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Abstract

The Internet and the Grid are changing the face of
high performancecomputing. Ratherthan tightly-coupled
SPMD-stylecomponentsrunning in a single cluster, on
a parallel machine, or even on the Internet programmed
in MPI, applicationsare evolving into setsof collaborat-
ing elementsscattered across diversecomputationalele-
ments. Thesecollaborating componentsmay run on dif-
ferent operating systemsand hardware platformsandmay
bewrittenby differentorganizationsin differentlanguages.
Complete“applications” are constructedby assembling
thesecomponentsin a plug-and-playfashion. This new
vision for high performancecomputingdemandsfeatures
andcharacteristicsnot easilyprovidedby traditional high-
performancecommunicationsmiddleware. In responseto
theseneeds,wehavedevelopedECho,a high-performance
event-deliverymiddleware that meetsthe new demandsof
theGrid environment.EChoprovidesefficientbinarytrans-
missionof event data with unique features that support
data-typediscoveryand enterprise-scaleapplicationevo-
lution. We presentmeasurementsdetailingECho's perfor-
manceto showthat EChosignificantlyoutperformsother
systemsintendedto providethis functionalityandprovides
throughputand latency comparable to the mostefficient
middleware infrastructuresavailable.

1. Intr oduction

Wide areadistributedcomputinghasbeena strongfo-
cusof researchin high performancecomputing. This has
resultedin thedevelopmentof softwareinfrastructureslike
PVM, MPI, andGlobus,andin thecreationof theNational
MachineRoomandthe Grid by DOE andNCSA/Alliance
researchers.Increasingly, researchfocus in this domain
hasturnedtowardscomponentarchitectures[1] which fa-
cilitate thedevelopmentof complex applicationsby allow-
ing the creationof genericreusablecomponentsand by

easingindependentcomponentdevelopment.Someof the
earliestrequirementsfor componentarchitecturesin high-
performancecomputingwerederivedfrom systemsthatat-
tachscientificvisualizationsto runningcomputations,but
continuingresearchhasgeneralizedsuchmodelsto include
theability to flexibly link generalpurposecomputationalel-
ementsaswell [18, 19, 1]. Component-basedsoftwarede-
velopmenthasbeenproposedby the softwareengineering
communityover thelastdecade[20, 23] andits advantages
have beenwidely recognizedin industry, resultingin the
developmentof systemssuchasEnterpriseJavaBeans,Mi-
crosoft's ComponentObjectModel andits distributedex-
tension(DCOM), and the developing specificationof the
CORBA ComponentModel(CCM) in OMG'sCORBA ver-
sion3.0.

A commontechniquefor integratingthe differentcom-
ponentsof a systemis event-basedinvocation,alsoknown
as implicit or reactive invocation, which has historical
roots in systemsbasedon actors [12], daemons,and
packet-switchednetworks. Event-basedintegration is at-
tractive as it strongly supportssoftwarereuseand facili-
tatessystemevolution [9, 8]. In bringing the benefitsof
component-basedsoftwaredevelopmentto the domainof
high-performancecomputing,our work doesnot seekto
createa completecomponentframework. Instead,wehave
concentratedon providing the integrationmechanismthat
will allow thecommunityto obtaintheadvantagesof such
architectureswhile maintaininghighperformance.

Thispaperdiscussestheresultsof ourwork, anefficient
event-basedmiddleware,ECho,throughwhich systemsof
distributed collaboratingcomponentscan be constructed.
Severalattributesof EChodistinguishit from relatedwork:

� High performance sharing of distrib uted data –
ECho transportsdistributed data with performance
similarto thatachievedby systemslike MPI. Thislevel
of performanceis requiredif the integrationmecha-
nism is to supportthe normally large dataflows that
arepart of high performanceapplications.For a dis-



tributedvisualization,for example, this level of per-
formanceenablesend-usersto interactvia meaning-
ful datasetsgeneratedatruntimeby thecomputational
modelsbeingemployed.

