
Network Characterization Service (NCS)*

Guojun Jin George Yang Brian R. Crowley Deborah A. Agarwal

Distributed Systems Department
Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720
 {g_jin, brcrowley, daagarwal}@lbl.gov

e

a
re

d

h
ic

its
rk
f
re
y

tain
a
ble
e
e
w

d
s
ng
s,
a
he
we
the
e

or
are
n 6
Abstract
Distributed applications require information to

effectively utilize the network. Some of the information
they require is the current and maximum bandwidth,
current and minimum latency, bottlenecks, burst
frequency, and congestion extent. This type of
information allows applications to determine parameters
like optimal TCP buffer size. In this paper, we present a
cooperative information-gathering tool called the
network characterization service (NCS). NCS runs in
user space and is used to acquire network information.
Its protocol is designed for scalable and distributed
deployment, similar to DNS. Its algorithms provide
efficient, speedy and accurate detection of bottlenecks,
especially dynamic bottlenecks. On current and future
networks, dynamic bottlenecks do and will affect network
performance dramatically.

1. Introduction

Even though the network is increasing in speed, the
utilization of high-speed networks is still not optimal.
Common problems are congested links and an inability to
use available bandwidth. The underlying problem is that
it is difficult to know and control traffic on the network.
Imagine this situation: two major roads cross at an
intersection without a traffic light. There is no traffic
report to let people know what the traffic is like around
the intersection. Everyone thinks these two roads are the
best way to go and decides to use them at the same time.
Without a traffic light arbitrating the flow, a traffic jam
naturally occurs. Without a traffic report no one knows
about the traffic jam and people continue to drive along
the two major roads. This intersection is similar to a
congested link in the network. Another analogy is a road
with three lanes that allows multiple vehicles to drive in

parallel. If a transport dispatcher thinks it is a single lan
road, he will send out one truck at a time. Traffic will be
good, but throughput will be low. This case is similar to
network with an under-utilized throughput. These a
problems that need to be solved.

In this paper we differentiate between static an
dynamic bottlenecks. Astatic bottleneckis a network
element (link, router, or switch) that has the minimum
bandwidth along a path. Adynamic bottleneckis the
network element with the minimum available bandwidt
on a given path at a specific time. The dynam
bottleneck normally reflectsavailable bandwidthof a
path. The available bandwidth of a network element is
physical bandwidth minus the bandwidth of the netwo
element currently used by other traffic. A key feature o
available bandwidth is its dynamic nature. To measu
available bandwidth at a specific point in time is not ver
meaningful due to its volatility. What we are actually
measuring is the average usable bandwidth over a cer
period of time. If an application is doing large dat
transfers, then we are usually interested in the availa
bandwidth over a longer period of time. But, if we ar
monitoring the network to do congestion control, we us
a shorter time frame so that we can adjust the traffic flo
in a timely manner.

This paper provides an overview of the design an
implementation of the NCS daemon (NCSD) which i
designed to measure network characteristics includi
dynamic bottlenecks. We discuss the feature
capabilities and limits of NCS. We also introduce
desktop version of NCS — pipechar, and describe t
differences between NCSD and pipechar. In Section 2
present the related work, and in Section 3 we discuss
design goal and benefits of NCS. We describe th
algorithms of NCS in Section 4; and the mechanisms f
running NCS as a daemon and user-level program
described in Section 5. Results are presented in Sectio
which is followed by a summary of the paper.
* This work was supported by the Director, Office of Science. Office of Advanced Scientific Computing Research. Mathematical, Information,
and Computational Sciences Division under U.S. Department of Energy Contract No. DE-AC03-76SF00098. This is report no. LBNL-47892.

ve

;

y
ge
n
l-
h
s
),
ce

.
er
t
ce

e
ian

f
t a
s

or
it
n

nt
e
e
al
nd
to

et,
to
to
2. Related Work

Several groups have designed mechanisms to improve
performance on the current Internet. These mechanisms
include Differentiated Services [DiffServ][RFC 2474/
2475], RED [FJ93], SFB [FKSS01], AltQ [Cho98],
Adaptive Gateways and others [RFC2990] [Jac88]. Most
of these algorithms or mechanisms require knowledge
about a number of network characteristics. Without this
information, guaranteeing QoS on shared networks is
almost impossible. The simple network management
protocol (SNMP) [Bla95][Mil97] provides this
information, but it requires router access privileges which
are not usually available to ordinary users. Cprobe
[CC96] is a nice tool that uses a high-resolution timer, but
this feature is SGI-specific.

Current bandwidth measurement tools based on these
technologies are aimed at measuring the static bottleneck
and maximum bandwidth, which are not necessarily the
most important factors for TCP performance tuning. For
example, the Receiver Only Packet Pair (ROPP) [Pax97]
tool with the compacted packet-pair feature can determine
the maximum static bandwidth [LB99] at a bottleneck
link. But, ROPP is not useful for TCP tuning because it
filters out congestion information to find the maximum
bandwidth at the bottleneck link. However, the available
(dynamic) bandwidth on this link and/or the entire path
may be smaller than its maximum static bandwidth. Using
the maximum static bandwidth can result in setting of a
TCP window, which is too large and reduces the TCP
throughput [Tie01] [SM98].

Some other tools like pathrate [DMR01] and netest
[Jin91] use packet trains, also known as 'Packet Bunch
Modes' (PBM) [Pax97]. These tools that rely on packet
trains can measure available bandwidth of a path fairly
accurately, but they are not able to identify the network
element causing the bottleneck. Information about the
location of the dynamic bottleneck is critical to both
congestion control and TCP tuning since it affects the
round trip time calculation. But, measuring available
bandwidth in a relatively short time frame is almost
impossible in high-speed network. Also, pathrate and
netest require a receiver at the remote end, which is not
always possible.

