12/12/2001

095: 34 6506043957

NASA NAS PAGE

NAS Grid Benchmarks: A Tool for Grid Space Exploration

Michael Frumkin
NASA Advanced Supercomputing Division
M/S T27A-2, NASA Ames Research Center
Moffett Field, CA 94035-1000
frumkin@nas.nasa.gov

Abstract

We present a benchmark suite for computational Grids.
It is based on the NAS Parallel Benchmarks (NPB) and
is called NAS Grid Benchmark (NGB) in this paper. We
present NGB as a data flow graph encapsulating an in-
stance of an NPB code in each graph node, which commu-
nicates with other nodes by sending/receiving initialization
data. These nodes may be mapped to the same or different
Grid machines. Like NPB, NGB specifies several different
classes (problem sizes). NGB also specifies the generic Grid
services sufficient for running the suite. The implemen-
tor has the freedom to choose any Grid environment, We
describe a reference implementation in Java, and present
some scenarios for using NGB.

1 Intreduction

The NAS Parallel Benchmarks (NPB) were designed to
provide an objective measure of the capabilities of hard-
ware and software systems to solve computatjonatly inten-
sive Computational Fluid Dynamics problems relevant to
NASA. They are considered representative of an important
segment of high performance scientific computing. At the
time of NPB's inception in 1991 there were no accepted
standards for progtamming parallel computers, and there
was great diversity in hardware systems. It was deemed that
any specific benchmark implementation would be unfairly
biased towards a certain system configuration or program-
ming patadigm. Hence, the first version of NPB, referred
to as NPB1 [1], consisted of a paper-and-pencil specifica-
tiom, with virtually all aspects of the implementation left to
the user. A reference implementation, mostly in Fortran,
was provided for the convenience of users, but no claims
were made about algonthmic efficiency or appropriatcncss
for any parcticular system.

Despite ifs apparent lack of concreteness, NPB1 was em-

Rob E. Van der Wijngaart
Computer Sciences Corporation
M/S T27A-1, NASA Ames Research Center
Moffett Field, CA 94035-1000
wijngaar@nas.nasa.gov

braced by vendors and researchers, and served as a fruit-
ful testing ground for programming tools and compiler op-
timizations. Once a certain convergence in programming
paradigms was reached, MPI (Message Passing Imerface)
being the first generally accepted standard, a source code
implementation, termed NPB2, was released [2], which be-
came the de facto yardstick for testing (parallelizing) com-
pilers and tools. Recently, NPB2 was extended to other pro-
gramming paxadigms: OpeoMP, HPF {(High Performance
Fortran) and Java [S, 6, 7].

Computational and data Grids (8, 16] are currently in
a state of devclopment comparable to that of high perfor-
mance computers at the end of the 1980s. Several prototype
Grid tools exist (e.g. Globus [9), Legion {18), CORBA [3],
Sun Grid Bngine [17), Condor (11)), whose relative mer-
its are not well understood. Here we present a new bench-
mark suite, the NAS Grid Benchmarks (NGB). which aims
to provide an exploration tool to Grid developers and users,
similar to those which NPB provided to high-performance
computing devetopers and users. NGB addresses one of the
most salient featwres of Grid computing, namely the ability
to execute distributed, communicating processes.

Our pencil-and-paper specification will serve as a uni-
form tool for testing functionality and efficiency of Gnd
environments, giving Grid developers a clear target. How-
ever, Grids add new diruensions to the computational pro-
cess that require us to reconsider the traditional approach
10 benchmarking, which focuses on testing the limits of a
single computer system. For example, the Grid is heteroge-
neous, involving different computers, networks, file servers,
and execution environments. Moreover, Grid configurations
ate dynamic, deprecating common metrics like peak per-
formance and throughput, and highlighting others, such as
latency and failure localization.

Keeping these features in mind, we propose job
mrnaround time as the most important quantitative ruetric
for henchmarking the Grid. Derivative metrics, such as ag-
gregate cost of tesources (disk space, CPU time, memory.

82/09

12/12/28@1 05 34

6506843357

network bandwidth) used to complete the henchmark, are
currently considered too poorly defined to have utility out-
side the benchmarker's own organization. NGB will pro-
vide a more detailed report on the performance of Grid
components, including time to communicate data between
any two benchmark tasks executed on (potentially different)
platforms, and wall clock time for each task. But since NGB
does not specify how many or which resources to employ,
the detailed roport is considered diagnostic tn pature.