This paper demonstratesECho's high performance
acrossheterogeneoushardwareplatforms,using net-
workedmachinesresidentat Georgia Tech. In pre-
vious work, we have used ECho in Internet-wide
collaborations[14], andwehave demonstratedits abil-
ity to representboth the control and the dataevents
occurringin distributedcomputationalworkbenches.

� Dynamic data provision and consumption – ECho
supportsthe publish/subscribemodelof communica-
tion. Thus new componentscan be introducedinto
an ECho-basedsystemsimply by registeringthemto
the right set of events in the system,without need
for re-compilationor re-linking. In addition,compo-
nentscould be dynamicallyreplacedwithout affect-
ing other componentsin the system,facilitating sys-
temevolution. Event-basedpublish/subscribemodels,
like the oneoffered by ECho, have becomeincreas-
ingly popularandtheirutility within a varietyof other
environments, including Internet- and E-commerce
applications[24], extensiblesystems[3],collaborative
systems[11],distributedvirtual reality[16] andmobile
systems[27],hasbeenwell-established.EChodiffers
from suchongoingor pastresearchin its efficientsup-
port for event transmissionacrossheterogeneousma-
chines,derivedfrom its ability to recognizeandtrans-
lateat runtime,user-definedeventformats.While sys-
temslike InfoBus[17] andSchooner[13] have demon-
stratedthe utility of making type information avail-
able to middleware,neitherhave attemptedto attain
thehighperformanceachievedby ECho.

� Dynamic type extensionand reflection– Oneof the
majorfeaturesdifferentiatingcomponent-basedappli-
cationsfrom their tightly-coupledkin is the relative
lackof a priori knowledgeaboutdataflows. In orderto
beableto “drop” a componentinto placein a system,
thecomponentmustbeableto discoverthecontentsof
thedataflowsit is to operateupon.Eventhepartsof an
applicationthat weredesignedto work togetherface
difficulty maintaininga priori knowledgein a wide
areaGrid environment. As differentpiecesof an ap-
plicationarechangedor upgradedover time it maybe
necessaryto modify theirdataflows,invalidatingother
piecesthat rely on previousknowledgeand/orrequir-
ing theirsimultaneousupgrade.Becauseof thesediffi-
culties,component-basedsystemstypically providean
integrationmechanismthatoffer somedegreeof type
extensionandreflection. Thoseterms,borrowedfrom
object-orientedsystems,expresstheability to transpar-

ently extendexisting datatypeswhile preservingthe
validity of codeusingtheold type(typeextension)and
theability for third partiesto discover thecontentsof
andoperateupona datatype without a priori knowl-
edge(reflection).Oneof themostimportantcontribu-
tionsof EChois thatit providesthesefeatureswithout
compromisingperformance,as measurementsin this
paperwill demonstrate.

ECho-basedapplications can also interoperatewith
CORBA- or Java-basedcomponents,like those used in
the Diesel Combustion Collaboratoryor the Hydrology
workbench. Thus, end userscan continuing to employ
tools like the Java-basedVisAD datavisualizationsystem
or the CORBA-basedcollaborationservicesin Deepview,
but gainhigh performancefor datamovement(in contrast
to event ratesattainedfor CORBA- or Java-basedevent
systems[2,25]). Interoperabilitywith Java- andCORBA-
basedsystemswill bedemonstratedelsewhere.

EChohasbeenavailable sinceOctober1997, and our
grouphasusedit for variouslarge-scale,ongoingdevelop-
mentandresearchefforts. Among suchefforts, of princi-
pal interestto thehigh performancecommunityarethe at-
mosphericandhydrologyapplicationsmentionedearlieras
well as two additionalonesnow being developedby our
group:(1) a distributedmaterialsdesignworkbench,where
multiple endusersinteractwith eachotherandwith com-
putationaltools in orderto designhigh performancemate-
rials, and(2) a distributedimplementationof anNT-Unix-
spanningsystemfor moleculardynamicsand/orfor crystal
plasticitystudiesdoneby collaboratorsin thedepartments
of MechanicalEngineeringandPhysicsin Georgia Tech.
Finally, ECho eventsare one of the key building blocks
of theDARPA-fundedInfoSphereInformationTechnology
Expedition[21].

