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Abstract 

This paper describes a novel, pipelined resource 
management architecture for  computational grids. The 
design is based on two key realizations. One is that re- 
source management ,involves a sequence of tasks that is 
best handled b y  a pipeline. A s  shown in the paper, this 
approach results ,in a scalable architecture for  decentral- 
ized scheduling. The other realization is that static ag- 
gregation of resources for  improved scheduling is inade- 
quate in wide-area computing environments because the 
needs of users and jobs change with both, location and 
time. The described architecture addresses this problem 
by dynamically aggregating resources in  a manner that 
continuously optimizes system response. This is ac- 
complished by way of an active yellow pages directory 
that allows aggregation constraints to be (re)defined on 
the fly. .4n initial prototype of the actwe yellow pages 
service has been deployed in  the PUNCH network coin- 
puting environment. Experiences with the production 
PUNCH system and preliminary results from controlled 
experiments indicate that the active yello,w pages ser- 
vice performs well. 

1. Introduction 

Network-centric computing promises to  revolution- 
ize the way in which computing services are delivered 
to  the end-user. Analogous to  the power grids that 
distribute electricity today, computational grids will 
distribute and deliver computing services to  users any- 
time, anywhere. At the heart of the computational 

‘At the Department of ECE, University of Florida from 
September 2001. 

grid is an ability to  harness, manage, and channel dis- 
tributed compute cycles, software, and data  according 
to  demand. 

Resource management systems designed for com- 
putational grids must support three key capabilities: 
1) they must provide support for decentralized schedul- 
ing decisions and distributed access control, 2) they 
must be able to  interoperate with local scheduling sub- 
systems, and 3) they must be self-optimizing in the 
sense that they must be able to  dynamically adapt to  
changing workloads and resource usage constraints. 

The first capability is necessary in order to  allow 
sites to  retain control over their local resources even 
when they are a part of a wide-area computational grid. 
The second capability is crucial from a practical stand- 
point - it allows site-specific solutions to be quickly 
integrated into a computational grid. Finally, the third 
capability is necessary because - in wide-area comput- 
ing environments - user-requirements, application- 
demands, and available resources tend to  change with 
both, location and time, making it difficult to  manually 
“tweak” the system to improve performance. 

This paper describes a novel, pipelined resource 
management architecture that  is designed for use in 
computational grids that span multiple administrative 
domains. The architecture has three key features. 
First, it is designed to  dynamically adapt to  the re- 
quirements of the observed mix of jobs - this is ac- 
complished by way of an active yellow pages directory 
that allows resources t o  be dynamically aggregated in 
a manner that continuously optimizes system response. 
Second, the pipelined architecture results in a scalable 
and flexible resource management system with built-in 
support for redundancy - this is achieved by allowing 
individual stages of the pipeline to  be independently 
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distributed and replicated. Finally, the architecture 
lends itself to  decentralized control and a “systeni of 
systems” approach to  resource management - each 
stage in the pipeline treats the preceding stage as a 
user that  is subject to authentication and policy con- 
straints. 

The emphasis of the work so far has been on de- 
signing a decentralized resource management architec- 
ture for systems such as the Purdue University Net- 
work Computing Hubs (PUNCH) [17, 151. An initial 
prototype of the active yellow pages service has been 
deployed on the production PUNCH system and pre- 
liminary results indicate that it works well. However, 
further evaluation is necessary - and is the subject of 
ongoing work. 

The paper is organized as follows. Section 2 outlines 
the role played by the active yellow pages service in the 
PUNCH network computing environment. Section 3 
describes the architecture of PUNCH from a resource 
management viewpoint. Section 4 outlines the differ- 
ent sub-systems that make up the active yellow pages 
service. Section 5 describes the resource management 
pipeline and the associated query language. Section 6 
provides a qualitative discussion of the key benefits of 
using a pipelined architecture and active yellow pages 
for resource management in a computational grid. Sec- 
tion 7 presents preliminary results for a prototype im- 
plementation of the architecture. Section 8 places the 
described research in context with related work. Fi- 
nally, Section 9 presents the conclusions of this work 
and outlines future directions. 