There are several methods currently available for
acquiring information about network characteristics such
as bandwidth and latency with only ordinary user-level
privileges that do not rely on things such as SNMP router
queries. These methods are commonly based on sender-
only, sender-receiver paired, and receiver only
technologies [Pax97] and [LB99], as well as others

[Sav99]. Current bandwidth measurement tools ha
other problems such as:

• lack of information about the location of a static
bottleneck;

• large amount of time needed to acquire information
• low accuracy of information;
• inability to measure high-speed network links;
• no easy method to share information;
• lack of APIs for local and remote access;
• difficult deployment including modifications to the

operating system kernel;
• only available on a specific platform

3. Purpose of NCS

The primary design goal of NCS is to provide easil
accessible information about the network and encoura
applications to cooperate and optimize their traffic flow i
the Internet. Tuning the TCP window size is a wel
known technique to improve network bandwidt
utilization, but getting reliable information, such a
congestion location (distance measured by RTT
congestion pattern and frequency, destination distan
(RTT), and bottleneck bandwidth, is relatively difficult
Applications need a way to determine an optimal buff
size, since setting an arbitrarily large TCP window no
only reduces throughput, but also hurts the performan
of the entire network [Tie01] [SM98]. The performanc
chart related to TCP windows resembles a Gauss
distribution. A too small or too large TCP window size
will result in sub-optimal throughput.

Knowledge of the bandwidth and the distribution o
the dynamic load is necessary to avoid congestion a
router. To accomplish this, NCS must identify bottleneck
on a specific path and determine if they are static
dynamic. If a bottleneck is determined to be dynamic,
needs to be monitored with a different methodology tha
if it is determined to be static. This kind of information
will not only be useful to applications, but also to
gateways using adaptive routing protocols.

High efficiency, minimal network traffic interference,
and timely and accurate information are all importa
goals of NCS. It is designed to probe for availabl
bandwidth for each segment in a path for a given tim
frame, and to cache acquired information for fast retriev
and exchange. Caching also helps with assembling a
concatenating network segment information in order
reduce redundant probing.

NCS is designed to run as a daemon on each subn
and NCS daemons on different subnets can cooperate
make measurements. The NCS daemon is also able

s

e,
he
es
ial

es
an
he
make measurements in single server mode. In this mode a
single NCS daemon gathers network information
autonomously.

NCS is primarily intended to solve problems on
heterogeneous wide-area networks, not local-area
networks. It is expected to be deployed one per domain or
gateway to achieve monitoring capabilities, provide
information services, and to perform troubleshooting.

4. Algorithms

4.1. Terminology

To aid in our explanation of the NCS algorithms, we
need to first introduce some terminology.

Packet train— A packet train consists of a series of cars
where each car contains one or more packets
(MTUs). The car defines a measurement unit and
cars in the train normally follow each other closely.

Hop-Differential (HD)— In a two-hop (with three nodes
Na, Nb, and Nc) path, the HD is the difference
between the time to send a packet from Na to Nb,
and the time to send the same size packet from Na

to Nc.

Size-Differential (SD)— In a path with two end nodes Na
and Nb, the SD is the difference between the time
to send a packet with size S from Na to Nb, and

the time to send a packet with size S +∆s from
Na to Nb.

4.2. Measurement methods

In order to build an algorithm to characterize the
network correctly, we must first have a fundamental
mathematical model. We then need to develop algorithms
from this foundation. We present here our mathematical
model for network status probing and algorithms for
bandwidth computation using the "sender-only" method.
In the "sender-only" method, transmission and reception
are at the same location; there is no active receiver at the
remote end to measure and feedback the probing request.
This is a complicated method but very powerful since it
requires access to only the sender of the measurement.
We derive a number of algorithms to probe the network
using the sender-only method.

single packet with size differential calculus at the same
node (SPSD).

If we had a receiver running on a remote host, the
receiver process could record the time between the arrival

of the first bit and the last bit of a packet; we refer to thi
statistic as Tps (traveling time per packet size). If we
knew Tps, the link bandwidth could be computed by
dividing the packet size (S) by Tps. Unfortunately, in the
sender-only method, it is not so easy to measure the tim
Tps since we do not have a receiving process on t
remote node. So, we send two packets with different siz
(X and Y) to a remote node and use the size-different
(SD) model to compute T∆ (difference of traveling times

between different sizes of packets). The traveling tim
for the packets are determined from the time to receive
acknowledgment for each packet. Figure 1 shows t
transmission timeline for these packets.

Once we determine T∆, we can calculate the

bandwidth by using∆size (∆s = Sy - SX) divided by T∆:

BW = (SY - SX) ÷ T∆

T∆ = Tpy - Tpx

(Tpx and Tpy are the time between sending the packet and

receiving the acknowledgment for X and Y respectively)

Tpx = (Tpd + Tpsx) + Tqx + Tack_x

Tpy = (Tpd + Tpsy) + Tqy + Tack_y

(Tq includes queuing time for both directions, Tpd is the

propagation delay, Tps is the time to send the packet, and

Tack is the time for the acknowledgment to travel back)

on an empty network (no cross traffic)

Tack_y= Tack_x and Tqx = Tqy = 0

so,

T∆ = Tpsy - Tpsx <F-1>

q-lengthTpd

Tack_x

Tpx Tpy

Tpsx

Tpsy

node-1

Time0

Tack_y

node-0

Figure 1: Timeline showing the transmission of
packets X and Y and their acknowledgements.

ent
by
se
he
te

e
ar
ys
e

al

o
a

m
ffic
at
se
te
o
e.

it
ic
ic
he
e
to
nd
to
e

al

dth

n

to

to

o
e

Therefore, using T∆ and ∆s to compute bandwidth is

essentially equivalent to using Tps and size S in an empty
network.