While it may be desirable to determine Grid efficiency in
terms of performance schieved divided by resources used,
this is an unattainable goal in the near future, since it re-
quires normalizatjon of resources (Grid fungibility). But
it may well be useful for a Grid developer to examine in-
crease, or degradation, of NGB performance if a single re-
souzce within a baseline configuration is varied, such as
number of processors in a parallel computation, or number
of nctwork hops traversed in a distributed computation.

We expect that initial quantitative NGB performance,
even on nominally identical Grid configurations, will show
poor repeatability, because performance is often influenced
by (currently) unpredictably fluctuating loads on certain
Grid components. As Grid computing matures, morte em-
phasis will be placed on reliability and quality of service.
This will be achieved by more explicit control over Grid re-
sources that will allow the user to allocate processing power,
memory, network bandwidth, and disk space. NGB can help
determine how well claimed resources are actually being
delivered. However, such resource control will not be part
of the NGB specification, just as the ability temporanly to
suppress time sharing on the processors excouting an NPB
code was not part of the NPB specification.

We provide an NGB reference implementation in Java—
a prototype of which is described in this paper—for the
convenience of Grid developers. This implementation al-
lows us to demonstrate some NGE usage scenarios, and
to show some interesting effects that users may encounter
when benchmarking a Grid.

2 Grid Benchmarking Requirements

Grids provide informational and computational environ-
ments that deliver new qualities and services to users, Grid
benchmarks should explore these new parts of the Grid
space and should avoid mapping previously covered com-
puting areas. The Grid’s informational component should
provide fast, well focused and detailed search, storage, and
retrieval of data, reliable collaboration between users, ac-
cess to remote instruments, etc. These services, which
are relatively application specific, require theix own set of
benchmarks, to be doveloped ¢lsewhere. We concentrate,
instead, on the computational aspeet of the Grid environ-
ment, i.e. services used primarily for ranning computation-

NASA NAS

ally demanding jobs and processing substantial data sets.
Hence, nseful benchmark metrics are turnaround time and
throughput. Turparound time is time between starting a job
and obtaining the resulting data. Throughput is submission
volume possiblc without affecting the turnaround time.

Pot benchmarking throughput, the Grid has to be
stressed to the limit of one of its resources. This can be
done, for example, by submitting a large number of in-
stances of the same job with different injtial data (parameter
study). A throughput benchmark must be intrusive, con-
suming at least one of the Grid resources completely. We
consider intrusion undesirable for 2 Grid benchmark, one
of whose important functions is to provide continual infor-
mation on the health of the Grid environment. Hence, we
will not measure throughput.

NGB tasks are defined in terms of data flow graphs (see
Sections 3 and 4), whose nodes and arcs represent computa-
tions and communications, respectively. An NGB measure-
ment of Grid performance is 4 report on the execution trace,
which includes durations of execution of cach node and of
transmission along each arc. Summation of such durations
along a critical path in the instantiation of the NGB data
flow graph (Section 4) on the Grid gives turnaround time,
which is also reported.

NGB should be representative of tasks typically exe-
cuted on the Grid, but should also specify well-defined,
measurable quantities of work. This preciudes, for example,
any interactive or nondeterministic processes. A benchmark
performance figure is meaningless if the results ace wrong,
s0 it is important that a reliable verification test be provided.

NGB should also measure, to some extent, the data trans-
fer capabilities of the communication network, particularly
latency end bandwidth. Latencies are automatically in-
cluded in the turnaround time if communicating tasks of
the NGB are ¢xccuted on a pontrivial subset of the Grid.
In order to test bandwidth the benchmark has to send size-
able data volumes. Suitable candidate applicadons for Grid
computing are relatively coarse-grained, as latencies be-
tween geographically separated Grid platforms are often
large. This characteristic should be reflected in NGB.

NGB should contain little initialization data. This is a
consequence of the paper-and-pencil specification of NGB,
since any initialization data should be described in just a
few pages of typed text. While this reguirement could be
waived, in principle, once a down-loadable NGB source
code ioplementation is provided, we consider a fairly small
source code distribution size desirable.

