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message overlap between successive broadcasts makes
benchmarking broadcasts hard.

We presented a new, accurate broadcast benchmark
method that scales well. It works because it measures the
latency to individual tasks instead of trying to measure the
latency of the entire broadcast directly. Our results demon-
strate that our method is accurate. We will extend our
method to other collective communications. Reduction
benchmarks suffer from similar problems but require a
different solution since the communication pattern is a
fan-in logically. Symmetrical collective communications,
such as global reductions, are also difficult since they can
be implemented asymmetrically.
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