The above calculations assumed that the round-trip
time remains essentially constant for a given packet size.
But, the maximum size of the packet is limited by the
MTU standard of the network interface. For example, if

the network interface is ethernet, the maximum∆s is less
than 1472 Bytes. When a link bandwidth (BW) is OC-3 or

better, the T∆ will be smaller than 1472× 8 ÷ 155x106 =

75.974µs. A typical non-local round-trip time (RTT) is

greater than 1ms and has a±5% error rate, so the

deviation of RTT (∆RTT), is greater than 50µs. Under
these circumstance, the formula <F-1> becomes

The time difference between the largest packet and the
smallest packet that can be transmitted from a source host

to a middle router is inaccurate when∆RTT has a
magnitude similar to T∆(zero traffic), and thus dominates

T∆. So, this algorithm is only good for probing networks

with capacity up to 100Mb. To solve this problem, we
need the ability to create a larger packet differential to get
accurate results and probe faster networks. The solution to
this problem is to use multiple packets.

multiple packets with size differential calculus at the
same node (MPSD).

The MPSD algorithm uses multiple packet trains to
measure a path hop-by-hop. The SD algorithm is used to
determine the T∆ within a packet train and the T∆ between
packet trains.

Dynamic bottlenecks (as opposed to static bottlenecks)
are caused by cross traffic in the network. The MPSD
method combined with statistical analysis allows us to
analyze cross traffic. When packets travel together and
pass a congested node without separation, they exhibit a
bunching effect, and we can use this fact to detect
dynamic bottlenecks. Dynamic bottlenecks can be

recognized by queuing delays; when a packet train is s
on a network, the packets may become separated
queuing due to cross traffic on busy routers. We can u
this separation to measure the queuing delays. T
distribution of the queuing delays can be used to calcula
available bandwidth on a particular node. Availabl
bandwidth can also be calculated by using line
regression to find where the measured queuing dela
converge and maximum physical bandwidth can b
estimated by eliminating queuing delays using differenti
calculus.

We are also exploiting queuing in our algorithm t
produce packet bunching. In an uncongested network
single stream will not create queuing if every upstrea
link on the path has the same speed. We need cross tra
to cause queuing at the router. By identifying a path th
starts or crosses at a slow network interface, we can u
multiple NCS instances to induce cross traffic and crea
packet bunching in the network. This can allow us t
correctly probe nodes beyond the slow network interfac
When NCS identifies a point in the network where
suspects a slow interface, it injects an additional traff
stream to provide cross traffic and create a dynam
bottleneck in the path. This is intended to ensure that t
packets leaving the dynamic bottleneck will leave th
interface with no space between them. This allows us
effectively speed up packet trains and probe links beyo
a slow interface. Although we can use packet bunching
discover network characteristics, it is not intended to b
used in normal conditions since it creates addition
traffic.

single packet with the same size on hop differential
calculus (SPHD).

This algorithm has been used in tools like
pathchar[Jac97] and pchar[Mah99] to measure bandwi
for links. In this algorithm, a packet with size Sp is sent to
two adjacent nodes. The bandwidth for the link betwee
the two nodes is calculated using the following formula:

BW = Sp ÷ (T2 - T1 - Tpd1-2) <F-2>

where

T1 is the time to transmit packet P from a source
node 1

T2 is the time to transmit packet P from a source
a further node 2

Tpd1-2 is the propagation delay between the tw
different nodes. The propogation delay can b
measured by using a packet of size Sp = 1 bit.

T∆ = Tpy - Tpx
= (Sy÷BW + RTTy) - (Sx÷BW + RTTx)

= T∆(zero traffic)± ∆RTT <F-1’>

where

RTT = Tsys + Tpd + Tps + Tq + Tack

Tsys is the time (7-15µs on idle, or tensµs on busy

systems) to send a packet from user space to the edge of a
network interface card (NIC) or the reverse.

e
he

.
it
r

as
e
et
m
e

he
n
ing
an
e
it

g
er

e
ce
en
es
a

is
,
s
f

he
to
ng
o

the
.

re
ny
o
ts
ly
nd

en
in

he
If we use a packet of size 1 bit to measure Tpd1-2 then
we must subtract that packet from the size Sp so, the
more accurate <F-2> is

BW = (Sp -1) ÷ (T2 - T1 - Tpd1-2) <F-2’>

Unfortunately, different routers have different ICMP
response times. This makes it difficult for algorithms
using hop differential measurements to be accurate. For
instance, pathchar and pchar sometimes give negative
results [Dow99]. We do not use the hop differential (HD)
calculation algorithm in NCS for this reason.

4.3. Physical limitations

Network measurement tools often end up measuring
end system characteristics instead of the network
bandwidth. Before implementing a system based on our
algorithms, we need to investigate the physical
capabilities of the hardware and software so that we can
correctly map the mathematical model to a physical
model. The mathematical model describes an ideal state.
The physical realm has many facts that are not ideal.
Before trying to map our model to the physical world, we
need to understand the characteristics of all the physical
components, such as hardware, software, and operating
systems. The major issue involved is accuracy of the

timing measurements. The∆RTT in <F-1’> is affected by
the clock resolution and other timing issues introduced by
the hardware device drivers and operating system context
switches.