2. The PUNCH Network Computer 

Delivering computing as a service requires that the 
underlying infrastructure be able to  negotiate resources 
between institutional boundaries - much as electric- 
ity is bartered among different utility companies. For 
example, consider a user who wants to  run an appli- 
cation from a given vendor on da ta  that happens to  
reside a t  a remote storage warehouse. In the PUNCH 
environment, the user connects to  a network desktop 
via a standard Web browser, provides the “location” of 
his/her storage service provider, and clicks on the ap- 
plication of interest.’ At this point, the network desk- 
top must identify and locate appropriate resources, and 
assemble the necessary computing environment for the 
user [16]. 

This task is accomplished as follows. The  network 
desktop first verifies that  the user is authorized to  run 
the selected application. Next, it uses the active yellow 

‘Currently, the storage location is implicitly configured when 
a user requests a PUNCH account. 

pages (ActYP) service described in this paper to iden- 
tify, locate, and select appropriate compute server(s) 
for the run. The  ActYP service also selects available 
shadow accounts [16] in which to  run the application; 
shadow accounts are not explicitly tied to  any indi- 
vidual user. Then, the virtual file system service [7] 
mounts the application and da ta  disks on to  the se- 
lected machine. Finally, the application is invoked on 
the selected machine and, for applications with graph- 
ical user-interfaces, the display is routed to  the user’s 
browser via remote display management technologies 
such as VNC [23]. Once the run is complete, the vir- 
tual file system service unmounts the application and 
da ta  disks, and the network desktop relinquishes the 
shadow account and resources by notifying the ActYP 
service. 

The key value of the active yellow pages service 
in such environments is its ability to  1) support de- 
centralized resource management decisions and access 
control policies, and 2) hide site-specific configurations 
and policies from the core network computing infras- 
tructure. The network desktop simply asks ActYP for 
resources (via a query language); and it gets back an 
I P  address, a TCP port number, and a session-specific 
access key. ActYP negotiates for the resources, veri- 
fies that  relevant services are available and starts dae- 
mons as necessary, allocates shadow account uids on 
compute servers as appropriate, and facilitates the ex- 
change of session-specific authentication information 
among resources that  are dispersed across different ad- 
ministrative domains. 

A prototype of the active yellow pages service de- 
scribed in this paper has been in use for about one 
year. PUNCH currently has about 2,000 users across 
two dozen countries, and offers access to more than 70 
engineering applications. PUNCH can be accessed a t  
www.punch.purdue.edu. 

3. PUNCH System Architecture 

From a resource management perspective, PUNCH 
can be divided into three main components: the net- 
work desktop, the application management component, 
and the active yellow pages service (see Figure 1). With 
reference to  the figure, users interact with PUNCH v ia  
its Web-accessible network desktop (event i in the fig- 
ure). The network desktop processes file- and data- 
manipulation requests locally, and forwards requests 
for tool execution to  an application management com- 
ponent (event 2 in the figure). As shown in Fig- 
ure 2,  the application management component parses 
the user input,  extracts relevant parameters based on 
information in a knowledge base, estimates the run- 

148 

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 7, 2008 at 9:18 from IEEE Xplore.  Restrictions apply.

http://www.punch.purdue.edu


Users Command, input, and 

preferences from the e.g.: 
network desktop Simulate carrier transport 

for the given device specs; 
preference specified in 
terms of priority, version, 

Parse user input architecture, etc. 

Figure 1. The components of the PUNCH 
infrastructure from a resource management 
perspective. The numbers 1 - 6 in the figure 
show the sequence of events that occur in the 
process of scheduling and initiating a run on 
PUNCH. Details are provided in the text. 

time for the application (via a performance modeling 
service; see [14, 181 for details), determines software 
and hardware requirements, and constructs a query 
for the active yellow pages (ActYP) service from the 
available data. The generated query is subsequently 
forwarded to  the ActYP service (event 3 in Figure 1). 