Grid resources are typically controlled by a certification
mechanism that allows a legitimate user to access resources
anywhere on the Grid. This means that the user’s ability to
run jobs is indcpendent of having accounts on the individual
machines constituting the Grid. NGB should test the avail-
ability of this and other basic Grid services. Paraphrasing

PAGE ©3/83

12/12/2081

85:34 65860843957

the nomenclature of [8, p. 37], we consider the following
set of basic services necessary and sufficient for running
jobs on the Grid: authenticate, create task, communicate.
The NGB uscs these three services and can be executed in
any Grid implementation that provides them.

NGB will neither measure nor require seeurity and fault
tolerance, even though these are crucial ingredients of a suc-
cessful Gnd. They are very hard to quantify. However, it is
envisioned that they will become un informal part of NGB
performance reporting. For example, turning security on/off
may affect NGB wrnaround time, and NGB failure rates can
indicate Grid reliability. Similarly, while it is vital to know
which resources were involved in a certain performance re-
sult, we have no way of formalizing their characterization at
present. We envision that resource usage will also become
an informal part of NGB performance reporting, for study-
ing the trade-off between turnaround time and consumed
resources, and cventually for pricing Grid resources.

3 NGB Design

To meet the Grid benchmarking requirements we base
NGB on two fundamental concepts, listed below.

Busic set of Grid services. Services necessary and suf-
ficient for running NGB are authentjcate, create task, and
communicate (see Section 2). They do not assume any
particular implementation, hence no Globus, Legion, Con-
dor, CORBA, Grid Engine or other middleware bindings are
specified.

Modular structure, open architecture. Ap NGB of a par-
ticular class (problem size) is specified by a data flow graph
encapsulating NGB tasks (NPB codes) and communications
between these tasks. Bach node and arc of the graph is en-
dowed with a verification test to determine correctness of
its action. This makes it easy to change parameters, orga-
nize the benchmarks into classes, and diversify the tasks in
the future. Users can augment or customize the NGB with
their own favorite applications, as long as proper verifica-
tion tests are supplied, but only the NAS NGB version al-
lows comparisons among different users. The decision to
use NPB codes in the baseline NGB, specifically BT, SP,
LU, MG, and FT, is motivated as follows.

« The NPB codes are well-studied, well-understood,
portable, and widely accepted as scientific benchmoark
codes.

» Solid verification procedures for NPB already exist.

o The NFB codes require no interaction, and no data files
10 statt, in principle (but see next item),

« The NPB codes produce sizeable arrays representing
solutions on discretization meshes. These can be used

NASA NAS PAGE

as input for any of the other codes, since each is based
on structured discretization meshes covering the same
physical domain. Hence, it is faitly straightforward
to construct simple but plausible dependency graphs
representing scts of interrelated tasks on the Gnd,
with significant data flows (solution arrays) connect-
ing them.

» The granularity of the benchmark can sasily be con-
trolled by varying the number of iterations carried out
by each NPB code.

The NPB codes perform operations that can sensibly
symbolize scientific computation (Bow solvers: SP,
BT, LU), post-processing (data smaoother: MG), and
visualization (specitral unalysis: FT). Collections of
such tasks are desmed suitable capdidates for Grid
computing.

Good parallel versions of all NPB codes cxist, which
enables balancing the load of complicated Grid tasks
by assigning different amounts of computational re-
sources to different subtasks.

4 NGB Data Flow Graph

a4/89

An imstance of NGB comprises a collection of NPB -

codes, each of which solves a problem defined on a fixed,
logically cubic discretization mesh. Each NPB code (BT,
SE, LU, M@, or FT) is specified by class (mesh size), num-
ber of iterations, provider(s) of the input data, and con-
sumer(s) of solution values. Hence, an instance of NGB
is specified by a Data Flow Graph (DFG), see Figure 1.
The DFG consists of nodes connected by directed arcs. It is
constructed such that there is a directed path from any node
to the sink node of the graph (indicated by Report in Fig-
ure 1). This is necessary to ensure that any failing node will
be registered.