Hardware capability

The most popular network interface adapters (NIC) are
PCI bus-based. The typical hardware platform is x86 and
the x86 based machines are equipped with one or more
32-bit/33MHz PCI buses for the Input/Output (I/O) sub-
system. This I/O subsystem provides a maximum
bandwidth of 132 MBps, which is equivalent to 1 Gbps or
Gigabit speed. However, in practice the full 1 Gbps I/O
throughput is not usually achievable on the PCI bus.

Now let’s consider the throughput from the user space
to the network wire (outgoing direction). The typical
memory bandwidth provided by most current x86

motherboards, using 100MHz DIMM, is about 250∼300
MBps. When data travels from the user memory space to
the kernel memory space (e.g., mbufs in BSD OS), it
takes two memory cycles. Copying data from a mbuf to
the NIC takes 3 memory cycles. A total of 5 memory
cycles are needed to send user data to the NIC. The

maximum throughput for this outgoing data is 400∼480

Mbps (50∼60 MBps) from user space; or 664∼800 Mbps

from the kernel level. To measure a Gigabit network, w
cannot stream data fast enough by simply sending t
packets one-by-one from the user space.

In the incoming direction we have similar problems
When two 1500 byte packets arrive from a Gigab
Ethernet (GigE) network to the NIC, the device drive
copies the first packet from the NIC buffer to a system
buffer. This copy process takes almost the same time
for the second packet to arrive at the NIC. The devic
driver has to then finish processing the second pack
before returning the CPU control to the operating syste
for the context switch. After this, the two packets ar
added to the incoming network queue — Qin — for
applications to read. When a context switch wakes up t
user application waiting on this socket, the applicatio
sees both packets, reads the first packet, and starts tim
the arrival of the second packet. Since the application c
actually read the second packet immediately, the tim
required for processing the second packet is the time
takes to copy it from kernel space (Qin) to the user space
across the system memory bus. Thus, the timin
measurement will reflect the memory bus speed rath
than network bandwidth.

Device driver time delay

The device driver can also introduce skew in th
measurements. In a well programmed x86 network devi
driver the receiving process consists of at least a doz
subroutine calls and at least 100 instructions, and tak
~10 µs of execution time on a 500 Mhz Pentium-II and
750MHz AMD-K7 machines. If an pair of packets arrive
back-to-back at the NIC from an OC-12 link, the time
difference between the last bits of these two packets
19.3µs. On a x86 machine with a 32-bit/33MHz PCI bus
copying a 1500-Byte packet from the NIC to a mbuf take
~11 µs. Thus, without considering the execution time o
any other overhead, the receiving process takes ~21µs to
process a 1500-Byte packet at the NIC and put it into t
incoming network queue. Then, the device driver has
finish the processing for the next packet before releasi
the CPU. So, the user level application will see these tw
packets separated only by the time needed to copy
second packet from kernel memory to the user memory

The skew caused by the device driver and the hardwa
(e.g. PCI bus) can introduce a chain reaction when ma
large packets arrive at a Gigabit NIC back-to-back. T
avoid this chain reaction, the size of the timing packe
has to be small. In the sender only method, the rep
packets are ICMP and so their sizes are between 56 a
92 bytes; small enough to avoid the chain reaction. Wh
NCS is used with a sender and a receiver (not described
this paper), we insert a 28-byte UDP packet between t

r
ing
y
et
m
re
he
s.

n a
st
s
h-
a

1
ime,
rk
s:
the
re
ar
s.

rk
e

es
m
ce
h
e
and
er
of
,
s
g
P
re

ol
.

in
the
re

the
l
e
l

as
t is
n
e

cars for timing purposes. The extra time caused by the
timing packets is subtracted out when calculating the time
differential between cars.

Context switch effects

If the period measured by a timer spans an operating
system context switch, then the measurement will include
the time spent doing the context switch. This time should
not have been included and will lead to a low estimate of
the bandwidth. Generally, a process gets 10 ms of
execution time between context switches. In many cases,
the round trip times (RTT) between hosts on the Internet
is steadily increasing. Ten years ago, the Internet
connection from LBNL to ftp.freebsd.org (15~20 miles)
was 7 hops and had a 50 ms RTT. Today, this connection
has 15 hops and a 98~130 ms RTT, and more than 50% of
the hops on the path have an RTT greater than 10 ms.
When measuring long RTT path segments, a context
switch is likely to occur and introduce significant error.
To avoid this effect, we complete all non-timing related
processes and then voluntarily context switch our process
out for at least 20 to 25 context switch time slices to raise
the process’s priority. Then the process must be scheduled
to run immediately after packets start arriving.

The above hardware and system issues render packet-
pair technology unusable for measuring high-speed
networks. This is the reason why packet-pair based tools,
such as nettimer [LB01] and pathrate, usually either over
or under estimate the bandwidth. Pathrate has identified
this over/under estimate issue and the table II in their
paper [DRM01] shows similar results — 26~28 Mbps —
going between a 100Mbps and a 10Mbps host, and
between two 100 Mbps hosts. Below is the output of
nettimer-2.3.2, [LB99][LB01].