4. The Active Yellow Pages Service 

Resource management in heterogeneous computing 
environments involves three key tasks: 1) identifying 
the types of resources appropriate for a given run, 2) lo- 
cating those types of resources, and 3) selecting appro- 
priate instances of the located resources. 

The first task is performed by the entity requesting 
the resources - t,he application management compo- 
nent in the case of PUNCH, as outlined in the previ- 
ous section. The second task involves a search that 
is often accomplished by way of a directory service 
(e.g., Globus employs the Metacomputing Directory 
Service [8]). The third task involves the use of appro- 
priate scheduling algorithms (e.g., [ I ,  13, 241) to  select 
the “best” of the available resources. 

The second task outlined above is typically accom- 
plished by going through a “database”. This search is 
analogous to  going through the “white pages” listings 
of a telephone directory. The task of locating specific 
types of resources, however, is more suited to  a “yellow 
pages” lookup, where listings are grouped according to 

e.g.: 
#carriers 
#nodes in grid 
device size 
convergence norm 

Extract relevant 

Qualify extracted 
cpuUnits = f(parameters) 

information medeqd = g(parameters) 

Rank alsorithms: 
€(parameters, available 

Select appropriate algorithms) 
algorithm(s) Monte Carlo, hydro-dynamic, 

drift diffusion 

e.g. : 
Determine hardware SPARC or HP architecture 

with >=256MB RAM and >=300 
SPECfp 

Compose query: 
€(architecture. memory, 

Generate query I/O, performance, Q o S )  

I ARCH=SPARC-ULTRA 

t 
Query forwarded to 

resource management 
pipeline 

Figure 2. An overview of the scheduling 
events that occur within the application man- 
agement component shown in Figure 1. 

some criteria. This leads to  the basic idea of establish- 
ing a yellow pages service for resource management. 

Traditional yellow pages directories are based on the 
implicit assumption that the listings can be classified 
according to  fixed and well-established criteria (e.g., 
airlines, hotels, etc.). In a computing environment, 
however, it is impractical to  anticipate all possible per- 
mutations for the characteristics that define a resource. 
This leads to the notion of an active yellow pages di- 
rectory, where the categories are defined on the fly. 

The PUNCH active yellow pages (ActYP) service 
is made up of three cooperating sub-systems: 1) one 
or more directory services or resource databases that 
maintain information about, resources in the compu- 
tational grid, 2)  a resource monitoring service that 
keeps track of the state of the resources, and 3) a re- 
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r e source  s t a t e  
c u r r e n t  l oad  
a c t i v e  jobs  
a v a i l a b l e  memory 
a v a i l a b l e  swap 
t ime of l a s t  update  
PUNCH s e r v i c e  s t a t u s  f l a g s  
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maximum a l lowed l o a d  
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( access  and a u d i t  in format ion)  
sha red  account i d e n t i f i e r  
execut ion  u n i t  p o r t  
PVFS mount manager p o r t  
( s ee  Cl61 f o r  d e t a i l s )  
u s e r  group list 
( l i s t  of allowed u s e r  groups)  
t o o l  group l i s t  
( types  of t o o l s  suppor ted  by machine) 
shadow account pool  p o i n t e r  
( s ee  Cl61 f o r  d e t a i l s )  
usage p o l i c y  p o i n t e r  
admin i s t r a to r  d e f i n e d  parameter  l ist  

Figure 3. A list of the fields maintained by the 
PUNCH resource database for each machine. 

source management pipeline that dynamically aggre- 
gates “similar” resources in a manner that optimizes 
scheduling response times. This section describes the 
first two sub-systems in the context of ActYP; the third 
sub-system forms the heart of ActYP, and is described 
in the rest of the paper. 