Theremainderof thispaperis organizedasfollows.Sec-
tion 2 describesECho'sbasicfunctionality. Section3 com-
paresECho's event delivery performanceto that of other
communicationsystemswhich offer someform of typeex-
tensionandreflection.In particular, weexaminetheperfor-
manceof a setof middlewaresystemswhichmight becon-
sideredasalternative candidatesfor the integrationmech-
anism of a componentinfrastructure,including CORBA
event channels,event distribution via Java's RMI, andan
XML-basedcommunicationscheme;comparingthe basic
latency of eachto thatof EChoandusinganMPI message
exchangeasa baselinefor measurement.We alsostudythe
impact of machineheterogeneityon ECho's performance
andexplore the effects of its type extensionfeatures. Fi-
nally, Section4 discussessomekey areasof future work
andsummarizesourconclusions.
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Figure 1. Computations using Event Chan-
nels for Communication.

2. ECho Functionality

EChosharessemanticscommonto a classof event de-
livery systemsthat usechannel-basedsubscriptions. That
is, aneventchannelis themechanismthroughwhich event
sinksandsourcesarematched.Sourceclientssubmitevents
to a specificchannelandonly thesink clientssubscribedto
thatchannelarenotifiedof the event. Channelsareessen-
tially entitiesthroughwhich the extent of event propaga-
tion is controlled. The CORBA Event Service[10]is also
channel-based,with channelsbeingdistributedobjects.

2.1.Efficient Event Propagation

Unlike many CORBA event implementationsandother
event servicessuchasElvin[22], EChoevent channelsare
not centralizedin any way. Instead,channelsare light-
weightvirtual entities. Figure1 depictsa setof processes
communicatingusingevent channels.The event channels
areshownasexisting in thespacebetweenprocesses,but in
practicethey aredistributedentities,with bookkeepingdata
residingin eachprocesswherethey arereferenced.Chan-
nels are createdonceby someprocess,and openedany-
whereelsethey areused. The processwhich createsthe
eventchannelis distinguished,in thatit is thecontactpoint
for otherprocesseswishingto usethechannel.Thechannel
ID, which mustbe usedto openthe channel,containsthe
contactinformationfor thecreatingprocess(aswell asin-
formationidentifyingthespecificchannel).However, event
distributionis notcentralizedandtherearenodistinguished
processesduring event propagation. Event messagesare
alwayssentdirectly from an event sourceto all sinksand
networktraffic for individual channelsis multiplexedover
sharedcommunicationslinks.

ECho is implementedon top of DataExchange[7] and
PBIO[5], packagesdevelopedat Georgia Techto simplify

connectionmanagementand heterogeneousbinary data
transfer. As such,it inheritsfrom thesepackagesportabil-
ity to differentnetworktransportlayersandthreadspack-
ages. DataExchangeand PBIO operateacrossthe vari-
ous versionsof Unix and Windows NT, have beenused
over theTCP/IP, UDP, andATM communicationprotocols
andacrossbothstandardandspecializednetworklinks like
ScramNet[26].

In additionto offering interprocesseventdelivery, ECho
also provides mechanismsfor associatingthreadswith
event handlersallowing a form of intra-processcommuni-
cation.Local andremotesinksmaybothappearona chan-
nel, allowing inter- andintra-processcommunicationto be
freely mixed in a mannerthat is transparentto the event
sender. When sourcesandsinks arewithin the samead-
dressspace,an event is deliveredby directly placing the
event into the appropriateshared-memorydispatchqueue.
While this intra-processdelivery canbe valuable,this pa-
perconcentrateson theaspectsof EChorelatingto remote
deliveryof events.

