
Stanford University, Stanford, CA, 94309

- 1 -

Creating Large Scale Database Servers

Jacek Becla and Andrew Hanushevsky, Stanford Linear Accelerator Center

Abstract

 The BaBar experiment at the Stanford Linear
Accelerator Center (SLAC) is designed to perform a high
precision investigation of the decays of the B-meson
produced from electron-positron interactions. The
experiment, started in May 1999, will generate
approximately 300TB/year of data for 10 years. All of the
data will reside in Objectivity databases accessible via the
Advanced Multi-threaded Server (AMS). To date, over
70TB of data have been placed in Objectivity/DB, making
it one of the largest databases in the world. Providing
access to such a large quantity of data through a database
server is a daunting task. A full-scale testbed environment
had to be developed to tune various software parameters
and a fundamental change had to occur in the AMS
architecture to allow it to scale past several hundred
terabytes of data. Additionally, several protocol
extensions had to be implemented to provide practical
access to large quantities of data. This paper will describe
the design of the database and the changes that we needed
to make in the AMS for scalability reasons and how the
lessons we learned would be applicable to virtually any
kind of database server seeking to operate in the Petabyte
region.

1 The BABAR project

 The High Energy Physics (HEP) community consists
of many thousands of physicists and engineers around the
world [6]. One of its largest HEP experiments, that has
just entered production is called BABAR, and is
headquartered at the Stanford Linear Accelerator Center
(SLAC) in California. A central theme of its research
program is detailed study of the difference between matter
and antimatter. It was launched in May ’99 and is expected
to continue running for at least the next 10 years. The
project was constructed and is managed by a large
international collaboration of physicists and engineers
from 10 countries.

The heart of the experiment is the BABAR detector
attached to the PEP II linear accelerator, both located at
SLAC. The detector has been designed to generate data at
a rate of about 32MB/sec (or 3*108 physics events per year,
or 100 events/sec). Other sources of persistent data include
simulation processes as well as reconstruction and analysis

jobs run by physicists. The estimated size of
1-year’s worth of real and simulated data is 300TB,
significantly exceeding the data generated by any other
HEP project launched so far.
 The data coming from the detector is stored
persistently, and then "reconstructed" in near real-time:
usually within eight hours of the data's collection.
Reconstruction runs asynchronously with data taking on
multiple computing nodes in a fully controlled
environment. The output from the reconstruction process
is then passed to physicists, who then analyze the data.
Data analysis is performed in a non-controlled way, where
physicists are allowed to read the data at any time and
generate new persistent data. While real data is coming
from the detector, simulated data is generated concurrently
by multiple simulation processes and later compared with
the outcome from the analysis jobs. All the data is kept
locally at SLAC, mostly on tapes; part of the data is
copied to several external institutes in Europe.
 The software responsible for handling the BABAR data
is mostly a homegrown system, exceeding 2.5 million of
lines of code. Its capability spans many independent tasks,
including:
� storing live data (Data Acquisition System),
� capturing conditions and configuration of the detector,
� performing data reconstruction, data analysis and

simulation, and
� providing fast access to the data for over a hundred

simultaneous users, often working remotely.
 All components of the BABAR software, often quite
independent, have one piece of software in common: the
tier providing data persistency. Data access is handled by
the BABAR Database System. Clearly, handling multiple
terabytes of data is non-trivial; the software has to be very
robust, well optimized, and it requires a lot of computing
power. The BABAR software is already in production since
the first data was taken in May’99, but it is still not
completely optimized. The process of optimizing the
system: choosing the right hardware configuration and
tuning the software is an ongoing and very lively activity
inside the BABAR Database Group. Detailed information
about the BABAR Project can be found in [2].

SLAC-PUB-9098
December 2001

Work supported by the Department of Energy contract DE-AC03-76SF00515.