This data is the result of running nettime
measurements between two 500 MHz x86 hosts runn
the Linux operating system, with 1.2Gbps memory-cop
bandwidth. The hosts were both on a Gigabit Ethern
network. The 1.2Gbps nettimer result reflects the syste
memory bandwidth. The 41.6 Mbps and lower reports a
under estimates of the actual available bandwidth. T
correct result should have been between 320~800 Mbp

4.4. Algorithm description

SPSD and MPSD can be used to probe every node o
given path. The SPSD algorithm is a simple and fa
algorithm, but it is only accurate enough for network
with a throughput less than 100Mbps. To measure hig
speed network links, we use the multiple packets with
size differential algorithm (MPSD).

The model of the measurement packets in Figure
assumed that the packets were sent out at the same t
but this is not physically possible using a single netwo
interface card. There are two possible method
asynchronous and synchronous packet trains. In
asynchronous train approach, different length trains a
sent at different times. Each train contains only one c
and these trains travel over the network at different time
So, they might have experienced different netwo
conditions and we cannot simply calculate the tim
differential between trains. Instead, we collect the tim
for running the same size trains. The results fro
individual trains are then processed using a convergen
algorithm. We keep running packet trains until we reac
convergence of the time differential calculations. Th
speed of convergence depends on the network status
train length. The better the network condition is, the fast
the convergence occurs, and the smaller the number
trains that will be required. If long trains are used
convergence will normally be rapid since the long train
tend to average out network fluctuations. These lon
trains are good for tuning TCP buffer sizes since TC
needs a relatively stable buffer size. Short trains a
normally used to determine congestion contr
information but short trains may take longer to converge

The synchronous method sends one multiple-car tra
to a node to analyze the queuing delay, and measure
available bandwidth at a specific time frame. The cars a
queued at the probing machine, and then flushed to
network. On an idle network, the physica
implementation’s timeline will be the same as th
mathematical timeline in Figure 1. In the physica
implementation, many components will introduce skew
described in section 4.3. Because an NCS timing packe
small, the effect introduced by the NIC device driver o
network measurement is minimized. To determine th

nettimer-static-2.3.2 output:
dpsslx04% nettimer --run_dpcap_server

dpsslx01% nettimer --dpcap_servers "localhost dpsslx04"
Cmds: (q)uit, any other key to update
FlowSource FlowDest FI TI Metr Bandwidth (bps)
dpsslx01 solaris 0 0 SBPP 862.10
solaris dpsslx01 -1 0 ROPP 416.24
dpsslx04 dpsslx01 -1 0 ROPP 1,200,000,000.00
dpsslx04 dpsslx01 -1 1 ROPP 1343.95
dpsslx04 dpsslx01 1 0 RBPP 1,200,000,000.00
dpsslx04 dpsslx01 1 1 SBPP 1,343.89
dpsslx01 dpsslx04 -1 1 ROPP 416.00
dpsslx01 dpsslx04 0 0 SBPP 416.05
dpsslx01 dpsslx04 0 1 RBPP 41,600,000.00
dpsslx01 dpsslx04 1 1 SBPP 416.04
solaris dpsslx04 -1 1 ROPP 3,355,472.57

le
at
e
e
he

e
re
.g.,
t

e
l,
ce
n

d
re
d

for

,
t

to
o
is
h
is
us
ing
tus
s

g

it
rs,

the
er
e
re-
ds

ng
es
g
e
e

ued
skew, the first timing chain is analyzed, but not used for
the measurements. The measurement will then use
timings from the rest cars.

There is a limitation on the train size (number of cars)
that can be used in the synchronous method. If the head of
the train returns to the sender before the rest of the train
has been sent then there will be error in the measurement
introduced by the extra loading on the network interface
card and the system. So, the train size depends on the
RTT and the link speed. That is, the train size (num_cars)
has to be shorter than:

max_cars < RTT÷ Tcar

Tcar is the time for a car to travel through the slowest
node along a path. On an OC-3 network with 0.35ms
RTT, the maximum train size is:

35× 10-5 ÷ (MTU ÷ (155× 106)) = 4.5 (MTUs)

Unfortunately, a 4-car train may not be long enough to
characterize a network feature due to the noise introduced
by the hardware. So, a synchronous train may not be able
to probe gateways correctly when the RTT is short. The
train size for a synchronous train is determined by
running an asynchronous train prior to running the
synchronous train. The length of the synchronous train is
then varied from hop to hop based on the RTT of the
target hop and the path speed.

The synchronous approach analyzes the time variation
between each car. It measures the queuing delay caused
by cross traffic for each car, which is used to estimate the
available bandwidth.

5. Building a NCS Infrastructure

5.1. A desktop version NCS — pipechar

Pipechar is a user level application that provides a
command line interface to a subset of the capabilities
available in the NCS sender-only mode. Pipechar runs as
an application rather than a daemon. This offers users and
network analyzers a convenient way to watch a network
path from anywhere. For example, if you were having
network problems when traveling in a desert with your
wireless laptop computer, there might not be a NCS
daemon monitoring the wireless network. With pipechar
on your laptop, you could easily probe the suspected
network path, analyze the problem and determine the
node that is causing the problem.

Pipechar only contains NCS functionality useful for
one-time probes; it is not designed to collect information
over different times frames, or help determine variations

in available bandwidth. Pipechar reports the availab
bandwidth measured during the time frame specified
the command line. Since pipechar will only measur
values less than the maximum bandwidth of th
underlying wire, it also uses simple heuristics to guess t
likely underlying infrastructure and its actual maximum
bandwidth--for example, if the value is more than th
maximum bandwidth of a OC-12 network and there a
some cars that arrived at the system memory speed, e
150MBps, then you are likely dealing with a Gigabi
network.

