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Abstract

Internet computing is facilitated by the remote execution
methodology in which programs transfer to a destination
for execution. Since transfer time can substantially degrade
performance of remotely executed (mobile) programs, file
compression is used to reduce the amount that transfers.
Compression techniques however, must trade off compres-
sion ratio for decompression time due to the algorithmic
complexity of the former since the latter is performed at
runtime in this environment.

With this work, we define Total Delay as the time for
both transfer and decompression of a compressed file. To
minimize total delay, a mobile program should be com-
pressed in a format that minimizes total delay. Since both
the transfer and decompression time are dependent upon the
current, underlying resource performance, selection of the
“best” format varies and no one compression format min-
imizes total delay for all resource performance character-
istics. We present a system called Dynamic Compression
Format Selection (DCFS) for automatic and dynamic se-
lection of competitive, compression formats based on pre-
dicted values of future resource performance. Our results
show that DCFS reduces 52% of total delay imposed by
compressed transfer of Java archives (jar files) on average,
for the networks, compression techniques, and benchmarks
studied.

1. Introduction

Compression is used to reduce network transfer time of
files by decreasing the number of bytes transferred through
compact file encoding. However, compression techniques
must trade off space for time. That is, the compression ratio
achieved is dependent upon the complexity of the encoding
algorithm. Since similar complexity is required to decom-
press an encoded file, techniques with a high compression
ratio are time consuming to decompress. Alternately, tech-
niques with fast decompression rates are unable to achieve

aggressive compression ratios (resulting in longer transfer
times).

Compression is commonly used to improve the perfor-
mance of applications that transfer over the Internet for re-
mote execution, i.e., mobile programs. The overhead im-
posed by compression-based remote execution includes the
time for mobile code requests (program invocation and dy-
namic loading) and transfer. In addition, decompression
time must also be included in this metric, since it occurs
on-line while the program is executing. We refer to the
combined overhead due to program request, transfer, and
decompression as Total Delay.

Due to the inherent space-time trade-off made by com-
pression algorithms, total delay is minimized only when se-
lection of a compression technique is dependent upon un-
derlying resource performance (network, CPU, etc). More-
over, since such performance is highly variable [1, 22], se-
lection of the “best” compression algorithm should be able
to change dynamically for additional program files trans-
ferred on the same link as the program executes. Such adap-
tive ability is important since the selection of a non-optimal
format may result in substantial total delay (8-10 seconds in
the programs studied) at startup or intermittently throughout
mobile program execution. Much prior research has shown
that even a few seconds of interruption substantially effects
the user’s perception of program performance [2].

To address this selection problem, we introduce Dy-
namic Compression Format Selection (DCFS), a method-
ology for automatic and dynamic selection of competitive
compression formats. Using DCFS, mobile programs are
stored at the server in multiple compression formats. DCFS
is used to predict the compression format that will result in
the least delay given the bandwidth predicted to be avail-
able when transfer occurs. We use the Java execution envi-
ronment for our DCFS implementation since it is the most
common language used for remote execution.

One key contribution this work makes is the design and
implementation of a system for the exploitation of the bene-
fits available from existing compression techniques without
the associated costs. Empirically, DCFS reduces 36% (5.5
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seconds) of total delay of compressed transfer on average,
for the range of network characteristics and compression
techniques studied. DCFS achieves 52% (10 seconds) re-
duction in total delay on average over the commonly used
Java archive (jar) format.

Another contribution of this work is the implementation
of two optimizations that extend DCFS to further reduce
total delay: Selective Compression and Compression-On-
Demand. The former is an optimization in which only the
Java class files used during execution are included in the
compressed archive. In the second approach, we extend
DCFS to use compression-on-demand in which an appli-
cation is compressed when the program is requested by the
client at runtime. Our results show that on average selective
compression reduces delay an additional 7% to 11% over
DCFS alone. We show that DCFS using compression-on-
demand can reduce 20% to 52% of the delay imposed by
pre-compressed jar files (for which on-the-fly compression
is not used).

In the following two sections we describe the design
and implementation of DCFS. In Section 3.1 we detail
our experimental methodology and empirically evaluate the
performance of DCFS given cross-country Internet perfor-
mance trace data. We then discuss the utility of DCFS in
a non-simulated, Internet environment. In the remainder of
the paper, we present the two DCFS extensions and con-
clude.