Presented at the 9th International Symposium on High Performance Distributed Computing (HPDC-9), Pittsburg, PA, August 1-4, 2000

- 2 -

2 The BABAR database system

 The primary goal of the BABAR Database System is to
provide data persistency for the BABAR experiment. In
order to fulfil stringent project requirements, including:
� robustness: continuous real-time data taking
� high throughput: >30MB/sec
� concurrency: >100 simultaneous users
� data distribution: 10 countries, 3 continents
� heterogeneous environment: Sun Solaris, OSF, Linux,

HP, AIX,
� very complex schema: ~600 persistent classes
the system has no choice but to use cutting-edge, but
somewhat uncertain, database technology.
 Undoubtedly, commercial products introduce many
new features and relieve the burden of writing low-level
code. At the same time they always add further restrictions
and complications, which rarely can be ignored. Although
BABAR software is mostly homegrown, the underlying
database and mass storage systems are both commercial
products. The BABAR Database System is based on a
combination of:
� an Object Oriented Database System (ODBMS):

Objectivity/DB, and
� High Performance Storage System (HPSS).
An Objectivity/DB based solution has been adopted at
BABAR 5 years ago. During that time, Objectivity/DB
appeared (and it still does) to be the only available OO
system capable of scaling beyond a petabyte and fulfilling
the other, very stringent requirements. Increasingly, many
HEP experiments are using, or are going to use
Objectivity/DB. However, it is worth mentioning, that
BABAR was the first high-data volume experiment, which
used Objectivity/DB in production.
 In order to provide sufficient storage to physically
store the databases, the BABAR System employs the HPSS
Mass Storage System. With this system, databases can
reside on disk while being read or written, or on
inexpensive tape when they are inactive. Unfortunately, at
the time HPSS was selected, it was available only on IBM
platforms while Sun Solaris was the preferred BABAR
platform. Since then, SLAC engineers ported the data
transfer components of HPSS to Solaris so that the
database performance characteristics could be maintained.

3 Structuring the data

3.1 Objectivity/DB storage hierarchy

 The highest level in the Objectivity/DB logical storage
hierarchy is the federated database, physically mapped by
a single file containing a schema and a catalog of
databases. Each database maps to a physical file. Each file
consists of one or more logical structures called
containers, which in turn contain basic persistent objects.
Containers determine the physical clustering of data, and
locking granularity. Federation integrity is guaranteed by

the Objectivity/DB lock server process, which maintains
transaction and lock tables. Usually there is only one lock
server per federation, although Objectivity gives a choice
of running more (Objectivity/DB Fault Tolerance Option).
See [13] for further details.

3.2 Multi-federation environment

 Within BABAR, the Objectivity/DB System is used for
keeping virtually all the experiment’s persistent data.
Various parts of the experiment have quite different, often
almost opposite, sets of requirements:
1. Data Acquisition System (DAQ) demands almost

immediate response time, and 24x7 reliability. In
return its other requirements like level of concurrency
or data volume are not very high.

2. Online Prompt Reconstruction (OPR) requires very
high level of concurrency currently reaching as many
as 200 client nodes writing simultaneously to the same
set of databases. Fortunately it runs in a completely
controlled environment, which makes the maintenance
much easier.

3. Data Analysis is a world of physicists, who run their
jobs in a completely unpredictable way; with no
discernable simple pattern. The concurrency level is
high, as well as the expected reliability; requiring
scheduled database outages to perform necessary
maintenance.

 In order to provide everybody with the service they
expect, the BABAR Database System has been broken into
several independent pieces, and each major task such as
DAQ, OPR or analysis has been assigned an independent
federation. Each federation has been assigned a separate
set of servers, including data servers and lock servers.
Since locking is intrinsic to a federation, such a
configuration entirely removes cross-federation
dependencies. In addition there are multiple test
federation.
 In practice, the federations are not completely
independent; some data still need to be shared/exchanged
between them. Internally within SLAC data distribution
strategy takes advantage of the HPSS catalog in
minimizing the actual copying of databases between
federations. For example, once a database generated by
OPR has been migrated to HPSS, the catalog for the
downstream federation can be updated, without the
necessity for physically copying of the database between
the appropriate servers. The staging procedures then
support transfer of a database from tape to disk.

3.3 Hardware

Bulk of BABAR production runs on Sun machine. Some
small external institutes use different platforms, namely
Linux or OSF.

December 2001

- 3 -

 The Veritas File System (VFS) is used on all data
servers and some metadata servers, depending on access
patterns and the quantity of data. VFS allows to build a
large file system (e.g. 500 or 800TB) from many single
disks. Maintenance of several large file systems is
significantly simpler then hundreds of small ones.
Additionally, the VFS is a journaled file system so that
system reboot time is minimized after an outage; critical
when using large file systems.