AlINPB’s mesh based problems are defined on the three-
dimensional unit cube. However, even within the same
problem class (S, W, A, B, or C) there are different mesh
sizes for the different benchmark codes. Discretization
points of meshes of different size generally do not coincide.
Tn order to use the outpat from one NPB code as input for
another, we interpolate the data tri-linearly, and take arith-
metic averages of multiple inputs. The methods used by
NPB preserve numetical stability under these operations.

DFG Node. Each node (except Launch and Report) rep-
resents a single computational task. It has a set of input
and ontput arcs, an interpolator, a solver, and a verifier. If a
node is connected to the source node (indicated by Launch
in Figure 1), it receives control directives to initiatc the com-
putation. Otherwise it receives input. data froma nther nodes
through its input arcs, verifies correctness of the input data

12/12/2091 05:34 6506843957
Embarrassingly Distributed (ED) Long Pipe (LP)
Launch
BTs SP.S

LUS

NASA NAS PAGE

Compound Pipe (CP)

Mixed Bag (MB)

!
s | BTs |

-

Figure 1. Data flow graphs of NGB, class S (sample size). Solid arrows signify data and control flow.
Dashed arrows sighify control flow only. Subscripts of MB tagks indicate the number of fterations

carried out by an NPB codae.

and interpolates it to calculate initial conditions. Each node
applics the solver to the initial dats, and venfies comect-
ness of the computed result. If the node is not connected
to the sink node (indicated by Report in Figure 1), it sends
the computed sofution to all output arcs. Otherwise it sends
verification status and timing information to the sink node.
Each node contains an instance of NPB2. The implemen-
tor is free to attach to the node information on the com-
putational resources requited for performing its functions,
which ¢an be used by a scheduler, see below.

DFG Arc. An arc has tail and head nodes. It represents
transmission of data from the tail to the head. The imple-
mentor is free to attach to the arc information on the com-
munication resources required for performing its functions,
which can be used by a scheduler, see below. Communica-
tion along arcs takes place nominally through files (sareams,
sockets). These may not be cached, but must be created
ancw for each benchmark run. Dashed arcs in Figure 1 con-
nect the nodes Launch and Report to the rest of the graph.
They carry no computational data, but are required for con-
trol, status, and timing.

NGB Graph Set. NGB employs graphs named Em-
barrassingly Distributed (ED), Long Pipe (LP), Compound
Pipe (CP), and Mixcd Bag (MB), as shown in Figure 1. ED
represents the important class of Grid applications called
parameter studies, which constitute multiple independent
runs of the same program, but with different input parame-
ters. At NASA Ames, flow solvers—symbolized by SP—
are often used for such studies. LP represents long chains
of processes, such as a set of flow computations that are rug
one after the other, as is customary when breaking up very
long running simulations into series of tasks. CP represents
chains of compound processes, likc thosc encountered when
visualizing flow solutions as the simulation progresses (see
iternized list in Section 3). MB is similar to CP, but now the

emphasis is on introducing asymmetry. Different amounts
of data arc transferred between different tasks, and some
tasks take longer than others, preseating a tough job to 2
scheduling agent that needs to map DFG nodcs to resources.

Many important scientific applications consist of itera-
tive processes that are naturally defined in terms of cyclic
graphs. Since NGB measures turnaround time, all graphs in
the graphs sct are noncyelic and finite, They can nonethe-
Jess he vsed to mimic iterative. processes, which have as ba-
sic building blocks (sets of) computational modules whose
output can be transformed into input for the same mod-
ule(s). LP, for example, can be viewed as a partially un-
rolled cyclic process.

Nodes and arcs are abstract components of the DFG.
They are instantiated on a particular set of resources on
the Grid, but we do not specify how or where a certain
node or arc of the graph is instantiated. This is part of the
benchmark execution. Executing an arc does not necessar-
ily imply accessing a remote machine; multiple nodes may
be mapped to the same platform.

An NGB of a particular class will be submitted for ex-
ecution on the Grid, presumably to a scheduler. In casc
the user does mot (want to) specify individuel resources for
nodes and arcs, the scheduler can make a decision about as-
signing appropriate Grid resources, depending on the avail-
ability of a description of resources required. This descrip-
tion may include number of floating point operations, mem-
ory size, and I/O velume.