2. Compression Techniques

Code compression can significantly reduce the trans-
fer delay by decreasing the number of bits that transfer
[3, 21, 6, 5, 13]. In this paper, we consider three commonly
used compression formats for mobile Java programs: JAR,
PACK, TGZ [8, 17, 18]. We evaluated others as part of this
study but include only these three for brevity. The first is the
Java archive (jar) format (referred to from here forward as
JAR). JAR is the most common tool for collecting (archiv-
ing) and compressing Java application files and is based on
the standardized PKWare zip format [15].

PACK [17] is a tool from the University of Maryland for
the compression of JAR files. This utility substantially re-
duces redundancy by exploiting the Java class file represen-
tation and by sharing information between class files. The
compression ratios achieved by this (Java-specific) tool are
far greater than any other similar utility. However, PACK
has very high decompression times since the class files must
be reconstituted from this complex format.

Gzip is a standard compression utility commonly used
on UNIX operating system platforms. Gzip does not con-
sider domain specific information and uses a simple, bit-
wise algorithm to compress files. As such, applications in
this format can be decompressed very quickly but do not

achieve the same compression ratios as more complex com-
pression algorithms. The TGZ format refers to files that
are first combined (archived) using the UNIX tape archive
(tar), then compressed with gzip. Tar combines a collection
of class files, uncompressed and separated by headers, into
a single file in a standardized format.

Characteristics of each format are shown in Table 1 for
the benchmarks used in the empirical evaluation of the
techniques presented in this paper. The benchmarks are
from the SpecJvm95 [20] benchmarks and other Java stud-
ies [16, 11]. The first two columns are the static class count
and the total size (in kilobytes) of each application, re-
spectively. For each compression format (PACK, JAR, and
TGZ), we present three columns of data: the compressed
size (in kilobytes) and the compression and decompression
time (in seconds). The average across all benchmarks is
shown in the bottom row in the table.

The inherent trade-off made by compression techniques
(compression ratio for decompression time) is exhibited by
this data. For example, the PACK format requires over 2.3
seconds to decompress the applications on average (JAR
and GZIP require 89% and 98% less time, respectively),
yet it enables a compressed file size that is 81% and 74%
smaller than JAR and GZIP archives, respectively. That is,
for slow networks PACK should be used due to its com-
pression ratio, and for fast links TGZ should be used since
it is inexpensive to decompress. No single utility enables
the least total delay (request, transfer, decompression time)
for all network performance characteristics and applica-
tions. The choice of compression format should therefore
be made dynamically, depending upon such circumstances
to enable the best performance of mobile programs. To do
this, we introduce Dynamic Compression Format Selec-
tion (DCFS), a technique that automatically and dynami-
cally selects the format that results in the least total delay.

3. Dynamic Selection

Figure 1 exemplifies our DCFS model. The client-side
Java Virtual Machine (JVM) incorporates a DCFS class
loader. When an executing program accesses a class file
for the first time (or the program itself is invoked), the re-
quest made to the JVM is forwarded to the DCFS class
loader. Concurrently, a network performance measurement
and prediction tool (resource monitor in the figure) monitors
the network connection between the client and the server at
which the application is stored. We examine two network
prediction systems and discuss the implications of their use
in section 4.1.

The DCFS class loader at the client acquires the network
performance value from the network monitor and forwards
the value(s) with the request to the server. A list of the avail-
able decompression utilities and their average decompres-
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Compression Format & Decompression Characteristics
Sizes are in kilobytes and times are in seconds

PACK JAR TGZ
Class Compression Decomp. Compression Decomp. Compression Decomp.

Program Count Size Size Time Time Size Time Time Size Time Time
Antlr 118 418 58 16.53 3.66 222 2.19 0.30 172.30 0.31 0.03
Bit 53 152 18 6.40 1.25 85 1.07 0.14 57.00 1.07 0.03
Jasmine 207 404 34 8.68 2.69 219 2.93 0.32 127.70 2.93 0.03
Javac 76 548 49 14.99 3.32 276 2.93 0.34 179.20 2.93 0.03
Jess 151 387 23 4.32 1.83 185 2.37 0.34 164.80 2.37 0.03
Jlex 20 85 14 5.95 1.04 48 0.56 0.20 37.80 0.56 0.04
Average 104 332 33 9.48 2.30 172 2.01 0.27 123.13 1.70 0.03

Table 1. Compression characteristics of the benchmarks using PACK, JAR, and TGZ. The first two
columns of data show the class count and the uncompressed size of each application. Data in the
following columns are divided into three sections for each of the different compression formats,
PACK, JAR, and TGZ. For each format, we show the compressed size of the application in kilobytes
and the compression and decompression time in seconds. These final three sections exhibit the
space-time trade-off made by the compression techniques. JAR and GZIP are 89% and 98% faster
to decompress, respectively, on average than PACK. However, PACK is able to achieve an average
compressed size that is 81% and 74% smaller on average than JAR and GZIP, respectively.