4 Tuning the system - achieving scalability

4.1 Unit of transfer

 Tuning the system in order to achieve design
scalability began long before the project officially started.
One of the first important decisions impacting the
performance was choosing a correct page size, the unit of
disk and network transfer in Objectivity/DB. It is one of
the very few parameters, which cannot be altered after a
federation has been created. Currently Objectivity/DB
restricts that value to be within 512 bytes and 64KB range.
 Unfortunately, HPSS performs most efficiently with
much larger transfer sizes – typically in the MB range.
This is at conflict with many database systems, which
prefer much smaller transfers, usually below 64KB. The
solution that has been adopted is to “disk cache” files
between the Objectivity/DB servers and HPSS. Transfers
in and out of HPSS are performed in large chunks and thus
we are able to get the expected performance out of the
HPSS, and still use small transfer units for
Objectivity/DB, which sees only the disk-resident files
and is unaware of the HPSS mechanism behind.1
 Clearly a too small page size results in many transfers,
while a too large page size might increase the load on the
network and the amount of unnecessary transferred data.
After many tests, which were simulating behavior of real
applications, it has been shown that on a Sun Solaris
platform (the major BABAR production platform) a 16KB
page size outperforms other choices almost by the factor
of two. These tests were run before the start of the
experiment, but after many months of running large-scale
tests, we are starting to consider using a larger page size.
We believe it might give some benefits we did not foresee
in the past (see also discussion about the Veritas File
System below). There are discussions in progress with
Objectivity/DB, whether it would be possible to remove
the 64K restriction. We probably might still be able to
convert our federations to a larger page size by copying all
of the data -- a very expensive process. Most likely we
would try using a size in the range 256KB – 1MB. Of
course, the conversion may not be feasible once we will
have too much data, e.g. more then 1PB.

1 Objectivity/DB clients are always writing to the disk cache, and are not
aware of HPSS. A specialized server, written at SLAC, controls transfers
between the disk cache and the HPSS tapes.

4.2 Testbed

 Intensive work on improving performance began
shortly after the project officially started. After more then
half a year of testing and tuning the system, it is still an
on-going and very live activity within BABAR Database
Group.
 The part of the system, which required tuning the
most, was Online Prompt Reconstruction. According to
the design, the ultimate goal was to reconstruct 100
events/sec. When the BABAR project was launched, in May
’99, the OPR software was able to achieve only 7-8
events/sec, using 50 computing nodes. All attempts to
increase the throughput by increasing the number of
processing nodes were ending up with an even slower
processing rate, mostly due to lock congestion, and other
problems, waiting to be uncovered. The OPR was also the
most convenient part of the system to focus the tests on,
since it runs in a fully controlled environment. It was clear
from the beginning, that once we learn where the
problems were within OPR and understood the major
bottlenecks, it would be relatively easy to apply that
knowledge to the remaining parts of the system.
 Two month after the project had officially started, a
dedicated test bed was established. The goal was to
improve the performance, and speed up the system as
much as possible. A dedicated batch system consisting of
100 processing nodes and several server nodes made up
the testbed.2 All machines were of the same class as those
used in production. Another 100-240 nodes were
occasionally “borrowed” from the production farm
augmenting the test farm to 340 nodes, whenever needed
for an intensive test.

4.3 Software optimization

 Multiple optimization improvements were made inside
our software. Running the tests and profiling the
applications helped us to learn where most of the time is
spent, and which pieces of the software need
improvement. For instance we learned to avoid naming
containers (whenever we can, of course). Naming a
container involves an extra lock on a shared resource, and
therefore can lead to significant performance loss,
especially when thousands of containers are created in a
relatively short period of time.
 Another noticeable improvement was observed when
we started to transiently cache database identifiers within
a job, rather then keep referring to them by name.
Referring by name involves a name lookup in the large
database catalog. In Objectivity, the client performs the
look-up so that the whole catalog needs to be transferred
to the client before the look-up can be done. Avoiding the

2 100 client nodes: Sun Ultra 5 machines, with 256MB real memory,
running Sun Solaris 2.6, 2 main server nodes: Sun 4500, with 1GB real
memory, also running Sun Solaris 2.6

December 2001

- 4 -

whole operation multiple times led to a significant
improvement.