5 Reference Implementation

In keeping with the spirit of the original NPBs, we pro-
vide a reference implementation that confurms to the rules
of the NGB, and can serve as a starting point for develop-
ers or users of other Grid environments. It is envisioned that

@5/a93

12/12/208B1

a5: 34 6506043357

standardization of Grid middleware will lead to one or more
optimized source code implementations that can be down-
loaded and run as is (cf. [2]).

For the implementation we use the Java platform | 10],
since it has all the necessary featurcs for creating a rudimen-
tary Grid and NGB application in a compact and portable
form. Moreover, a mapping of basic Grid services onto
well-established Java constructs is relatively straightfor-
ward, and is specified as follows.

Authentication is provided by the NGB Pad (a Java ap-
plication written for NGB), which requires the user to type
a user name and password. This authentication acts as a
proxy for each NGB task request issued from the NGB
Pad. Java support for restricted access to scrvices provided
by the reference implementation is contained in package
java.security. We use Java to enable task creation
through the object lookup mechanism and native process
creation containedin the java . rmi and java. jni pack-
ages, respectively. Communication (along arcs of the graph)
is bandled by the remote method invocation mechanism and
file /O, contained i the java.rmi and java. io pack-
ages, respectively.

The reference implementation involves two levels: the
Grid level, which provides the basic Grid services, and the
application level, which makes use of the services to imple-
ment the NGB tasks. NGB developers are expected only to
implement the application level.

HiPPI switch

Figure 2. Network topology of machines used
in the experiments.

Grid level. Our rudimentary Grid environment services the
user's requests for mnoing benchmarks and for repoiting
results. Installation of the environment by a Grid adminis-
trator involves the following steps:

NASA NAS

o Install Java registry and bind services to the registry on
all Grid machines (executing NPB codes). At present,
the services are specific to NGB, but they can be made
completely generic. Once they are, the Grid adminis-
trator o longer needs w be involved in instatling user
codes.

o Specify the sccurity policy and eligible usexs.

o Install NGB Pads on Launch machines—from which
NGB execution is initiated—to provide authentication
and access to Grid services. At present, authentication
and the application interface are integrated, which limits
the generality of our rudimentary Grid environment.

Application level. The application level uses the basic Grid
services to implement the NGB. Launch machines are cre-
ated by the insta}lation of the NGRB Pad. The Pad, which can
run on any machine that is able to access Grid machines via
the HTTP protocol, is a graphical user intexface (Figure 3)
that encapsulates the basic Grid services. It reads a textual
description of the DFG, turns it into a graph object, sub-
ouits it for execution on the Grid specified within the DFG,
and collects and displays the benchmark pexformance re-
port. Curreptly, nodes of the DFG have to be mapped onto
the Grid explicidy. The mapping includes the name of a
Grid machine, number of processors used, and a program-
ring paradigm (MPI, Java, HPF, OpenMP). We use an ex-
plicit mapping, since a connection with a Grid scheduler
(resource broker) has not been implemented at the time of
writing. In return, the uscr gets a benchmark performance
report containing turnaround time and verification status for
the whole benchmark, and for each node in the DEG.

Bepchupark installation and execution involves the fol-
lowing steps:

» Compile and install NPBs on Grid machines (currently
requires Grid administrator privileges and is therefore
carried out in the installation step at the Grid level).

¢ Create DFG (in textual format).

o Invoke NGB Pad.

@ Identify self as NGB Grid user.

& Submit DFG for execution on the Grid.

¢ Obtain beachmark report.

Experimental Setup. We installed the NGB services on
a compact Grid comprised of 4 machines at NAS: a 24-
processor SGI Ongin 2000 (O2K), a 16-processor SUN
E10000 (E10K), a 4-processor SUN Ultra-4 ({J4), and a
2-processor SUN Ulgra-60 (U60). The machines were
connected by fast, switched Ethernet—supplemented with
some HIFPI connections—with a typical round-trip time of
0.5 ms, see Figure 2. Only one processor was used on each
of the machines. The NGB Pad ran on a single processor

PAGE B6/09

12/12/2001

05: 34 £5DERA3957

LP.S timings (sec)

412 0.7

i

m Tumaround time
® Accumulated time

S AR To i

NASHA MNAS PAGE

l.ong Pipe -
spriesents a chain
o of fasks, suchy
Losetof flow 1
nputations that -
tie aftes

Figure 3. Prototype NGB Pad Graphical User Interface. Background artwork reproduced with per-

mission of the artist, Julia Frumkin.