5.2. NCS as a daemon

Ideally, the core areas of the network should b
monitored relatively continuously. To achieve this goa
NCS was extended from a local service to a global servi
daemon — Network Characterization Service Daemo
(NCSD). The NCSD currently consists of the following
four modules: core service, user API, daemon API an
global service interface. The core service and user API a
the primary modules in NCS, and the daemon API an
global service interface are extended service modules
operation as a daemon.

The core module is responsible for detecting
acquiring, analyzing and caching information abou
network links on a given path. It provides mechanisms
reduce redundant probing. In the single server model, tw
re-probing periods are scheduled. One re-probe
scheduled at higher frequencies on links with hig
utilization to reflect bottleneck status changes. Another
scheduled at lower frequencies to reflect global stat
changes. To monitor global status changes, re-prob
traverses the entire path node-by-node in a sta
confirmation process. Both re-probing processe
introduce minimal traffic impact on the networks bein
monitored.

When the service is running in mutual service mode,
exchanges shared path information between NCS pee
and uses packets to exchange information to complete
bottleneck re-checking process. In the mutual serv
model, the monitoring process is primarily in passiv
mode using ROPP at the remote server. The active
probing is only scheduled once a remote server sen
feedback about abnormal packet-pair traffic.

When NCS runs on an adaptive gateway, the probi
process will use a piggyback like mechanism that reduc
the active probing to zero. This is achieved by insertin
two small UDP packets into a congestion control queu
— Qcc — for a specific destination, one at the head of th
Qcc, and one at the tail of the Qcc. These two UDP
packets are targeted to the same destination as the que

his
he

ic
he
. In
ill
s
ut

te
n
.

n
oth
lts

al
ic
he
fic

]
en
s,
.

ial
g.

ral
the

ket
to
de
n
D
d
et/

/
fic
S

packets with an unserviceable destination port, so we will
get two ICMP packets back with time separation to
compute current available bandwidth based on the size of
queuing data between these UDP packets.

The user API defines a set of protocols and data
structures that allow applications to query the network
information from NCS. These protocol and data structures
are described in ncs-api.h in the NCS distribution. A basic
query API library for C is also available in the NCS
distribution; the client program, nscC_example.c provides
the mechanisms to use this API.

The daemon API is used by the NCSD services to
exchange information on the common network segments
(links). The goal is to reduce the network probing times
and avoid unnecessary network traffic. It combines the
user API with the neighbor NCS information exchange
protocol (NIEP), which is used for gathering shared link
status to form a new path database. For example, in
Figure 2, if status for paths A-F (A-a-d-e-f-g-F) and B-C
(B-b-c-e-C) has been initialized, then to get G-E status,
only the link g-E needs to be probed in single service
model, and no probing is needed in mutual service model.

The NCS hierarchy is designed to operate in a manner
similar to DNS. Every subnet might have a basic NCSD,
and every area (e.g, a city) can use a level-1 NCSD to
control up to 64K basic NCSDs in the area. A level-2
NCSD is deployed within a large region, such as the Bay
Area or for a state. The level-2 NCS can control up to
64K level-1 NCSD, and level-3 NCS can control up to
64K level-2 NCSD, etc. The maximum number of levels
that can be used in the NCS hierarchy is 4~8. The
limitation in depth is created by the search algorithms
used to assemble a new path from NCS caches. For
example in Figure 2, in order not to probe the path G-E,
we need to find whether any NCSDs have cached the link
information for b-c, c-e, e-f and, f-g. The initial search
inquiry is sent from a basic level NCSD to its leader
(level-1 NCSD), and the leader starts the search algorithm
to gather all required information and assemble a partial

or completed new path characteristic database. T
process involves LxMxNxP cache access. Where L is t
number of NCS levels; M is the number of level-1
NCSDs invoked; N is the average number of bas
NCSDs invoked at each level-1 daemon; and P is t
average number of paths cached at each basic NCSD
practice, L is usually small, so the linear search w
normally be O(NxMxP). NCSD implements mechanism
to reduce the time of this search to a constant O(C), b
these mechanisms will be described in a later paper.

These features, when combined with the appropria
choice of algorithms to collect the information, result i
an easy to use service with a low impact on the network

6. Experience with the NCS Implementation

In this section, we describe the NCS implementatio
and present some results from using pipechar on b
normal and problematic networks. We compare the resu
with results from pchar and Web100 on the norm
networks, and use pipechar to identify dynam
bottlenecks on the problem network. We also compare t
processor usage and the amount of network traf
generated by the network measurements of the tools.

6.1. Implementation

NCS was originally developed for use with an LBNL
implementation of adaptive gateways. It is written in C
and uses an Auto-Configuration System (ACS) [Jin91A
that makes it relatively easy to compile. NCS has be
compiled and tested on several common UNIX platform
such as Solaris, Linux, FreeBSD, IRIX and Digital UNIX

On FreeBSD, NCS makes use of some spec
features, such as the kernel timer and zero traffic probin
The FreeBSD operating system provides seve
advantages. First, since FreeBSD provides access to
kernel source, it is easier to obtain an accurate pac
arrival time. Secondly, FreeBSD provides a user API
determine the NIC settings such as speed, duplex mo
and connector type. Additionally, FreeBSD provides a
easy to use development program interface, called KL
(dynamic kernel linker), which makes kernel relate
development much easier. Only one kernel file, /sys/n
if_ethersubr.c, needs to be modified to allow
measurement of timing information for all incoming
outgoing packets and packet manipulation for zero-traf
probing. This patch code is available with the NC
distribution.