2.2.Event Typesand TypedChannels

Oneof the differentiatingcharacteristicsof EChois its
support for efficient transmissionand handling of fully
typed events. Someevent delivery systemsleave event
data marshallingto the application. ECho allows types
to be associatedwith event channels,sinks and sources
andwill automaticallyhandleheterogeneousdatatransfer
issues. Building this functionality into the ECho using
PBIO allows for efficient layering that nearly eliminates
datacopiesduringmarshallingandunmarshalling.As oth-
ershavenoted[15], carefullayeringto minimizedatacopies
is critical todeliveringfull networkbandwidthto higherlev-
els of softwareabstraction.The layering with PBIO is a
key featureof EChothatmakesit suitablefor applications
whichdemandhigh performancefor largeamountsof data.

Base Type Handling and Optimization Functionally,
ECho event typesare most similar to userdefinedtypes
in MPI. Themain differencesarein expressive power and
implementation. Like MPI's user defined types, ECho
event typesdescribeC-stylestructuresmadeup of atomic
data types. Both systemssupportnestedstructuresand
statically-sizedarrays. ECho's type systemsextendsthis
to supportnull-terminatedstringsanddynamicallysizedar-
rays.1

While fully declaringmessagetypesto the underlying
communicationsystemgivesthesystemtheopportunityto
optimizetheir transport,MPI implementationstypically do

1In the caseof dynamicallysizedarrays,thearraysizeis givenby an
integer-typedfield in the record. Full information aboutthe typessup-
portedby EChoandPBIOcanbefoundin [5].
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Figure 2. A comparison of latency in basic
data exchange in event infrastructures

notexploit thisopportunityandoftentransportuserdefined
typesevenmoreslowly thanmessagesdirectly marshalled
by the application. In contrast,ECho and PBIO achieve
a performanceadvantageby avoiding XDR, IIOP or other
'wire' representationsdifferentthanthe native representa-
tion of the datatype. Instead,EChoandPBIO usea wire
format that is equivalent to the native datarepresentation
(NDR) of thesender. Conversionto the native representa-
tion of the receiver is doneuponreceiptwith dynamically
generatedconversionroutines.As themeasurementsin [6]
show, PBIO 'encode' timesdo not vary with datasizeand
'decode'timesaremuchfasterthanMPI. Becauseasmuch
astwo-thirdsof thelatency in a heterogeneousmessageex-
changeis softwareconversionoverhead[6], PBIO's NDR
approachyieldsround-tripmessagelatenciesaslow as40%
of thatof MPI.

Type Extension ECho supportsthe robust evolution of
setsof programscommunicatingwith eventsby allowing
variationin datatypesassociatedwith a singlechannel.In
particular, aneventsourcemaysubmitaneventwhosetype
is a supersetof the event type associatedwith its channel.
Conversely, anevent sink may have a type that is a subset
of the event type associatedwith its channel. Essentially
thisallowsa new field to beaddedto aneventat thesource
without invalidatingexistingeventreceivers.Thisfunction-
ality canbeextremelyvaluablewhena systemevolvesbe-
causeit meansthatevent contentscanbechangedwithout
theneedto simultaneouslyupgradeevery componentto ac-
commodatethenew type. EChoevenallows typevariation
in intra-processcommunication,imposingno conversions
when sourceand sink use identical typesbut performing
the necessarytransformationswhensourceandsink types
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Figure 3. A comparison of delivered band-
width in event infrastructures

differ in contentor layout.
Thetypevariationallowedin EChodiffersfromthatsup-

portedby messagepassingsystemsandintra-addressspace
eventsystems.For example,theSpineventsystemsupports
only staticallytypedevents. Similarly, MPI's userdefined
typeinterfacesdonotoffer any mechanismsthroughwhich
a programcaninterpreta messagewithout a priori knowl-
edgeof its contents.Additionally, MPI performsstrict type
matchingon messagesendsandreceives,specificallypro-
hibiting thetypevariationthatEChoallows.