4.1. Directory services 

PUNCH currently uses a custom database that ac- 
coniniodates the needs of the operational portal and, 
at the same time, facilitates the evaluation of the ac- 
tive yellow pages service.’ For each resource (i.e., ma- 
chine), the database maintains several fields, as shown 
in Figure 3. 
The first field represents the state of the system, and 
can have one of three values: up, down, or blocked.  
Fields 2 - 7 contain information required by the 
PUNCH scheduler, and are dynamically updated by 
a resource monitoring system. Fields 8 - 11 contain 
relatively static information about the machine; these 
fields are currently updated manually. 

~ 

‘A description of the design of the database is beyond the 
scope of this paper. 

The machine object pointer (field 12) is a path to a 
file that  contains access and audit information for the 
machine (e.g., ssh key, owner information, instructions 
for starting a PUNCH server on the machine, etc.). 
The shared account identifier lists the name of a shared 
account on the machine (e.g., user nobody), if any.3 

The execution unit port identifies the TCP port at 
which the PUNCH execution unit (see [17] for details) 
is running in the shared account (if it  exists) on the cor- 
responding machine. The PVFS mount manager port 
(field 15) lists the TCP port a t  which the mount man- 
ager of the PUNCH Virtual File System service [16] 
can be contacted. 

The user group list (field 16) identifies the types of 
users who are allowed to use the corresponding ma- 
chine, and the tool group list (field 17) enumerates the 
types of tools that  the machine is able to run. The 
shadow account pool pointer references a secondary 
database that  manages shadow accounts [16] available 
to  PUNCH on that  machine. The usage policy field is 
currently uniniplemented, but it is designed to  point to  
a PUNCH metaprogram [19] that would allow admiii- 
istrators to  specify complex usage policies (e.g., public 
users are only allowed to  access this machine if its load 
is below a specified threshold). 

Finally, field 20 allows administrators t o  specify ar- 
bitrary key-value pairs that are used by the active 
yellow pages service at  run-time as described in the 
next section. Parameters typically used in the cur- 
rent PUNCH system include the following: arch (ar- 
chitecture), memory, ostype, osversion, owner, swap, 
and cms (supported cluster management systems; e.g., 
cms=sge ,pbs  , condor). 

4.2. Resource monitoring 

The primary function of the resource monitoring 
system is to  update fields 2 - 7 in the database. Al- 
most any available resource monitoring system can be 
used to provide the necessary functionality.4 

5 .  Resource Management Pipeline 

5.1. Query language 

Queries received by the resource management 
pipeline describe the following: resource requirements, 

3This account, if it exists, is used by PUNCH to run applica- 
tions/utilities identified as  “safe” by local system administrators. 
The primary benefit of using a shared account is to improve the 
response time for very short jobs. 

‘An open source version of the performance co-pilot from SGI 
(www.sgi.com/software/co-pilot/) is currently being evaluated in 
the context of PUNCH. 
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predicted application behavior, and user-specific data.  
Resource requirements include, for example, system ar- 
chitecture, operating system type and version, mini- 
mum memory, and software license constraints. In- 
formation about application behavior, when available, 
consists of estimates of the resources (e.g., CPU time 
and memory usage) that  will be needed for the par- 
ticular run [14, 181. User-specific information includes 
parameters such as login, access group, and access keys 
or passwords. The following is an example of a rela- 
tively simple query generated by PUNCH: 

punch.rsrc.arch = sun 
punch.rsrc.memory = >=lo  
punch.rsrc.license = tsuprem4 
punch.rsrc.domain = purdue 
punch.appl.expectedcpuuse = 1000 
punch.user.login = kapadia 
punch.user.accessgroup = ece 

The query requests a “sun” machine with a t  least ten 
megabytes (the default unit) of memory and a license 
for an application that is identified as “tsuprem4”. 
It further specifies that  the machine must be within 
the “purdue” domain. The query also states that  the 
run is expected to take one thousand CPU seconds5 
and contains the login and access group of the user 
attempting to  initiate the particular run. 