A

B

C

D

F
E

a

b

c

d

e f

g

G

Figure 2 : NCS information exchange

r
,
to
.5

ar,
r

ts.
on
ed
s
the
d
).

8.
G
ts
s

5
T1
6.2. Measurement results

In Figure 3, a problem was reported from LBNL to
goshen.mcs.anl.gov — GigE all the way, but the
maximum throughput was less than 100Mbps. In this
graph, line 1 shows how a dynamic bottleneck was
detected by forcing packet bunching at router 5. When the
Argonne personnel reset the routing path to check the
correctness of detection of the dynamic bottleneck, they
removed node 4, and put another router after 5 (to make
the new path the same length as the old path), and we saw
the bottleneck move from router 5 to router 4 (line 2 -
switched), and we were still able to measure the rest of
the links correctly. Argonne personnel confirmed that
routers 4 and 5 had been switched. Line 3 shows the
results after the Argonne personnel restored the original
router configuration. The variation in measurements
reflects changes in the dynamic bandwidth along the path.

In Figure 4, we compare the amount of time required
to run pipechar and pchar (execution times in parentheses)
to probe every node on the path from LBNL to ANL (3
hops GigE, 3 hops OC-3, and 3 hops DS3) during normal
traffic conditions. Pipechar measured correctly the

available bandwidths of each of the links while pcha
exhibited significant errors on the GigE and OC-3 links
and better results on the DS3 links. Pipechar took 1.5
8.6 minutes to generate the results while pchar took 1
hours to report on the same path.

When a problem of poor connectivity from LBNL to
www.schwab.com was reported, we ran pchar, pipech
and pipechar -PxCHAR (pipechar’s modified fast pcha
algorithm) on that path and got some surprising resul
Figure 5 shows the results of the runs to the destinati
via ESnet. Pipechar shows that the bandwidth dropp
sharply between hops 3 and 5, and only minor traffic wa
recorded between hops 5 and 8. This data shows that
connectivity problem was likely beyond hop 8 (hop 9 an
further were believed to be part of a private network
Traceroute was also unable to penetrate beyond hop
ESnet provided us with physical bandwidths and MRT
graphs for the tested links. The information and plo
confirmed the test results of pipechar. Confirmation wa
obtained by subtracting the traffic indicated in the MRTG
graph from the physical bandwidth.

The low bandwidth between hops 4 and 5 in Figure
is because the link was shaped (carved) to provide

Figure 3 : NCS Dynamic Bottleneck Detection

Figure 4 : Comparison of pipechar and pchar

Figure 5 : NCS, PxCHARand pchar results
 for a broken network path

Figure 5a : NCS and PxCHAR results (log scale)

in

rk

at
a

to
for
se

on
is
his
ly

gn
e
e

speed (see Figure 5a). This shaping caused the hop
differential based probing to stop functioning. In Figure 5
we can see that both pchar and PxCHAR were unable to
measure beyond hop 5, whereas, pipechar went through
the shaped tunnel before stopping at the private network
segment.

Figure 6 shows the results of tests between Web100
[Web99] experimental hosts at LBNL and SLAC. The
path between these sites has a bandwidth asymmetry. A
UDP stream from LBNL to SLAC can get 67Mbps, and
92Mbps in the reverse direction. But, a normal TCP
stream from LBNL to a FreeBSD machine at SLAC gets
around 6Mbps (34 Mbps if the TCP buffer size is tuned).

The pipechar result shows that the maximum available
bandwidth from LBNL to SLAC is about 67 Mbps due to
a bottleneck in the last link to the destination host. .

Paths that are asymmetric in length will not affect our
algorithm, because this asymmetry introduces a constant
into the roundtrip time. It increases or decreases the RTT
for each car, but not the time interval between cars. This
change in the round trip time is subtracted out in our
algorithm.

6.3. Traffic and processor utilization

Compared with other existing tools, NCS is a
lightweight probing process. On a 200MHz x86 machine,
the cpu usage of NCS is about 1% of the available
capacity. On machines with a CPU faster than 500 MHz,
the cpu usage is less than 0.3%. Network usage is also
low. Since the train size is adaptive, we have a range of
minimum to maximum packets. In synchronous mode,
NCS sends 4-24 packets (one train with 4-12 cars) to a
node (average of 14 packets); in asynchronous mode,
NCS sends 3-8 trains (each with 6-12 packets) to each
node (average of 54 packets). Pchar sends 1472 packets to
each node and uses a size range between 32 and 1500
Bytes. Pathrate always sends about 4360 packets to
measure an end-to-end bandwidth. Using the same
number of packets as pathrate, NCS could have probed

~310 nodes in synchronous mode, or ~80 nodes
asynchronous mode.

Figure 7 is an ESnet MRTG graph that shows netwo
traffic for a time period from 5am to 10am in the
morning. NCS performed very aggressive probes
10:37am, 10:51am and 10:55am. Each probe had
duration of 55 seconds. Figure 7a shows the 10am
11am time frame expanded to show bandwidth used
probing. The rectangles indicate the testing periods. The
probes correspond to the probes discussed in Figure 5.