In termsof theflexibility offeredto applications,ECho's
featuresmostcloselyresemblethefeaturesof systemsthat
supportthe marshallingof objectsas messages.In these
systems, subclassingand type extensionprovide support
for robustsystemevolution that is substantively similar to
that provided by ECho's type variation. However, object-
basedmarshallingoftensuffersfromprohibitivelypoorper-
formance.ECho's strengthis that it maintainstheapplica-
tion integrationadvantagesof object-basedsystemswhile
significantlyoutperformingthem. As themeasurementsin
thenext sectionwill show, EChoalsooutperformsmoretra-
ditionalmessage-passingsystemsin many circumstances.

3. ECho Performance

Figures2 and3 representthebasicperformancecharac-
teristicsof a variety of communicationinfrastructuresthat
might beusedfor event-basedcommunicationin high per-
formanceapplications.Thevaluesareof basiceventlatency
andbandwidthin anenvironmentconsistingof ax86-based
PCandaSunSparcconnectedby 100MbpsEthernet.2 The

2TheSunmachineisanUltra30with a247MHz cpurunningSolaris7.
Thex86machineis a450MHz PentiumII, alsorunningSolaris7.
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infrastructurespresenteddon't all sharethe samecharac-
teristicsandfeatures,a fact thataccountsfor someof their
performancedifferences.ECho'sstrengthis thatit provides
the importantfeaturesof thesesystemswhile maintaining
theperformanceachievedby minimalsystemslike MPICH.

In particular, ECho provides for event type discovery
anddynamictype extensionin a mannersimilar to that of
XML, or thatwhich canbeachievedby serializingobjects
asevents(asin Java RMI). CORBA is alsogainingaccep-
tanceasdistributedsystemsmiddlewareandits EventSer-
vicesprovide similar features. This sectionwill examine
ECho'sperformancecharacteristicsin moredetailandcon-
trastthemwith theseotherinfrastructures.

3.1.Breakdownof Costs

Table 1 shows a breakdown of costs involved in the
roundtripevent latency measuresof Figure2. We present
a round-triptimesbothbecausethey naturallyshow all the
combinationsof send/recvon two differentarchitecturesin
aheterogeneoussystem.Thetimecomponentslabeled“En-
code” representthe spanof time betweenan application
submittingdatafor transmissionandthepoint at which the
infrastructureinvokestheunderlyingnetwork'send()'oper-
ation.The“Network Transfer”timesaretheone-waytimes
to transmittheencodeddatafrom sendingto receiving ma-
chines.The “Decode” timesarethe time betweenthe end
of the“recv()” operationandthepoint at which thedatais
presentedto the applicationin a usableform. This break-
down is usefulfor understandingthe differentcostsof the
communicationand in particular, how they might change
with differentnetworksor processors.

We have excludedJava RMI from thebreakdown in Ta-
ble 1 becauseit performsits network 'send()' operations
incrementallyduring the marshallingprocess.This allows
Java to pipeline the encodeand network sendoperations
makinga simplecostbreakdown impossible.However, as
a resultof this designdecisionJava RMI requirestensof
thousandsof kernel calls to senda 100Kb message,seri-
ouslyimpactingperformance.

Additionally, while theround-triptimeslistedin Table1
arenearthesumof theencode/xmit/decodetimes,thisis not
truefor theCORBA numbers.This is becauseimplementa-
tions of the CORBA typedevent channelservicetypically
rely on CORBA's dynamicinvocationinterfaceto operate.
In the ORBswe have examined,DII doesnot function for
intra-address-spaceinvocations. The result of this is that
the CORBA typed event channelmust residein a differ-
entaddressspacethaneithertheeventsourceor eventsink,
addinganextra hop to every event delivery. This couldbe
consideredto beimplementationartifactthatmightbehan-
dleddifferentlyin futureCORBA event implementations.