The query language used by the resource manage- 
ment pipeline employs a hierarchical namespace for the 
keys in the key-value pairs. In the example above, 
the family “punch” defines the semantics for the types 
“rsrc” , “appl” , and “user”. Valid words for the final 
part of the key and the interpretation of the value part 
of the key-value pairs (e.g., numeric, string, range, etc.) 
are specified by administrators as described in the pre- 
vious section. For queries in the punch family, when 
a key of type rsrc (for example, punch. rsrc . ostype) 
is not specified, its value defaults to  “don’t care”. For 
missing keys of type appl and user, the values default 
to  “undefined”. New families of key-value pairs could 
be defined to  allow the resource management pipeline 
to  simultaneously support multiple protocols and se- 
mantics: this could allow ActYP to reuse Condor’s 
ClassAds [22], for 

5The current protocol assumes the existence of a “refer- 
ence” machine for time-related estimates. In the future, the 
protocol will be extended to include relevant meta-information 
- for example, one could specify the expected CPU time as 
“1000s~sun.iu:sparc:i1ltra-510:333MHz” and include multiple 
estimates when appropriate. 

‘Only the punch family is implemented currently. 

5.2. Pipeline architecture 

This section describes the different stages of the Ac- 
tYP  resource management pipeline architecture (see 
Figure 1). In brief, query managers receive queries 
from clients (event 3 in the figure), decompose them 
into basic components, and forward them to appro- 
priate pool managers (event 4 in the figure). Pool 
managers map  queries to  pool names and forward the 
queries to  appropriate resource pools (event 5 in the fig- 
ure). They also create resource pools when necessary. 
Resource pools are active objects that  consist of 1) ma- 
chines aggregated according to  a specified criteria (e.g., 
architecture, memory, and/or owner) and 2) processes 
or threads that order the machines on the basis of a 
specified scheduling objectives. On receiving a query, 
resource pools allocate appropriate machine(s) and for- 
ward the information to  the requesting client (event 6 
in the figure). The  client then initiates the application 
on the selected machine(s) (event 8 in the figure). 

5.2.1. Query managers 

Queries enter the resource management pipeline via 
a query manager stage (event 3 in Figure 1). Query 
managers translate queries into a standard internal for- 
mat ,  decompose composite queries into basic compo- 
nents, select appropriate pool managers, and forward 
queries to  the selected pool managers. Each of these 
steps is described below. 

Query translation. Translating queries into a 
predefined internal format is an effective way of sup- 
porting interoperability. This allows different network- 
computing systems to  query the pipeline using their 
native resource specification languages as long as an 
appropriate translator has been implemented in the 
query manager. The key-value-based query language 
described in the previous section serves as the native 
language for the resource management pipeline. 

A composite query is one 
which contains “or” clauses. Such queries are decom- 
posed into multiple basic queries that  are processed 
concurrently by subsequent stages of the pipeline. The 
process of decomposing queries a t  the beginning of 
the pipeline and reintegrating the results a t  the end 
is analogous to the fragmentation of datagrams in 
TCP/IP [5]; appropriate state information is propa- 
gated along with each query component in order to  
allow reintegration a t  the end of the pipeline. For ex- 
ample, a query that requests a machine with either a 
“sun” or an “hp” architecture will be decomposed into 
two basic queries - one for a sun machine and one 
for an hp. The two queries will be simultaneously for- 

Composite queries. 
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warded to  (possibly different) pool managers. At the 
end of the pipeline, the results generated by the basic 
queries will be reintegrated within another query man- 
ager stage (not shown in Figure 1) and returned to the 
client. 

Pool manager selection. Query managers select 
pool managers on the basis of the values of one or more 
of the parameters specified within queries. It is also 
possible to  select pool managers in random or round- 
robin order. As an example, a query nianager can be 
configured to  select one set of pool managers for sun 
machines and a different set for hp machines; an indi- 
vidual pool manager from a particular set can be se- 
lected randomly. 

5.2.2. Pool managers 

Pool managers map queries to pool names and se- 
lect an appropriate instance of a resource pool when 
multiple ones exist. They also create resource pools 
when necessary, and forward queries to  other pool man- 
agers if the requested resources are not available locally. 
Each of these steps is described below. 