7. Summary

Available bandwidth, round trip time, dynamic
bottleneck and load balancing are critical to congesti
control and performance tuning. We presented in th
paper a new mechanism, NCS, designed to provide t
information. NCS can be run as a daemon or interactive
using the pipechar command line interface. NCS’s desi
and algorithms provide efficient, timely and accurat
information for every link along a path. The NCS servic

Figure 6 : Pipechar test over an asymmetric path

Figure 7 : MRTG graph for pipechar BW usage

clock time (a.m.)

at node 5 in Figure 5

Figure 7a : An exploded view of 10:00~11:00 from
 Figure 7 with the pipechar probe times indicated

In

o

e
s,

t

to-
,

P

rk
m

,

g
,

does not require any special environment and can return
information in real time.

NCS provides several important enhancements to the
previously available algorithms for network measurement.
These enhancements bring improvements in both
accuracy of the results and efficiency of the network
probing. It is our experience that a probe for available
bandwidth of a path using pipechar completes in a
relatively short amount of time. Early results indicate that
NCS is not only a good network characterization tool, but
it is also good for network monitoring, problem
identification and troubleshooting.

8. Acknowledgments

We would like to thank Brian Tierney and Jason Lee
for their feedback on this paper and for providing
problematic networks for testing; and to thank Bill
Nickless and other Argonne Lab. folks, Joe Burrescia,
Chin Chen Guok and ESnet for assisting with our tests
and confirming the results.

9. References

[Bla95] Uyless Black, Network management standards: SNMP,
CMIP, TMN, MIBs, and object libraries. New York: McGraw-
Hill, c1995.

[CC96] R.L. Carter and M.E.Crovella, "Measuring Bottleneck
Link Speed in Packet-Switched Networks," Performance
Evaluation, vol. 27,28, pp. 297-318,1996.

[Cho98] Kenjiro Cho, "A Framework for Alternate Queuing:
Towards Traffic Management by PC-UNIX Based Routers", In
Proceedings of the USENIX Annual Technical Conference,
June, 1998

[DRM01] C. Dovrolis, P. Ramanathan, D. Moore, What do
packet dispersion techniques measure? In Proceeding of IEEE
INFOCOM, April, 2001.

[Dow99] Allen B. Downey, Using pathchar to estimate Internet
link characteristics, proceedings of SIGCOMM 1999,
Cambridge, MA, September 1999, 241-250.

[FJ93] Floyd, Sally and Jacobson, Van. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM Transactions
on Networking, Vol. 1 No. 4, August, 1993.

[FKSS01] W. Feng, D.D. Kandlur, D. Saha, K.G. Shin,
"Stochastic Fair Blue: A Queue Management Algorithm for
Enforcing Fairness", IEEE INFOCOM, April 2001.

[Jac88] Van Jacobson. Congestion Avoidance and Control.
Proceedings of ACM SIGCOMM, 1988.

[Kes91] Srinivasan Keshav. A Control-Theoretic Approach t
Flow Control. In Proceedings of ACM SIGCOMM, 1991.

[LB01] Kevin Lai and Mary Baker, "Nettimer: A Tool for
Measuring Bottleneck Link Bandwidth", Proceedings of th
USENIX Symposium on Internet Technologies and System
March 2001.

[LB99] Kevin Lai and Mary Baker. Measuring Bandwidth. In
Proceedings of IEEE INFOCOM, March 1999.

[Mil97] Mark A. Miller. Managing internetworks with SNMP:
the definitive guide to the Simple Network Managemen
Protocol, SNMPv2, RMON, and RMON2. New York, M&T
Books, c1997.

[Pax97] Vern Paxson. Measurements and Analysis of End-
End Internet Dynamics. PhD thesis, University of California
Berkeley, April 1997.

[SM98] J. Semke, M. Mathis, and J. Mahdavi, "Automatic TC
Buffer Tuning", Computer Communication Review, ACM
SIGCOMM, vol. 28, No. 4, Oct. 1998

[Sav99] Stefan Savage. Sting: a TCP-based Netwo
Measurement Tool. In Proceedings of the USENIX Symposiu
on Internet Technologies and Systems, 1999.

[Tie01] B. Tierney, "TCP tuning guide for distributed
application on wide area networks", USENIX & SAGE Login
vol. 26, No. 1, Feb. 2001

[DiffServ] http://www.ietf.org/html.charters/diffserv-
charter.html

[Jin91] http://www.itg.lbl.gov/~jin/network/net-tools.html

[Jin91A] http://www.itg.lbl.gov/~jin/ACS.html

[Jac97] ftp://ftp.ee.lbl.gov/pathchar/

[Mah99] http://www.employees.org/~bmah/Software/pchar

[RFC2474] K. Nichols, S. Blake, F. Baker, D. Black,
"Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers", RFC 2474, December 1998

[RFC2475] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wan
and W. Weiss, "An Architecture for Differentiated Services"
RFC 2475, December 1998.

[RFC2990] G. Huston, "Next Steps for the IP QoS
Architecture", RFC 2990, November 2000

[Web100] http://www.web100.org

	Abstract
	1. Introduction
	2. Related Work
	3. Purpose of NCS
	4. Algorithms
	4.1. Terminology
	4.2. Measurement methods
	single packet with size differential calculus at the same node (SPSD).
	multiple packets with size differential calculus at the same node (MPSD).
	single packet with the same size on hop differential calculus (SPHD).

	4.3. Physical limitations
	Hardware capability
	Device driver time delay
	Context switch effects

	4.4. Algorithm description

	5. Building a NCS Infrastructure
	5.1. A desktop version NCS — pipechar
	5.2. NCS as a daemon

	6. Experience with the NCS Implementation
	6.1. Implementation
	6.2. Measurement results
	6.3. Traffic and processor utilization

	7. Summary
	8. Acknowledgments
	9. References