Network

List of available
wire-transfer formats 
(decompression rates)

A
B

C

Applications
stored in formats

A,B, & C

CLIENT SERVER

Periodic
Polling

DCF
Selection

Center

DCFS Class Loader

Resource Monitor
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DCFS - Client

Figure 1. The Dynamic Compression Format Selection (DCFS) Model. At the client, an application
or class file request is forwarded from the JVM to the DCFS class loader. Concurrently, a resource
monitor queries the network between the client and the server to determine the network performance
(and in our implementation predict the performance that will be available when the transfer is per-
formed). The DCFS class loader requests the file from the server with which it includes the network
performance measure and list of available decompression rates. The server using the sizes of the
application in various compressed formats, the predicted resource performance, and decompression
rates, computes the format that will result in the least total delay and transmits the application or file
in that format back to the client.
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Name: From: To: BW RTT
MODEM Residence (East) UTK (East) 0.03 95.0
ISDN Residence (East) UTK (East) 0.11 48.0
INET UCSD (West) UTK (East) (Internet) 0.53 79.0
VBNS UCSD (West) UTK (East) (vBNS) 0.71 93.0
LAN UCSD (West) LAN (10Mb/s Ethernet) 4.01 8.0

Table 2. Description of the networks used
in this study. Each network is represented
by the average bandwidth value (BW) in
megabits per second and round-trip time
(RTT) in milliseconds shown in the final two
columns. These values were obtained from
actual trace data collected using the connec-
tion.

sion rates are also included in this request by the client to
the server. It may also be beneficial to provide non-network
resources such as CPU and memory so that more realistic
decompression times can be computed. The current imple-
mentation of the DCFS uses network performance predic-
tion only and estimates decompression time using average
decompression rates supplied by the client.

At the server, applications are stored in multiple com-
pression formats. When a server receives a request for an
application or file, it uses the information sent (predicted re-
source performance value(s) and available compression for-
mats) to calculate the potential total delay for each format.
The server selects the format that results in the least total
delay for the file(s) requested.

3.1. Experimental Methodology and Results

To evaluate DCFS, we implemented both of the DCFS
modules (DCFS client and server). However, to enable re-
peatability of results, we execute the modules on the same
machine and simulate different networks between them. In
this section, we examine the potential of DCFS assuming
that the bandwidth and round-trip times are constant during
transfer. We collect empirical measurements for a variety of
bandwidths and round-trip times taken from actual network
traces. This enables the presentation of the upper-bound po-
tential of DCFS. We provide a discussion of the impact of
incorporating real-time performance prediction in the next
section.

Table 2 shows the bandwidth and round-trip time val-
ues used in this study and the corresponding networks. The
networks include a 28.8 baud modem (MODEM) and an
integrated services digital network link (ISDN) between a
residence and university, a cross-country common-carrier
Internet connection (INET), a cross-country vBNS connec-
tion (VBNS), and a 10Mb/s local area Ethernet connection
(LAN). ISDN is a system of phone connections that allows

data to be transmitted simultaneously using end-to-end dig-
ital connectivity. The vBNS is an experimental transconti-
nental ATM-OC3 network sponsored by NSF that can be
used for large-scale and wide-area network studies. The
table includes the average bandwidth and round-trip time
measurements in the final two columns from a 24-hour Ja-
vaNws [12] trace data for each network.

To compute total delay using this experimental execu-
tion environment, the server computes the sum of the av-
erage round-trip time (for the request), the transfer time
(the average bandwidth value multiplied by the size of the
compressed application), and the decompression time for a
given compression technique. Actual decompression times
for the three compression techniques for the application be-
ing executed are supplied by the client as part of the initial
request. Real decompression times are used as opposed to
using decompression rates (multiplied by the compressed
application size) since this is an upper-bound computation
of total delay. The total delay is computed by the server for
each of the compression formats, TGZ, JAR, and PACK,
and the minimum is selected.