4.4 The tuning process

The list of knobs we tried to twiddle is very long.
Practically, we tried to estimate the influence of every
adjustment, which could have an influence on
performance/scalability. As one could imagine, the total
number of all possible permutations is too large to be fully
explored. Instead, we attempted to understand how each
change influenced the throughput, and applied one
improvement on top of the previous one, making
additional adjustments.

Below are the major changes that gave visible
performance improvements.
1. Increase hard and soft file descriptor limit on all

machines running Objectivity/DB Data Servers.
Objectivity/DB opens multiple TCP connections
between each client and a data server. If hundreds of
clients start to connect to a server, it quickly runs out
of default system resources (the default limit of open
file descriptors on Unix is 1K, we are currently using
8K).

2. Veritas read/write performance. Due to large number
of database files, which are read/written
simultaneously, disk access is essentially random.
Random write performance of a single VFS seems to
be limited to ~8MB/sec in the configuration we are
using3. Random read performance is close to 4MB/sec.
Both quoted numbers were confirmed by running
many independent tests (for example with and without
Objectivity/DB). Multiple attempts to tune the VFS
did not succeed. Probably part of the problem is
connected with the small unit transfer (we are using a
16K page size).

3. Increase number of data servers / file systems.
Initially, while we started to run tests on 50 nodes, two
data servers with one file system on each were able to
serve all the clients. While we were increasing the
number of nodes to 100, and then to 200, we had to
add more file systems in order to be able to keep up
with the data.

4. Running multiple Objectivity/DB Data Servers per
host. Until recently, the Objectivity/DB data server
was a single-threaded process. Starting 4 servers
instead of one gave a very significant performance
boost. A major recent improvement was the release of
a multi-threaded data server.

5. Balancing data across multiple servers. It is important
to put relatively the same load on each file system. By
sorting data across file systems per type, we were able
to improve both read and write performance. Because
we are constantly changing configurations, we found
this model a bit difficult to maintain (e.g. different data

3 For more details about the VFS configuration please refer to [17]

types have different sizes, and the ratio between then is
changing). We developed a new model, which allows
us to balance the load based on clients, e.g. if data is
written to 6 file systems, we are redirecting each 1/6 of
clients to a separate file system. The new model
simplifies the process of re-balancing the load
significantly, especially when a new file system or a
new set of clients is added to the system.

6. Pre-sizing containers. Objectivity/DB gives multiple
choices during the creation of containers, for example
a user can specify the initial number of pages and/or
container percentage growth. Creating containers close
to their final size proved to be much better then
starting off with a small container and increasing its
size while it is being filled. The behavior is connected
with the way Objectivity/DB extends containers and
locks their internal structures.

7. Cache size. Each client writes persistent data into
databases, and occasionally commits transaction. Data
is usually not written to disk immediately when the
write occurs. Instead it is cached in client memory
(Objectivity/DB cache) until the transaction is
committed/aborted. If there is not enough space in the
cache, some data has to be pushed to disk before the
end of a transaction. If we create the cache large
enough to hold all of the data written between
transactions then actual physical writes occur only
during a commit. We discovered this is a worthwhile
optimization. Writing more data in one chunk is more
efficient in terms of overall throughput of the system
then writing data constantly in small pieces. On the
other hand, if the cache is too large then cache look-up
speed decreases, degrading overall performance. In
effect, cache size depends on transaction length,
described in the next point.

8. Tuning & randomizing transaction length. Since we
start all of the clients at the same time, the jobs tend to
synchronize, and try to commit at the same time. Each
commit is associated with a lot of data being
transferred at one time and increased lock traffic. The
only solution to that problem is to force jobs to do the
commit asynchronously4. We are currently
randomizing transaction granularities per client, each
client is allowed to use value within +/-50% of
preferred length.

9. Dependencies on NFS/AFS. Although it is not directly
a database issue, it is still worth mentioning that
reducing dependencies on AFS or NFS brought a lot of
benefits. Whenever one starts hundreds of clients,
neither NFS nor AFS perform well. Using local file
system is always preferred (if possible).