Mapping queries. A pool name is made up 
of two components: a signature and an identifier. 
Thus, the mapping process requires pool managers 
to  construct a signature and an identifier for each 
query. The  signature is constructed by forming a 
colon-separated list of sorted rsrc keys in the query, 
and a string that specifies the corresponding compar- 
ative operators (e.g., equal to,  greater than, etc.). 
The identifier is constructed by forming a colon- 
separated list of the values associated with the sorted 
rsrc keys that make up the signature. Thus, for 
the sample query in Section 5.1, the signature is 
arch:domain:license:memory,==:==:==:>= and the 
identifier is sun:purdue: tsuprem4: 10. The second 
part of the signature represents the “equal-to” and 
“greater-than-equal-to” operators in the query. 

Pool managers keep 
track of resource pools via a local directory service. 
Once a query has been mapped to  a pool name, the 
pool manager uses the directory service to  retrieve 
pointers (i.e., machine names and TCP/UDP ports) 
t o  all instances of resource pools with the particular 
name. It then randomly selects one of the instances 
and forwards the query to  that resource pool. 

Resource pool management. If an instance for 
a resource pool with a particular name does not exist, 
pool managers attempt to  create a new instance ( the 
actual process of creating a resource pool is described 
in the next section). If one cannot be created, the 
pool manager attaches its own name to a list within 

Resource pool selection. 

the query, decrements a “time-to-live” counter associ- 
ated with the query, and forwards it to  one of the pool 
managers listed in the local directory service. The list 
of names attached to  the query prevents it from being 
sent to  any given pool manager more than once. The 
time-to-live counter is analogous to  the TTL field in 
IP packets [5]; the request is considered to  have failed 
when the counter reaches zero. 

5.2.3. Resource pools 

Resource pools are dynamically-created “objects” 
that consist of 1) machines aggregated according to  
specified criteria (e.g., software, user group, machine 
architecture, etc.) ,  and 2)  processes (or threads) that  
order the machines on the basis of specified schedul- 
ing objectives. The  following discussion explains the 
mechanisms used to  create and initialize these objects, 
and how machines within these objects are scheduled. 

Creating new resource pools. Pool managers 
create new resource pools. If the resource pool and 
the pool manager are on the same machine, the pool 
manager simply forks a process that initializes itself 
and listens to  a specified port. If the resource pool is 
on a different machine, the pool manager starts it via 
a proxy server on the remote machine. (This server is 
a part of the ActYP service, and is assumed to  be kept 
alive via a cron process.) 

Initializing pool objects. The  pool object first 
walks the “white pages” database for machines that 
match the criteria encoded within its name. During 
this process, the pool object loads relevant information 
(machine name, in the current implementation) about 
appropriate machines into a local cache and marks 
them as “taken” within the main database. Once ini- 
tialization is complete, the pool object makes itself 
available to  pool managers by registering its name and 
a self-generated instance-number with the local direc- 
tory service. 

Scheduling mechanisms. Each pool object has 
one or more scheduling processes associated with it.  
The function of these processes is to  sort machines 
within the object’s cache using specified criteria (e.g., 
average load or available memory), and to  process 
queries sent by pool managers. Pool objects can be 
configured to  utilize different scheduling objectives [20] 
and policies. 

6. Qualitative Analysis 

The previous sections described the active yellow 
pages service and its pipelined architecture. This sec- 
tion outlines the key benefits of this architecture in 
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terms of irietrics that  are relevant in computational grid 
environments. 

Scalability, reliability, and redundancy. All 
stages in the resource management pipeline can be 
independently distributed and replicated across ma- 
chines. Queries propagate from one stage t o  the next 
via TCP or UDP. Within a given administrative do- 
main, replicated instances share information via di- 
rectory services and databases. A key benefit of the 
pipelined architecture is that stages that become bot- 
tlenecks can be replicated - thus allowing “hot spots” 
to  be addressed without needing to  reconfigure the en- 
tire system. The pipeline also provides a degree of 
decoupling between different types of queries. 