SGI Octane-2 by a user who did not have accounts on two
of the four Grid machines.

Experimental Results. We executed the LP.S benchmark
(Figure 1), mapped onto the ring U60-O2K-E10K-U4, in
three modes, illustrated in Figure 4. Here each “wave”
constitutes a snapshot of an instance of LPS, which has
at most one executing task (sharp peak) at any one time.
Figures 4b and 4c each show snapshots of two instances of
LP.S, mapped onto the ring of Grid machines in the same (b)
and opposite (¢) directions, respectively. The co-directed
waves were started at different times, so that they never oc-
cupied the same machine simultaneously. ‘We measured the
turnaround time of LP.S and accumulated CPU time for all
nodes of LPS for a number of runs during a single day.
Results shown in Figure 5 provide quantitative insight into
Grid overhead and timing consistency.

The graphs show that the compact Grid—whose ma-
chines were not running in dedicated mode for our

experiments—exhibited the timing consistency of a single
processor in a multiuser mode, keeping variation of the
turnaround time within 10%. We define Grid overhead as
the difference between total turnaround time—which in-
cludes time spent in communications—and accumulated
CPU time within the nodes of a node critical path. A node
critical path is defined as the critical path of the instantiation
of the DREG when ignoting all communication and synchro-
nization times. For the LP benchmark the Grid overhead
is simply the difference betweon turnaround tine and accu-
mulated CPU time. It follows from Figure 5 that the Grid
overhead was below 5% percent for all cases, indicating that
the communications did not dominato the benchmark exe~
cutions, and that the Java server overhead was acceptable.
Apparently, the load experienced by the NAS machines was
steady during the period of testing.

We also made the following observations in our oxpen-
ments, see Figure 5. Solitary waves (left) exhibited a steady

a7/89

12/12/28081 05:39 6586043957

a) wave : b) wave 2

NASA NAS PAGE 88/89

c) wave 2

—_— wave 1
B\—& o o QéL\Jo\;o

ueo 02K EI0K U2 uen 02K

T oave
C‘—‘{)* /é\q

EI0K U2 U60 Q2K E10K U2

Figure 4. Solitary and binary waves in Grid space. Poaks indicate Prooessor activity. The two binary

wavee travel in the same (b) and opposite (c) directi

ons, respectively.

——
wave 1 tumaround

wave 1 tumamund

weve 2 tumaround

Wiave 1 sccumulated ¢ 50
Wive 2 accumulated CPI

e — e

exparinvern numbec

wave 2 tumaround
wove 1 accumuisted CRL
wave 2 acumulaiod CPU,_'_

sxperiment number

Figure 5. One-day sampling of compact Grig performance using LP.S,

behavior in Grid space. Co-directed binary waveg (middle)
exhibited behavior similar to that of solitary waves. The
second wave, traveling in the “wake” of the first, had a
smaller average Grid overhead. Collisions of antidirected
binary waves (right) resulted in occasional jncrease of Grid
Overhead.

While we should resist drawing deep conclusions from
this sinple experiment, it illustrates how NGB roay serve to
gain insight in the quantitative behavior of distributed ap-
plications on the Grid.

6 Related Work and Conclusions

A number of projects intend to probe the quality of Grid
environments, for example, the Globus Heart Beat Moni-
tor [15] (part of the Globus [9] etacomputing toolkit), the
Network Weather Service {14], aud the simulation projects
WARMSstones [4], MicroGrid [12], and Bricks [13].

The Heart Beat Monitor allows a process to be tracked
and periodic heartbeats to be Seat to onc or more monitors,

The WARMstones project does plag (o provide a touch-
stone for realistic comparisons between scheduling algo-
rithms for wide-area distributed systems, bu j¢ will do so

by simulating the system under considcration and deriving

of Globus [9),

NGB complements the above cfforts by providing stan-
dardized tegts that are not tied to any particular Grid mid-

sion tests of Grid seqvices, and g compare between differ-
ent Grid environments. A ful specification and reference
implementation will be released shortly.
Acknowledgements, This work was supported by the
NASA High Performance Computing and Communications
Program, RTOP #725-10-31. We are grateful to the mem-
bers of the Algorithms, Tools, and Architectures group in
NASA Ames’ NAS division for constructive suggestions,
and to Sandy Johan for reviewing our Java code.