To illustrate the performance potential of dynamic for-
mat selection, we present the total delay (in seconds) in Fig-
ure 2 for the six benchmark applications. Total delay again
consists of the number of seconds required to request, trans-
fer and decompress the application. A logarithmic scale is
shown (for the y-axis) since the substantial total delay for
the slow networks obscures fast-link results when a normal
scale is used. The first three bars in each graph show the
total delay for PACK, JAR, and TGZ compression, respec-
tively, without DCFS. The fourth (far right, striped) bar of
each set shows the DCFS total delay. The DCFS bar is
always equivalent to the minimum of the prior three bars
since it is the “best” performing format. Averaged across
all networks, DCFS reduces total delay from 0.3 to 1.6 sec-
onds over PACK, from 2.1 to 16.1 seconds over JAR, and
from 1.4 to 9.7 seconds over TGZ. The overall benefit from
DCFS does not simply result from using a different com-
pression utility, it results from selecting the best compres-
sion utility given the underlying network performance. The
benefits achieved using DCFS are quite substantial for every
benchmark and network performance rate.

The average percent reduction in total delay (across all
benchmarks) is shown in Figure 3. The percent reduction is
defined as (TD Base� TD DCFS)=TD Base for each
network, where TD Base is the total delay for the base case
and TD DCFS is the total delay using DCFS. The bars in
this figure represent each base case (a compression format
of PACK, JAR, or TGZ without DCFS) for each network
bandwidth. Each bar indicates the performance improve-
ment as a percentage a user would experience if DCFS were
used instead of the base case. Notice that the percent reduc-
tion can be zero when DCFS selects the base case and the
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Figure 2. Total Delay in seconds (on a logarithmic scale) without and with (striped bar) DCFS. This set
of graphs shows (for each benchmark) the total number seconds required for request, transfer, and
decompression using each compression technique (bar), PACK, JAR, TGZ. The fourth (striped) bar
of each set is the total delay when using DCFS. DCFS selects the format that results in the minimum
total delay.
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Figure 3. Average reduction in transfer delay
over all benchmarks enabled by DCFS. Each
bar shows the average percent reduction in
total delay across all benchmarks for each of
the three compression formats, PACK, JAR,
and TGZ. Bars with zero values indicate that
the base case was the format selected by
DCFS, i.e., the base case was optimal and
no additional benefits are possible. In every
case, DCFS correctly determines and uses
the format that requires the minimum total de-
lay and significantly reduces it.

base case results in the minimum total delay for that net-
work. That is, when the base-case format is the optimal
one, DCFS selects it and no additional improvement can be
gained. If PACK is used for non-MODEM bandwidths, e.g.,
LAN, then DCFS reduces total delay over PACK by almost
90% (2 seconds) on average across all benchmarks. For
the LAN bandwidth, the optimal format is TGZ. However
for MODEM and INET bandwidths, DCFS provides 67%
and 46% average reduction (24 and 4 seconds), respectively,
over TGZ. On average across all networks, 33% (1 second),
52% (10 seconds), and 23% (6 seconds) of the delay can be
eliminated over PACK, JAR, and TGZ, respectively, using
DCFS.

Interestingly, this summary graph shows that JAR com-
pression is never selected by DCFS, i.e., there are no zero-
valued JAR bars in Figure 2, using the bandwidths exam-
ined. This implies that using DCFS with only two com-
pression formats can improve (substantially, in many cases)
the performance of programs compressed using the Java
archive for any network technology. This also implies that
only two formats need to be stored at the server for appli-
cation download, given current compression technology, to
achieve the substantial reductions in total delay presented
here. As compression utilities change, however, provid-
ing additional DCFS choices enables additional opportunity

for improved performance. On average, across all bench-
marks and bandwidths, DCFS reduces total delay imposed
by jar compression, the most commonly used Java applica-
tion compression technique, by more than half.

4. DCFS Use and Implementation

In the previous section, we articulated the DCFS design
and reported results to indicate the potential of dynamic se-
lection of compression formats to improve mobile program
performance. Our results use average performance values
from real network traces. In this section, we discuss prac-
tical implementations of DCFS and the implications of in-
corporating predictions of future network bandwidth.