ECho CORBA
(ORBacus)

MPICH XML

Total Round-Trip 30.6 53.0 80.1 1249
SparcEncode 0.037 0.74 13.3 176
NetworkTransfer 13.9 13.9 13.9 182
x86Decode 1.6 1.6 11.6 276
x86Encode 0.015 0.64 8.9 124
NetworkTransfer 13.9 13.9 13.9 182
SparcDecode 1.2 0.58 15.4 486

Table 1. Cost breakdo wn for heterogeneous
100Kb event exchange (times are in millisec-
onds).

3.1.1 Sendingsidecosts

ECho'smostsignificantperformancefeatureis its useof the
native dataformat on the sendingarchitectureasits `wire
format'. The effectsof this approacharemostnoticeable
whencomparingthe“Encode”timesfor thedifferentcom-
municationinfrastructures. For example, MPICH usesa
very slow interpretedmarshallingprocedurefor heteroge-
neouscommunicationof MPI user-defineddatatypes.That
this hasa significantimpacton MPICH performanceis ap-
parentin Table1 whichshowsMPICH devotingasmuchas
60%of its round-tripmessagetime to encodinganddecod-
ing.

CORBA's IIOP wire format differs from the architec-
turesnative datalayout in its alignmentrequirements.As
a result,CORBA mustcopyall theapplicationdatabefore
sending.In ORBacus,this copy is performedby compile-
time-generatedstub code, so it is much faster than the
MPICH approach. However, ECho is significantly faster
becauseit performsvery little processingprior to the net-
work sendoperation.

Using XML as a wire format is obviously a decision
whichhasasignificantperformanceimpactonaneventsys-
tem.Table1 makescleartwo of themostsignificantissues:
the large encode/decodetimes,andthe expandednetwork
transmissiontimes.Theformerisaresultof thedistancebe-
tweentheasciirepresentationusedby XML andthenative
binarydatarepresentation.XML encodingcostsrepresent
theprocessingnecessaryto convert thedatafrom binaryto
string form andto copythe elementbegin/endblocksinto
the output string. Justone end of the encodingtime for
XML is several timesasexpensive astheentireround-trip
messageexchangefor the other infrastructures.Network
transmissiontime is alsosignificantlylarger for XML be-
causethe ASCII-encodeddata(plus the begin/endlabels)
can be significantly larger than the equivalentbinary rep-
resentation.How much larger dependsuponthe data,the
size of the field labelsand other details in the encoding.
ThusXML-basedschemestransmitmoredatathanschemes
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which rely onbinaryencoding.

3.2.Receivingsidecosts

ECho's techniqueof usingthe sender's native datafor-
matasawire formatdramaticallyreducestheeventsender's
costs,but it increasesthecomplexity of thereceiver's task.
With a fixed wire format like IIOP, the receiver canoften
usecompile-timegeneratedstubcodeto performthewire-
to-native format translation. EChodoesnot have that op-
tion becausethereceiver doesnot have a priori knowledge
of the native data formatsof all possiblesenders. How-
ever, ECho achieves similar efficiency by using dynamic
codegenerationtocreatecustomizedformattranslationrou-
tineson-the-fly. As the“Decode”entriesin Table1 show,
thisapproachachievesefficiency which is similar to thatof
ORBacus,whichusescompile-timegeneratedstubsfor un-
marshalling,andis significantlybetterthanthe interpreted
unmarshallingusedby MPICH.

XML necessarilytakesa differentapproachto receiver-
sidedecoding. Becausethe `wire' format is a continuous
string,XML is parsedatthereceiving end.TheExpatXML
parser3 callshandlerroutinesfor every dataelementin the
XML stream.Thathandlercaninterprettheelementname,
convert the datavaluefrom a string to the appropriatebi-
narytypeandstoreit in theappropriateplace.Thisflexibil-
ity makesXML extremelyrobust to changesin the incom-
ing record.Theparserwehave employedis alsoextremely
fast,performingits principal function with pointermanip-
ulationsandin-placestringmodificationratherthancopy-
ing strings. However, XML still paysa relatively heavily
penaltyfor requiringstring-to-binaryconversionon there-
ceiving side. (We assumethat for mosthigh performance
computingfunctions,datais beingsentsomewherefor pro-
cessingandthatprocessingrequirestheeventdatato bein
otherthanstringform. ThusXML decodingis notjustpars-
ing, but also the equivalentof a C strtod() or similar
operationto convert thedatainto nativerepresentation.)