References

[1] DR Bailey. J. Barton, T Lasinski, and H. Simon
(Eds.), The NAS Paralle! Benchmarks. NAS Technical

S

12/12/2p01

B85: 34 6506043957

Report RNR-91-002, NASA Ames Research Center,
Moffett Field, CA, 1991.

{21 D.H. Bailey, T. Harris, W.C. Saphir, R.E. Van der
Wijngaart, A.C. Woo, M. Yarrow. The NAS Parallel
Benchmarks 2.0. NAS Technical Report NAS-95-020,
NASA Ames Research Center, Moffert Field, CA,
1995.

(3] R. Ben-Naten. CORBA: A Guide to Common Ob-
ject Request Broker Architecture. McGraw-Hill, New
York, 1995.

[4] S.J. Chapin, WARMstones: Benchmarking Wide-Area
Resource Management Schedulers. Draft white paper,
Syracuse University,

http://www.hpdc.syr.edu/.chapin/currentproj htmi.

{5] H. Jin, M. Frumkin, J. Yan. The OpenMP Imple-
mentation of NAS Parallel Benchmarks and Its Perfor-
mance. NAS Technical Report NAS-99-011, NASA
Ames Research Center, Moffett Field, CA, 1999.

(6] M. Frumkin, H. Jin, J. Yan. Implementation of
NAS Parallel Benchmarks in High Performance For-
fran. Proc. International Parallel Processing Sympo-
sium, 1999, http://ipdps_eeoennm.edu.

(7} M. Frumkin, M. Schultz, H. Jin, J. Yan. Impiemen-
tation of NAS Parallel Benchnarks in Java. Presented
at a Poster session at ACM 2000 Java Grande Confer-
ence, 2000.

(8) The Grid. Blueprint for a New Computing Infrastruc-
ture. 1. Foster, C. Kesselman, Eds., Morgan Kaufmann
Publishers Inc., San Francisco, C4, 1999.

[9) 1. Foster, C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. Int. J. Supercomputer Applica-
tions, 11(2):115-128, 1997, http://www.globus.org.

[10} C.S. Horstmann, G. Corneil. Core Java 2, Volume 2:
Advanced Features. 4th edition, Prentice Hall, 1999,
see also http://java.sun.com/j2se/1.3/docs.

[11] M. Livny, J. Basney, R. Raman, T. Tannen-
baum. Mechanisms for High Throughput Com-
puting. SPEEDUP Jourmal, Vol. 11(1), 1997,
http://www.c3.wisc.edw/condor/.

{12} H.J. Song, X. Liu, D). Jakobsen, R. Bhagwan, X.
Zhang, K. Taura, A. Chicn. The MicroGrid: a Sci-
entific Tool for Modeting Compwuiational Grids. Proc.
Supercomputing 2000, Dallas, TX,, 2000.

[13] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, U.
Nagashima. Overview of a Performance Evaluation

NASAH NAS

System for Global Computing Scheduling Algorithms.
Proc. High-Performance and Distributed Computing
8, pp- 97-104, 1999.

[14] R. Wolski, N.T. Spting, J. Hayes. The Nerwork
Weather Service: A Distributed Resource Perfor-
mance Forecasting Service for Metacomputing. 1.
Future Generation Computing Systems, 1999, also
UCSD Technical Report Number TR-CS98-599,
1998, http://nws.npaci.edw/NWS/.

[15] Globus Heartbeat Monitor:
http:/fwww.globus.org/hbm/.

[16] NASA Information Power Grid.
http://www.nas nasa gov/TPG.

(17) Codine 5.2 Manual, Revision A. Sun Microsys-
tems, Inc., Palo Alto, CA, September 2000,
http://www.sun.com/gridware.

(18] Legion 1.6, Developer Manual. The Legion Research
Group, Dept. Computer Science, U. Virginia, Char-
lottesville, VA, 1999, hutp://legion.virginia.edu.

PAGE ©9/89