The results in the previous section show that DCFS is
able to select the appropriate compression format that re-
sults in the minimum delay assuming a constant bandwidth
throughout execution for the different links. For exam-
ple, for modem links, DCFS commonly chooses PACK; for
LAN, DCFS chooses TGZ. However, the affect of variance
is not represented by these results since we use a single net-
work bandwidth value (the trace average). Network vari-
ance can cause DCFS to change the selection for a single
link. For example, Figure 4 shows the bandwidth for two In-
ternet connections. The first row of graphs is the data trace
from which the INET bandwidth average was obtained. The
second row provides data for a different Internet connection
between the University of Tennessee and the University of
California, San Diego. The left graph of each pair is the
raw bandwidth measurement taken; the right is the cumula-
tive distribution function (CDF) over all bandwidth values.
Measurements were taken at just under one minute intervals
over a 24 hour period that began at approximately 8PM.

In the right, CDF graphs, we have incorporated a verti-
cal and horizontal line. The vertical line indicates the av-
erage bandwidth value 0.32 Mb/s at which the DCFS se-
lection changes from PACK to TGZ over all of the bench-
marks studied. For less than 42% of the values, PACK is
chosen by DCFS for the link represented by the top pair of
graphs; the remainder of time TGZ is chosen. For the link
represented by the bottom pair, over 50% of the values on
average, causes DCFS to select PACK. These results show
that it is unclear as to which compression technique to use
for this network. Hence, dynamic selection should be used
to achieve the least total delay.

4.1. Prediction of Network Characteristics

The goal of our DCFS work is to determine what the to-
tal delay will be when the application or file transfers from
the server to the client. To enable this, DCFS must pre-
dict the total delay value. Since the variable factor in the
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Figure 4. Raw data (left graphs) and cumulative distribution functions (CDF) (right graphs) for two
data sets. The top pair is data from the INET trace used throughout this study. The bottom pair in also
Internet data, however, between two different hosts. In the left graphs, the y-axis is bandwidth, and
the x-axis is time. Both traces are of a single 24-hour period starting approximately at 8PM at night.
The data indicates that these connections are highly variable and hence different DCFS choices can
be made for a single link. The right graphs indicate (given the average bandwidth value, 0.32Mb/s
indicated by the vertical line, at which DCFS chose a different format over all benchmarks studied)
that in the top pair, PACK is chosen less than 19% of the time. In the bottom pair, the number of
times PACK is chosen by DCFS is about the same number as that for TGZ.
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total delay calculation is resource performance, we incor-
porate existing resource performance prediction techniques
into the DCFS resource monitor depicted in Figure 1. Per-
formance prediction is a well studied area, and we refer the
reader to [14, 22, 7, 1] for more information on this vast re-
search area. The contribution of DCFS is not the forecasting
techniques themselves but instead is their use to exploit the
space-time trade-off made by compression techniques to re-
duce the total delay imposed on mobile programs.

In this section, we describe the network performance
techniques that we considered for bandwidth prediction and
articulate the effect of using prediction on the upper-bound
result performance presented in Section 3.1. Inaccuracy in
predicted values can cause non-optimal DCFS performance.
To measure accuracy, it is common to examine the error of a
predicted value value: the difference between the predicted
value and the actual value when it occurs. We next describe
two techniques for bandwidth prediction and the affect in-
accuracy of each has on optimal DCFS performance. The
first is last bandwidth prediction via probes and the second
is a Java implementation of the network weather service
(NWS).

4.1.1 Last Bandwidth Prediction Via Probes

One way to predict the bandwidth when a transfer occurs,
is to probe the bandwidth immediately prior to transfer. Us-
ing this approach, we predict that the bandwidth at a trans-
fer time in the near future, will be equal to the current
bandwidth. This is called last bandwidth prediction. Last
bandwidth prediction can be incorporated into the DCFS
resource monitor using any network probe utility available,
e.g., ping, netperf [9], TTCP [19], JavaNws [12], etc. In ad-
dition, simple probing socket routines can easily be written
from scratch.