3.3.Costsfor HomogeneousExchanges

BecauseECho has virtually no sender-side encoding
costsand becauseits dynamic code generationachieves
performancesimilar to thatachievedthroughcompile-time
stubgeneration,EChotendsto outperformothercommuni-
cationinfrastructures.This is particularlyapparentin het-
erogeneousmessageexchangesbecausetheencode/decode
timecanplaya significantrole in overallmessagecosts.

However, ECho's approachalso yields performance
gains for transfers between homogeneoussystems, as

3A varietyof implementationsof XML, includingboth XML genera-
torsandparsers,areavailable.Wehaveusedthefastestknown to usatthis
time,Expat[4].

ORBacus ECho
send receive send receive

datasize side side side side
overhead overhead overhead overhead

100Kb 0.74 0.40 0.037 0.034
10Kb 0.22 0.046 0.037 0.034
1Kb 0.19 0.016 0.037 0.034
100b 0.17 0.010 0.037 0.034

Table 2. Cost breakdo wn for homogeneous
event exchange (times are in milliseconds).

shown in Table 2. For simplicity, this table concentrates
on theEChoandORBacusinfrastructures.ThehigherOR-
Bacuscostsfor largedatasizesrepresentthecostof there-
quireddatacopyin convertingthe IIOP wire format to the
nativedatarepresentation.EChorequiresnosuchcopy.4 As
in theheterogeneouscase,EChodoesnot pre-processdata
prior to sending,andbecausethe`wire format' corresponds
to thenative datarepresentation,EChocandeliver received
datadirectly to theapplicationwithout copyingit from the
messagebuffer. This is not possiblewith IIOP becauseof
potentialdataalignmentconflictsbetweenIIOP andthena-
tivedatarepresentation.

At common100Mbpsnetworkspeeds,theseadditional
datacopyoperationsareaccountfor arelatively smallfrac-
tion of thetotal exchangecosts.However, minimizingdata
copiesis critical to delivering full network bandwidthto
higher levels of softwareabstraction[15]. As gigabit net-
worksandspecializedlow-latency communicationsmech-
anismscomeinto morecommonuse,the additionalcopy
operationsimposedonevenhomogeneouscommunications
by fixed wire formatswill becomea moreimportantlimi-
tationoncommunicationspeeds,increasingECho'sperfor-
manceadvantage.

3.4.Costsfor TypeExtension

In addition to efficient operationin basicevent trans-
fer, ECho supportsthe creationand evolution of setsof
collaboratingprogramsthroughevent type discovery and
dynamictype extension. EChoeventscarry format meta-
information, somewhat like an XML-style descriptionof
the messagecontent.This meta-informationcanbe an in-
credibly useful tool in building and deployingenterprise-
level distributedsystemsbecauseit 1) allows genericcom-
ponentsto operateupondataaboutwhich they have no a
priori knowledge,and2) allowstheevolutionandextension
of thebasicmessageformatsusedby anapplicationwith-

4For thesmallerdatasizes,theextracopyoverheadis smallcompared
to thefixeddeliverycostsin thesesystems.
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Figure 4. Receiver -side decoding costs with
and without an unexpected field – heteroge-
neous case.

outrequiringsimultaneousupgradesto all applicationcom-
ponents. In other terms,EChoallows reflectionand type
extension. Both of thesearevaluablefeaturescommonly
associatedwith objectsystems.

EChodatatypeinformationis representedduringtrans-
missionwith format tokenswhich canbe usedto retrieve
full type information. Thesetokensaresmall andare in-
cluded in every ECho event transmissionas part of the
headerinformation.As suchthey donotaffectperformance
significantly.