4 The formula used to pseudo-randomize transaction granularity: X +/-
50% of (process ID%X), where X is the transaction granularity (in sec).

December 2001

- 5 -

4.5 Physics analysis

 Similar improvements are gradually being applied to
physics analysis. Of particular importance is the
combination of the number of database servers, the
number of CPUs per server, and the number of file
systems per server. Significant tune-ups have also been
applied to the code. Performance optimizations in the
analysis programs themselves have resulted in
improvements from 35 events/sec to 2k events/sec for one
particular benchmark where events are selected on the
basis of so-called tag filters.

5 Database internals

 Objectivity/DB is an object-oriented database system.
Data in C++ objects are grouped together on pages of up
to 64K in size and written to disk into logical containers
(the locking granularity) that are segments of a standard
file. A file may contain up to 32,768 containers. Files are
grouped together to form a federation. There can be up to
32,7578 files in a single federation. A federation is
essentially a single database in Objectivity/DB and
applications, given the appropriate access permissions, can
access any object in any file within a federation.
 Access to files is via the operating system’s file system
interface (i.e., native access), through the Network File
System (NFS), or through a specialized file server called
the Advanced Multi-threaded Server (AMS). A
combination of methods may be used as long as any
particular file is accessed through only one interface.
 Each file is limited by the constraints imposed by the
host operating system. For most systems, a database file
can be 264 bytes in length. Thus, a complete database (i.e.,
single federation) can hold up to 280 bytes of directly
addressable data, a prodigious amount of information.
Because of the various supported access modes, such a
large amount of information should be efficiently handled.
 Unfortunately, while it is possible to create databases
of such size, it is extremely difficult to access that amount
of data using standard methods. First, file systems, or even
combinations of file systems, cannot scale to 280 bytes.
Secondly, spreading the data amongst many servers and
using NFS to access the data is problematic since large-
scale NFS access does not perform sufficiently well. This
leaves AMS access as the only viable alternative for such
large databases.
 The AMS is a specialized file server akin to an NFS
server. A client makes a TCP connection to the AMS and
then reads and writes database pages that can be up to 64K
bytes in length. Unlike NFS, the AMS provides
additionally functionality such as database replication and
partitioning. While such functionality is not strictly
necessary to support large databases; the protocol that the
AMS uses is necessary. Unfortunately, the AMS suffers
the same limitations as any file server; it is bound by the

limits imposed by the underlying file system. If the file
system cannot scale, the AMS cannot make up for it.

With this in mind, we undertook a significant
restructuring of the AMS to allow us to enhance it to the
point that any constraints were due to the underlying
operating system. Originally, the AMS was a single
monolithic server, like many database servers today. It
was clear that unless we were able to independently focus
on the various aspects of a database server we would not
be able to make scalability modifications. Thus, the first
major change was to re-architect the server into three
separate components:
1. The AMS protocol layer,
2. The Objectivity Open File System (OOFS) layer (the

logical file system),
3. The Objectivity Open Storage System (OOSS) (the

physical file system).
 The protocol layer is responsible for appropriately
responding to requests using a highly efficient network
protocol. The vast majority of requests require the server
to read, write, or manipulate files. This is done through the
OOFS that presents a logical file system to the protocol
layer and is responsible for creating and deleting directory
and file objects. The OOFS is a virtual file system and
depends on the OOSS layer to actually implement a
physical file system. From the OOFS perspective, the
OOSS simply creates interface objects to directories and
files.

Having split the server into these three replaceable
components allowed us to independently optimize each
layer as well as try various file systems with different
scalability and performance characteristics. The following
sections explain the types of optimizations we performed
in order to scale the system to be able to handle petabytes
of data and hundreds of simultaneous users.

5.1 Physical layer optimizations

The most significant undertaking in the OOSS was the
use of a Mass Storage System (MSS) to back-end a high
performance file system. The implementation at SLAC
used the High Performance Storage System (HPSS) as the
MSS and the Veritas file system as the disk cache.