As mentioned above, the accuracy of last bandwidth pre-
diction is demonstrated by its error values. In the Internet
connection data in Figure 4 in the top pair of graphs, the
average error using last bandwidth prediction is 11.3KB/s.
This value is obtained by taking the bandwidth values and
subtracting them from the previous value in the trace, and
taking the average of this difference over all measurements.
On average, the difference between the last bandwidth
value and the bandwidth when the application transfers is
11.3KB/s. However, since DCFS is making a binary de-
cision (1 for PACK and 0 for TGZ in this case) based on
whether the prediction is above or below a given threshold,
this error will only effect predictions that are +� 11.3KB/s
of this threshold. To determine the extent to which this er-
ror limits the overall improvement by DCFS, we selected
100 random bandwidth values from both sets of INET trace
data presented in the figure and computed the total delay
required by each of the wire-transfer formats, as well as

by DCFS. The total delay reduction from DCFS using last
bandwidth prediction to be within 4% of that from DCFS
using the actual trace values, i.e. perfect information.

4.1.2 NWS Prediction

The second performance prediction technique we consid-
ered is the JavaNws resource monitoring and prediction
service. The JavaNws [12] is a Java implementation of
an extension to the Network Weather Service (NWS) [23].
The NWS is a toolkit designed for use on the Compu-
tational Grid [4], a new architecture proposed to frame
the software infrastructure required to implement high-
performance (parallel and distributed) applications using
widely dispersed computational resources. The NWS pre-
diction facility (in the JavaNws version) is used by DCFS
to predict network performance and hence total delay. The
forecasting techniques are further described in [22].

The DCFS resource monitor is an extension of the Ja-
vaNws which takes periodic measurements of the network
performance between the client and the server. A set of very
fast1, adaptive, statistical forecasting techniques are applied
to the measurements (treated as a time series) to produce
accurate, short-term predictions of available network per-
formance [22].

The average JavaNws prediction error from the top In-
ternet connection data in Figure 4 is 7.5KB/s (for an aver-
age bandwidth value of 0.5 (INET), this is 111ms). Smaller
average error improves the potential for correct selection
(and improved performance) by the DCFS. Since one of
the forecasters used by JavaNws is a last bandwidth pre-
dictor, JavaNws will always enables equal or better accu-
racy than a last bandwidth predictor alone. Using 100 ran-
domly selected bandwidth values from both sets of INET
trace data presented in the figure, we achieve total delay re-
duction from DCFS using JavaNws prediction within 2%
of that from DCFS using the actual trace values. For these
links, DCFS with JavaNws prediction enables an additional
2% reduction in total delay than last bandwidth prediction
alone.

5. DCFS Extensions

We next extend DCFS in two ways to further reduce
total delay. The first technique is Selective Compres-
sion, in which only those class files used during execu-
tion are included in the compressed archive. The second is
Compression-on-demand in which the application is com-
pressed at the server when it is requested by a client.

1The JavaNws forecasting techniques require approximately 0.25ms to
produce a single prediction, on the processor used in this study.
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Dynamic Characteristics of Programs (Ref)
(Train in parenthesis)

Executed Pct. of
Program Classes Methods Total Size
Antlr 67 (69) 538 (549) 64 (64)
Bit 40 (37) 158 (153) 90 (88)
Jasmine 165 (159) 714 (669) 81 (78)
Javac 139 (132) 740 (713) 86 (41)
Jess 133 (135) 412 (412) 91 (92)
Jlex 18 (18) 99 (97) 95 (95)
Avg 68 (67) 313 (308) 57 (51)

Table 3. Dynamic benchmark characteristics.
The three columns of data contain the num-
ber of classes used, methods invoked, and
the size of the used classes as a percentage
of total application size, respectively. These
columns contain data for the Ref input fol-
lowed by that for a second, Train, input in
parenthesis.

5.1. Selective Compression

To further reduce transfer delay we combine and com-
press only those class files that are used by the application.
At the server, applications are currently stored in various
compression formats. In addition to this, we store Java ap-
plications in archives which contain only those class files
that will be used during execution of the program. DCFS
is extended to also consider these selectively-compressed
archives. However, selective compression does not depend
on DCFS for its implementation. We implement the opti-
mization within the framework of DCFS to further reduce
total delay and to demonstrate the extensibility of DCFS.

When an application is initially invoked and requested
from a server, the compressed file of classes predicted to
be used is sent for execution. When a class is accessed
that is not contained in the selectively-compressed archive
it is requested by the DCFS class loader at the client and
transferred (possibly compressed if doing so results in min-
imized total delay). If there is very little difference in the
size of the selectively compressed archive and the archive
of the entire application, DCFS selects the latter to avoid
unnecessary overhead introduced when a class file is used
that is not contained in the archive. This heuristic is detailed
in [10] and omitted here for brevity.