EChosupportstype extensionby virtue of doing field
matchingbetweenincomingandexpectedrecordsby name.
Becauseof this, new fieldscanbeaddedto eventswithout
disruptionbecauseapplicationcomponentswhichdon't ex-
pectthenew fieldswill simply ignorethem.

Most systemswhich supportreflectionandtype exten-
sion in messaging,suchas systemswhich useXML as a
wire format or which marshalobjectsasmessages,suffer
prohibitively poor performancecomparedto systemssuch
asMPICHandCORBA whichhavenosuchsupport.There-
fore, it is interestingto examine the effect of exploiting
thesefeaturesuponEChoperformance.In particular, we
measuretheperformanceeffect of typeextensionby intro-
ducinganunexpectedfield into theincomingmessageand
measuringthechangein receiver-sideprocessing.

Figures4 and5 presentreceive-sideprocessingcostsfor
an exchangeof datawith an unexpectedfield. Thesefig-
ures show valuesmeasuredon the Sparcside of hetero-
geneousandhomogeneousexchanges,respectively, using
ECho'sdynamiccodegenerationfacilities to createconver-
sionroutines.It' sclearfrom Figure4 thattheextrafield has
no effect uponthereceive-sideperformance.Transmitting
wouldhaveaddedslightly to thenetworktransmissiontime,
but otherwisethesupportof typeextensionaddsno costto
thisexchange.

Figure 5 shows the effect of the presenceof an unex-
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Figure 5. Receiver -side decoding costs with
and without an unexpected field – homoge-
neous case.

pectedfield in thehomogeneouscase.Here,theoverheadis
potentiallysignificantbecausethe homogeneouscasenor-
mally imposesno conversionoverheadin ECho.Thepres-
enceof theunexpectedfield createsa layoutmismatchbe-
tweenthewire andnativerecordformatsandasa resultthe
conversionroutinemust relocatethe fields. As the figure
shows, theresultingoverheadis non-negligible, but not as
highasexistsin theheterogeneouscase.For smallerrecord
sizes,mostof thecostof receivingdatais actuallycausedby
theoverheadof thekernelselect() call. Thedifference
betweentheoverheadsfor matchingandextrafield casesis
roughlycomparableto thecostof memcpy() operationfor
thesameamountof data.

Theresultsshown in Figure5 areactuallybasedupona
worst-caseassumption,whereanunexpectedfield appears
beforeall expectedfieldsin therecord,causingfield offset
mismatchesin all expectedfields. In general,theoverhead
imposedby a mismatchvariesproportionally with the ex-
tentof themismatch.An evolving applicationmightexploit
this featureof EChoby addingany additionalat theendof
existing recordformats.This wouldminimizetheoverhead
causedto applicationcomponentswhichhave not beenup-
dated.

4. Conclusionsand Futur e Work

This paperexaminedECho,anevent-basedmiddleware
designedto meetthedemandsof a new generationof Grid
applications. In particular, we consideredthe communi-
cation/integrationdemandsof component-basedsystemsin
a high-performancecomputingenvironmentandhow they
might be differentfrom thoseof more tightly-coupledap-
plications. ECho meetsthose requirementsby provid-
ing apublish-subscribecommunicationmodelthatsupports
typeextensionandtypediscovery. While object-basedand
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XML-basedsystemsprovidesimilarfunctionality, themea-
surementsin Section3 show thatEChodoesit with signifi-
cantlybetterperformance,bothin termsof deliveredband-
width andend-to-endlatency. Themeasurementsalsoshow
thatEChomatchesand,in mostcases,outperformsMPICH
in both metricssupportingour assertionthatEChois suit-
ablefor usein themaindataflowsof Grid applications.

Futurework will examineaspectsof EChowhicharebe-
yondthescopeof thispaper. Thosefeaturesincludederived
eventchannels, which supportfor source-sideevent filter-
ing andremotedatatransformation,andproto-channels, a
mechanismthroughwhich receivers can themselves con-
trol andcustomizesource-sideevent generation.We will
alsoexpanduponECho's ties to othersystems,including
CORBA andJava.
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