The use of an MSS allowed us practically an unlimited
amount of storage since any less-used databases would be
automatically migrated to tape. Databases on tape would
be migrated back into the file system, as needed. Thus,
while the amount of online space was limited, the total
amount of accessible space was practically unlimited.
Since HPSS is capable of handling 264 bytes per file and
over 232 files, it easily matched the limits imposed by
Objectivity/DB,

The Veritas file system allowed us to have multiple
terabyte RAID caches so that we could always keep a
sufficient amount of highly used data (i.e., the current
database working set) online. Furthermore, Veritas has
various performance options such as linear space pre-

December 2001

- 6 -

allocation to significantly speed access. A crucial aspect of
the Veritas file system is its journaling feature, an absolute
necessity when dealing with extremely large file systems.
After an operating system failure, the file system need
only scan a short log of a few megabytes to recover file
system information; minimizing reboot time.

We also implemented another critical optimization we
call file descriptor partitioning. While subtle in nature it
significantly reduces CPU utilization. In order to
understand why this is the case it is necessary to consider
what happens during the course of system operations.

When a client makes a connection to the AMS, the
server opens a network socket that causes the operating
system to allocate a file descriptor in order to handle the
socket. Practically all Unix operating systems allocate the
lowest numbered file descriptor, and this is where the
problem occurs. Typically, a client request will cause a
file to be opened with the consequence of yet another file
descriptor to be allocated for the file. The file remains
open while the socket connection is used. This means that
as the system runs, socket file descriptors are interleaved
with socket file descriptors; at worst, the interleaving is
one to one. When the server needs to wait for socket
activity, only half of the file descriptors are eligible to be
waited on. Thus, the system performs needless work of
masking out interleaved non-socket file descriptors. This
happens several hundred times a second as the server
fields new network requests.

File descriptor partitioning simply moves descriptors
allocated to files to the top of the file descriptor
numbering space. Then, all socket file descriptors are
compacted in a sequential range at the low end of the
numbering space. This greatly reduces the amount of
processing needed to wait for network activity. The saved
CPU time can be devoted to handling additional clients.

5.2 Logical layer optimizations

The logical layer is responsible for presenting a virtual
file system to the protocol layer. This layer encompasses
all file processing that does not involve the physical
storage of data (e.g., performance monitoring and
security). The layer provided many opportunities to
enhance scalability without impacting the physical
handling of the files nor the semantics of the database
protocol.

The most significant enhancement was file interface
reuse. When a client opens a file, the OOFS requests that
the OOSS supply an interface object to the file. In many
cases, another client is already using the same file and,
consequently, has an interface to it. With this in mind, the
OOFS searches all allocated interfaces to see if an existing
interface can be used for the new request. If a suitable one
is found, it is reused. In practice, up to two interfaces may
be allocated to a file: one for read and another for update.
The appropriate interface is chosen based on the open

mode requested by the client. An interface object is
deleted only after all uses of the interface cease.

File interface reuse allows the handling of a significant
additional number of client requests because the memory
load on the system is substantially decreased.
Furthermore, it is less likely that the operating system’s
file descriptor limit will be reached, thus enhancing
scalability.

Another enhancement is called redundant sync
elimination. This is another subtle optimization that
requires the consideration of a running system. When a
large number of users are using the database, a large
portion of those users may be updating a single file. These
updates can occur in parallel because a single file may be
composed of multiple containers and the locking
granularity is container-based, parallel updates are
allowed. When a client commits an update, the AMS is
requested to perform a file synchronization to make sure
that all data is written to disk before the transaction
completes. In order to reduce system overhead, the OOFS
tracks whether or not there has been an intervening write
to the file since the last synchronization. If a write has
been performed, the synchronization occurs. However, if
no intervening write has been performed, which is likely
when many users are updating the same file, the
synchronization is skipped since it is not necessary. This
optimization substantially reduces system overhead under
heavy loads.

The final optimization is called file interface time-out.
This optimization has been used by many other databases
to conserve system resources. Simply put, whenever an
allocated interface object has not been used for a
substantial amount of time (e.g., a user has stopped a
program for a long time with the debugger), the OOFS
will delete the interface object. The interface object will
be automatically re-created when the next request for a file
associated with a deleted interface object is received. This
optimization is most useful for highly interactive clients in
test-mode scenarios.