Table 3 shows the dynamic characteristics of the bench-
marks given two inputs: Ref and Train. The first column of
data is the number of classes that are used during execution
for the Ref input (results for the Train input are shown in
parentheses). The second column is the number of methods

used and the final column is the percentage of total appli-
cation size that used classes require. On average 33% of an
archive is needlessly transferred.

Since we are unable to know precisely the set of class
files that will be required by every execution of an appli-
cation (this information is input-dependent), we use execu-
tion profiles generated off-line to estimate this set and to
construct a compressed archive. As in the table above, we
present data from two different program inputs indicate the
effect of using profile data. All results presented were gen-
erated using the Ref input (as was done for the prior DCFS
results). We denote selective compression results that use a
profile generated using the Ref input to guide optimization
by Ref-Ref (the first Ref indicates the input used for profile
generation, the second indicates that used for result gener-
ation). Using the same data set for both profile and result
generation provides ideal performance since we have per-
fect information about the execution characteristics of the
programs. Results denoted Train-Ref are those that use the
profile generated using the Train input to guide optimiza-
tion. Train-Ref, or cross-input, results indicate realistic per-
formance since the characteristics used to perform the opti-
mization can differ across inputs and the input that will be
used is not commonly known ahead of time.

Figure 5 shows the average improvement over all bench-
marks when selective compression is combined with DCFS.
The graphs present the results as percent reduction in total
delay over PACK, JAR, and TGZ compression for each net-
work bandwidth. The first bar in the set are the results due
to DCFS alone, presented previously. The second and third
bars indicate the performance benefit from selective com-
pression alone using different profile inputs (Train-Ref and
Ref-Ref). The final two bars show the combined effect of
selective compression and DCFS using the different inputs
(for selective compression). The cross-input (Train-Ref) re-
sults show that on average across all benchmarks, selective
compression alone reduces transfer delay 8% for the mo-
dem link (1.0 seconds) and 8% for the T1 link (0.2 seconds)
over always using the PACK utility. When selective com-
pression is combined with DCFS, delay is reduced 10% for
the modem (1.2 seconds) and 90% for the T1 link (2.2 sec-
onds). Average improvements over always using JAR com-
pression are 10% for the modem (5.2 seconds) and 16%
for T1 (0.1 seconds) using selective compression alone and
80% for the modem (41.3 seconds) and 61% for T1 (0.4
seconds) when combined with DCFS. Improvements over
TGZ are, on average, 18% for the modem (6.6 seconds) and
18% for T1 (0.1 seconds) using selective compression alone
and 71% for the modem (26.1 seconds) and 19% for T1 (0.1
seconds) with DCFS.
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Figure 5. Percent reduction in total delay due to selective compression and DCFS on average across
benchmarks. The graphs are a summary of results using PACK (top), JAR (middle), and TGZ (bottom)
compression as base case, respectively. A series of bars is shown for each network bandwidth. From
left to right, the five bars represent the percent reduction in total delay due to DCFS alone, selective
compression alone (Train-Ref and Ref-Ref), and DCFS and selective compression combined (Train-
Ref and Ref-Ref). The average across the range of network bandwidth is given by the final set of five
bars.
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Total Delay In Seconds
JAR DCFS

T + D C + T + D T + D
Program Time Time Time

MODEM (0.03) 51.6 21.8 12.1
ISDN (0.128) 12.2 7.6 4.6
INET (0.28) 2.8 1.8 1.9
INET (0.50) 2.2 1.5 1.5
T1 (1.00) 0.6 0.5 0.3
Average 13.9 6.6 4.1

Table 4. Compression-on-demand with DCFS
on average across benchmarks. The first col-
umn of data is the total delay (without com-
pression) using JAR files. The second col-
umn is the total delay including compression
using DCFS with compression-on-demand.
The final column is the total delay without
compression using DCFS.

5.2. Compression-On-Demand

An alternative to requiring that the server store appli-
cations in a number of different wire-transfer formats, we
consider simply storing class files. Then, when a request
is made to a server for application download, the server is
instructed to compress the application prior to transfer. The
format is chosen by DCFS and is sent to the server upon
application request. In this section, we articulate some pre-
liminary results of the second DCFS extension we are im-
plementing as part of future work.