Support for QoS negotiation. The pipelined re- 
source management architecture provides inherent sup- 
port for multiple levels of quality of service. For exam- 
ple, higher levels of QoS could be provided by simulta- 
neously forwarding a given query to  multiple pool man- 
agers and pool objects, and utilizing the best response. 
In contrast, the response time for composite queries 
could be minimized by returning the first available 
match - as opposed to  waiting for results from dif- 
ferent components to  be reintegrated. Improved qual- 
ity of service can also be achieved by using better or 
more sophisticated heuristics to  select instances of pool 
managers and pool objects. 

Self-optimizing resource management. Large 
computing environments often exhibit a temporal lo- 
cality of runs. This is particularly true of academic 
settings - students working on assignments will all 
use certain applications over and over within a rela- 
tively short period of time. The described architecture 
exploits this locality by dynamically aggregating re- 
sources on the basis of past history, which allows it to  
optimize its response to (anticipated) future requests 
for resources of the same type. 

Multiple administrative domains. The 
pipelined resource management architecture lends it- 
self to distribution across multiple administrative do- 
mains because it schedules resources in a completely 
decentralized manner; all state information is carried 
with the query itself. Thus,  it is easier to support dis- 
tributed access control and usage policy enforcement 
within this framework. Moreover, the resource man- 
agement pipeline facilitates a “system of systems” ap- 
proach to  scheduling: the pipeline can resolve a query 
down to,  say, the level of a local resource management 
system, and then simply allow the local system t o  take 
over. (In this case, the “resources” within resource 
pools would be pointers to  local resource management 
systems.) Currently, this capability is primarily used 
t o  allow the resource management pipeline to  inter- 
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Figure 4. Effect of increasing the num- 
ber of pools on response time in a local 
area network configuration. The experi- 
ment was conducted on a database of 3,200 
machines, which were uniformly distributed 
across pools. Client queries were distributed 
randomly across pools. 

operate with grid middleware (Globus [9]) and cluster 
management systems (Condor [21], PBS [a], and Sun 
Grid Engine [25]). 

7. Preliminary Evaluation 

The results in this section are for an initial proto- 
type of the active yellow pages service, and are based 
on synthetic workloads. All but one of the experiments 
described below were conducted within a local area net- 
work, with the clients running on Sun UltraSPARCs 
and the components of the ActYP service running on 
a 524MHz, 12-processor Alpha server. The remaining 
experiment was conducted with the clients running on 
an UltraSPARC at  Purdue University (U.S.A.) and the 
components of the ActYP service running on an A41pha 
server a t  Universitat Politkcnica de Catalunya (Spain). 

The scalability of the resource management pipeline 
is primarily a consequence of the ability to replicate 
individual components of the pipeline. As an example, 
consider the benefit of using multiple pools. The effects 
of striping queries across increasing numbers of pools 
are shown in Figure 4 - note t,he reduction i n  response 
times with increasing numbers of pools. The  results in 
Figure 4 are for a setup that is entirely within a local 
area network. When the clients and the ActYP service 
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Figure 5. Effect of increasing the num- 
ber of pools on response time in a wide 
area network configuration. The experi- 
ment was conducted on a database of 3,200 
machines, which were uniformly distributed 
across pools. Client queries were distributed 
randomly across pools. 

0 

16 

are distributed across a wide area network, multiple 
pools still help, but network latency limits the reduc- 
tion in the response times (see Figure 5 ) .  

Scalability, in this context, also implies an ability 
to manage localized “hot spots”. Such hot spots may 
happen, for example, in environments that  have a large 
nuniber of homogeneous resources - causing most re- 
sources to be aggregated in a single pool. Figure 6 
shows what happens when the size of a pool grows. 
As expected, the response time degrades (the linear 
plots are simply a function of the linear search algo- 
rithms employed for scheduling). In such situations, 
pools could be split, allowing for concurrent searches 
whose result,s could then be aggregated. Figure 7 shows 
the results of such a solution - clearly, splitting im- 
proves the response time. 