5.3 Protocol enhancements

There were three critical enhancements that we needed
to make to the database protocol in order to ensure
scalability with adequate performance. The first was the
addition of an Opaque Information Protocol (OIP). Using
OIP, a client can transfer OOFS and OOSS specific
information to the AMS. The AMS does not inspect the
information (i.e., it is opaque) but merely forwards it to
the OOFS layer that can inspect it and, in turn, forward it
to the OOSS layer.

OIP allows a client to relay application specific
information that may be implementation dependent. For
instance, an application can inform the OOSS on access
patterns (i.e., sequential or random) as well as anticipated
file size when creating or adding to a database. Such
information is important when trying to optimize the

December 2001

- 7 -

placement of a file. While one can argue that such
information can be inferred by the system, it not feasible
to do so with any great assurance in a very large-scale
database environment. In short, the best information is
known by the application.

Another enhancement was the addition of Deferred
Request Protocol (DRP). This enhancement is crucial to
accommodating high latency file systems, such as Mass
Storage Systems. Consider the case where a client opens a
database that resides on tape. When this happens, the tape
must be mounted and the database copied to the disk
cache before the client can use the database. Such an
operation can be quite lengthy, taking anywhere from a
minute or so to almost half an hour, depending on the size
of the database. Under normal conditions, such a delay
would cause the client to abandon the request and try
another database server under the assumption that the
original server had failed. Of course, the easiest bypass is
to not use time-outs on requests. However, this prevents
the detection of true failures.

With DRP, the OOSS layer can relay the anticipated
time to request completion to the OOFS layer which, in
turn, tunnels the information back to the client via the
AMS protocol. The client can then wait the specified
amount of time and retry the request. The solution
elegantly handles high latency requests without impacting
server failure detection.

Finally, when considering massively large databases
and distributed clients, it is unlikely that any one server
can handle the load. Indeed, such databases require
multiple servers to adequately handle the amount of data
as well as the potential number of users. The normal
method of handling this situation is to statically partition
or fully replicate the database among many servers. In
practice, neither solution works well when accessing a
massively large database. Therefore, we chose to
implement a Request Redirect Protocol (RRP).

RRP allows a server to redirect a client request to
another server that can better handle the request. The
decision is made by the server and can include any
number of criteria such as server load, database
availability, number of users, or even the best network
routing relative to the client’s location. Redirection is not
a new concept. Many web servers use redirection for load
balancing. However, to our knowledge this is the first time
server-mediated redirection will be used for load
balancing a commercial database system.

Another interesting aspect of RRP is that it allows for
asynchronous database replication. In this scenario, only
currently “hot” portions of a database are dynamically
replicated. Coupled with a Mass Storage System, such as
HPSS, that has point-to-point data transfer operations,
dynamic asynchronous replication can achieve massive
scalability while maintaining high levels of performance.
In fact, dynamic asynchronous replication is likely the
only practical replication strategy for petabyte-sized
databases.

5.4 Concluding the scalability tests

Creation of the testbed started to pay off practically
from the first day. After 1 month of running the tests and
tuning the system, we were able to double the throughput,;
and the improvements were immediately fed into the
production system. Currently the improvements, compared
to the point we started, exceed 600%.

Currently the only real limitation we observe in OPR is
the lock server CPU saturation. The Objectivity/DB lock
server is a single-threaded process and whenever we run
>200 clients it uses almost 100% CPU. Attempts to run
the lock server on a faster CPU or on a multi-CPU
machine5 did not solve the problem. It is expected, that the
next two Objectivity/DB releases, (first due in a few
weeks) will take care of this problem.
 On the analysis site, we do not see problems with the
lock server. Instead, jobs seem to be more I/O bound.
Most of the problems come from the fact, that the access
to the data is purely random. Even if each job accesses the
data sequentially, given the total number of users and jobs,
the access quickly becomes random. The main focus in the
near future is going to be on the access de-randomization
and pre-fetching the data combined with client-side
caching.

5.5 Future improvements

 Within several months after the experiment started the
BABAR detector was able to generate data with a speed
significantly exceeding its design. In the near future the
efficiency of the detector is going to be doubled, though it
was not initially anticipated. In the current situation,
further optimizations will be necessary for the software to
keep up with the incoming data.