In addition to decompression rates (Kb/s) and compres-
sion ratios, DCFS at the server also incorporates compres-
sion rates. Despite not being optimized for compression
time, existing compression techniques can still be incorpo-
rated into DCFS to give insight into feasibility of including
compression with dynamic format selection at class load
time. As utilities change, improve, or are optimized for
compression rates, the DCFS can incorporate and select
them; those for which compression times prove impracti-
cal will not be selected. Total delay, when compression-
on-demand is performed, consists of time for archival and
compression as well as for the request, transfer, and decom-
pression of the files. Average results across benchmarks are
shown in Table 4. The first column of data is the time to
request, transfer, and decompress using JAR compression
(T+D). The second column of data shows the total delay us-
ing DCFS with compression-on-demand, denoted C+T+D.
This is the time to request, compress, transfer, and decom-
press using DCFS (with compression formats PACK, JAR,
and TGZ) in second. The final column of data is the av-
erage DCFS results from the prior section: DCFS without
compression-on-demand. These values, included as a ref-

erence, consist of the request, transfer, and decompression
time (T+D) only like that for the JAR data in the first col-
umn of data. Using DCFS with compression-on-demand
reduces total delay by 20% to 50% over using jar files with-
out compression (using the wire-transfer formats and net-
works from this study). That is, it is faster to compress,
transfer, and decompress applications using dynamically se-
lected wire-transfer formats than it is to simply transfer and
decompress jar files.

6. Conclusion

Despite reductions enabled by the use of file compres-
sion, transfer time continues to impede the performance of
mobile programs. With this work we exploit the trade-off
that must be made by compression techniques (compres-
sion ratio for decompression time) to reduce the delay that
remains from compressed transfer. Since no single transfer
format is best (in terms of transfer and decompression time)
for every network link at all times, we introduce Dynamic
Compression Format Selection (DCFS).

DCFS is a utility that dynamically selects the compres-
sion technique based on the underlying, available resource
performance predicted to be available when the transfer oc-
curs. We incorporate the forecasting utility of a Java im-
plementation of the Network Weather Service [22] (NWS)
for performance prediction. DCFS computes the total delay
that will result for various compression techniques using the
predicted request, transfer, and decompression time of the
application or file. The application in the format resulting
in the least total delay is then transferred to the client. We
show that DCFS reduces total delay substantially: 52% (10
seconds) over the Java archive (jar), the most commonly
used compression format for mobile Java programs. DCFS
reduces total delay for fast links (T1) 90% (2 seconds) over
PACK compression on average for the benchmarks studied.
For slow links (modem) it can reduce total delay on average
59% (25 seconds) over TGZ (tar and gzip) compression.

We also present two DCFS extensions to further reduce
total delay called Selective Compression and Compression-
on-Demand. The former optimization ensures that only the
Java class files used during execution are included in the
compressed archive that is transferred to the client. We use
off-line profiles to guide archive exclusion. If a class file
is used that is not included in the selectively-compressed
archive it is transferred (possibly compressed) via existing
dynamic class file loading mechanisms. Selective compres-
sion reduces total delay an additional 7% to 11% over DCFS
alone.

The second DCFS extension, compression-on-demand,
obviates the need to store applications in multiple for-
mats if it is infeasible to do so. We extend DCFS to use
compression-on-demand. Using this approach, an archive is
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constructed and compressed at runtime by the server when
a program or class file is requested by the client. The
compression format used by the server is the one that is
predicted to result in the least total delay (the calculation
of which now includes compression time). We show that
DCFS using compression-on-demand can reduce 20% to
52% of the delay imposed by pre-compressed jar files (for
which on-the-fly compression is not used). That is, it is
faster to compress, transfer, and decompress applications
using DCFS than it is to simply transfer and decompress jar
files over the range of network performance values studied.

To enable these performance improvements, this DCFS
implementation requires that applications be stored in var-
ious formats at the server or that the server perform addi-
tional work (compression-on-demand). Both of these re-
quirements enable the server to choose between competi-
tive compression formats to reduce the total delay imposed
by always using using a single format regardless of the un-
derlying resource performance. Currently, servers supply
users with mirror sites to improve download times. Com-
panies that manage servers are motivated by competition
and continuously improve sites to ensure the satisfaction of
customers/users. Our results motivate the need for com-
pression format selection, and the storage of applications
in additional formats on a server is a reasonable trade-off
with the users reduction in load delay achieved from using
DCFS.
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