Another trigger for localized hot spots is when a 
large number of users request resources with the same 
specifications. This may happen, for example, when 
a large class is working on a lab or homework assign- 
ment. In such situations, it is necessary to improve 
the throughput of the resource management pipeline 
for a given set of resources. This can be accomplished 
by replicating pools, as shown in Figure 8. Replicated 
pools contain the same set of machines; scheduling in- 
tegrity is maintained by introducing a instance-specific 
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Figure 6. The response time as a function of 
the size of the pool. Clients continuously 
send queries to the ActYP service. 

bias (e.g., instance ‘i’  of a given pool “prefers” every 
‘i’th machine in the pool). 

8. Related Work 

The PUNCH ActYP service has been designed with 
the PUNCH user base (students and researchers) in 
mind: the goal was to accommodate the needs of the 
relatively few specialized jobs without compromising 
the turn-around time for the large numbers of jobs 
with run-times in the range of a few seconds (see Fig- 
ure 9).  The service adapts its scheduling objectives 
according to observed resource requirements, and em- 
ploys a non-preemptive, decentralized, sender-initiated 
resource management framework. 

Cluster management systems such as Grid En- 
gine [25], PBS [12] and DQS [ll] typically utilize cen- 
tralized schedulers. They accommodate jobs with di- 
verse resource usage characteristics by employing mul- 
tiple submit queues (e.g., one queue for short jobs; an- 
other for large ones). In contrast, ActYP utilizes a de- 
centralized scheduler, and accommodates diverse jobs 
by routing them to appropriate nodes in its pipeline. 

Opportunistic computing environments such as 
Condor [21] are designed to  maximize the throughput 
for relatively large jobs. Condor employs a preemptive, 
centralized, receiver-initiated scheduling mechanism. 
The Globus resource management architecture [6, 101 
is optimized for jobs that  utilize highly-specialized re- 
sources and run for hours or days. I t  also supports 
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Figure 7 .  Effect of splitting on response time. 
The original pool consisted of 3,200 ma- 
chines. lt was split into l )  two pools with 
1,600 machines each, and 2) four pools with 
800 machines each. 

advance reservations and co-allocation of compute re- 
sources, neither of which are currently supported by 
ActYP. From a design objective standpoint, ActYP 
differs from Condor and Globus due to  the need to  sup- 
port large numbers of short jobs and bursty submission 
profiles that  are typical of academic environments. 

Other approaches to resource management are the 
application-specific scheduling utilized by AppLeS [3] 
and the object-based scheduling utilized by Legion [4]. 
These approaches are not easily extensible to  the 
PUNCH environment because of the large numbers of 
legacy applications utilized by PUNCH users. 

9. Conclusions 

This paper presented a novel, pipelined resource 
management architecture for computational grids. The 
design was based on two key realizations. One was that 
resource management involves a sequence of tasks that 
is best handled by a pipeline. The other realization 
was that static aggregation of resources for improved 
scheduling is inadequate in wide-area computing envi- 
ronments because the needs of users and jobs change 
with bot,h, location and time. The described architec- 
ture addresses this problem by dynamically aggregat- 
ing resources in a manner that continuously optimizes 
system response. This is accomplished by way of an 
active yellow pages directory that allows aggregation 
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Figure 8. Effect of replication on response 
time. The pool contains 3,200 machines. 

constraints to  be (re)defined on the fly. 

An initial prototype of the active yellow pages ser- 
vice has been deployed in the PUNCH network com- 
puting environment, and has been in operation for 
about one year. Experiences with the production 
PUNCH system and preliminary results from con- 
trolled experiments indicate that the prototype ActYP 
service performs well. 

Ongoing work is aimed a t  expanding the functional- 
ity of the current prototype. In particular, the current 
implementation does not support composite queries, 
and employs manually configured tables for pool man- 
ager selection and resource pool creation. It also does 
not support delegation of queries from one pool man- 
ager to  another. Future work will also focus on a more 
detailed evaluation of the effectiveness of the described 
approach in large, wide area environments. 
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