We already can identify several changes that could be
easily made and improve the performance of the system.
They include:
� Increase the number of file systems and data servers.
� An improved lock server.
� Introduction of read-only databases. It should reduce

lock server traffic since no locks would be required to
read read-only databases; thus improving reference
database performance.

 We expect it will be possible to at least double the
throughput relative to current values within next several
months.

6 Conclusions

The BABAR Database System is responsible for
persistent storage of, and access to the data. Given the
volume of data, which is likely to enter the petabyte region
in three years, the system is intrinsically very complex and
requires a lot of computing power. Currently, the major

5 second CPU can other tasks, e.g. network transfers.

December 2001

- 8 -

focus is on improving the performance and scalability of
the system.

Tuning the system is an on-going process. After the
first 5 months of work, we were able to increase the
throughput from ~8Hz up to 130Hz. At the same time
scalability has been improved from ~50 nodes to over 200
nodes. Most likely the processing farm will be expanded
up to 300-350 nodes in the near future, with a
corresponding increase in throughput requirements. The
performance tests will continue for at least the next few
months.
 Additionally, our ability to independently optimize and
enhance specific portions of the AMS was a direct result
of our chosen layered architecture. It’s a true “plug and
play” architecture where one can mix and match various
critical internal database services in order to achieve the
required scalability and performance. In retrospect, we
were very pleased with the result. Not only did it speed the
development of new processing algorithms, but it also
trivialized the deployment of such algorithms.
 We were also pleased with our optimization in the
OOFS and OOSS layers. A fully optimized AMS uses
25% less CPU time than an AMS that has no such
optimizations -- significant savings in resource utilization.
This directly translates into our ability to handle a 40TB
database with over 3,000 active database sessions. We
expect that with additional improvements we can achieve
a 50% increase in overall performance.
 Of course, neither the architecture nor the optimization
would have been of practical use without the protocol
enhancements. While we could have devised bypasses for
Mass Storage System latency, request optimization, load
balancing and replication, the solutions would have been
awkward, at best. We feel that the key to smooth
integration of scalability optimizations in the AMS relied
on the protocol enhancements.
 We feel that none of the optimizations and
enhancements presented here is particularly tied to
Objectivity/DB. Any type of database server can benefit
by simply choosing a layered architecture, optimizing
each layer relative to its function, and allowing generic
processing information (e.g., time delays, server location,
etc.) to be passed through the protocol either for action by
the client or by the server. While the advice sounds
simple, our experience shows that the implementation is
not. For very large databases however, the benefits far
exceed the required effort.

Objectivity/DB, one of the very few commercial
systems used within the BABAR software, proved to be a
very robust and reliable system, which can be effectively
deployed in a large production system, able to handle
many terabytes of data along with hundreds of
simultaneous clients.

7 Bibliography

1. J. Becla, Data clustering and placement for the BABAR
database, CHEP’98, Chicago, Summer 1998

2. BABAR Webpage:
http://www.slac.stanford.edu/BFROOT

3. CERN Webpage: http://www.cern.ch
4. R. Cowan, G. Grosdidier, Visualization Tools for Monitoring

and Evaluation of Distributed Computing Systems,
CHEP’00, Padova, Winter 2000

5. A. Hanushevsky, Pursuit of Scalable High Performance
Multi-Petabyte Database, 16th IEEE Symposium on Mass
Storage Systems, San Diego, CA, Spring 1999

6. High Energy Physics Information Center:
http://www.hep.net/

7. HPSS, http://www.sdsc.edu/hpss/
8. LCB Status Report/RD45, CERN/LHCC 99-28, September

1999
9. LCB Status Report/RD45, CERN/LHCC 98-11, April 1998
10. LCB Staus Report/RD45, CERN/LHCC 98-6, February 1997
11. Object Database Features and HEP Data Management,

CERN/LHCC 97-8, February 1997
12. Object Databases in Practice, M. Loomis, A. Chaudhri,

1998
13. Objectivity, Inc. Webpage: http://www.objectivity.com
14. D. Quarrie, Operational Experience with the BABAR

Database, CHEP'00, Padova, Winter 2000
15. RD45 Webpage:

http://wwwinfo.cern.ch/asd/cernlib/rd45/index.html
16. SLAC Webpage: http://www.slac.stanford.edu
17. Veritas: http://www.veritas.com

December 2001

