
12/12/2001 05:34 6506043957 NASA NAS PAGE 02/09

NAS Grid Benchmarks: A Tool for Grid Space Exploration

Michael Frumkin

NASA Advanced Supercomputing Division

MIS T27A-2, NASA Ames Research Center

Moffett Field, CA 94035-1000

f rumkin@nas, nasa. gee

Rob E Van der Wijngaart

Computer Sciences Corporation

M/S T27A-1, NASA Ames Research Center

Moffett Field, CA 94035-1000

wij ngaar@nas, nasa. gee

Abstract

We present a benchmark suite for computational Grids.

It is based on the NAS Parallel Benchmarks (NPB) and

is called NAS Grid Benchmark (NGB) in this gaper We

present NGB as a data flow graph encapsulating an in-

stance of an NPB code in each graph node, which commu-

nicates with other nodes by sending�receiving initialization

data_ These nodes may be mapped to the same or different

Grid machines. Like NPB, NGB species several different

classes (problem sizes). NGB al_o specifies the generic Grid

services sufficient for runnlag the suite. The implemen-

ter has the freedom to choose any Grid enWronmem. We

describe a reference implementation in Java, and present

some scenarios for u_'ing NGB.

1 Introduction

The NAS Parallel Benchmarks (NtrB) were designed to

provide an objective measure of the capabilities of hard-

ware and software systems to solve computadonally inten-

sive Computational Fluid Dynamics problemu_ relevant to

NASA. They are considered representative of an important

segment of high performance scientific computing. At the

time of NPB's ittception in 1991 there were no accepted
standards for programming parallel ¢.omputer_, and there

was great diversity in hardware systems. It was deemed that

any specific benchmark implementation would be unfairly

biased towards a certain system configuration or program-

thing paradigtn. Henc¢, the first version of NPB, referred

to as NPB1 [1], consisted of a paper-and-pencil speeifica_

t.ion, with virtually all aspects of the implementmioa left to

the user. A reference implementation, mostly in Fortran,

was provided for the convenience of" users, but no claims

were mad_ about algorithmic efficiency or appropriateness

for any particular system.

Despite its apparent lack of concreteness, NPB 1 was era-

braced by vendors and researchers, and served as a fruit-

ful te,sti_ ground for programming reels and compiler op-

timirations. Onc_ a certain convergence in prog_ra.uuning

paradigms was reached, MPI (Message Passing Interface)
being the first generally accepted standard, a source code

Implementation, termed NPB2, was released [2],which be-

came the de facto yardo-'tiek for _oting (perallolizing) com-

pilers and tools. Recently, NPB2 was extended to other pro-

gramming paradigms: OpenMP, HPF (High Performance

Fortran) and lava [5, 6, 7].

Computational and data Grids [8. 16] are currently in

a state of development comparable to that of high pea-ref-

inance computers at _e end of the 19g0s. Several prototype

Caid toolsexist (e.g. Globus [9], Legion [18], CORBA [3],

Sun Grid Engine [17], Condor [11]), whose relative mer-

its are not well understood. Here we present a new bench-

mark suite, the N.AS Grid Benchmarks (NGB), which aims

to provide an exploration tool to Grid developers and users,

similar to those which NPB provided to high-performance

computing developers and users. NGB addresses one of the

most salient features of Grid comparing, namely the ability
to execute distdbut_d, communicating processes.

Our pencil-_d-paper specification will serve a.q a uni-

form tool for testing functionality and efficiency of Grid

envirottmentz, giving Grid developers a clear target. How-

ever, Grid, add new dimensiot_ to the computational lifo-

eess that require us to reconsider the traditional approach

to benehmarking, which focuses on testing the lir_ts of a

single computer system. For example, the Grid is heteroge-

neous, involving different computers, networks, file servers,

and execution environments. Moreover_ Grid eo_figurataons

are dynamic, deprecating common metrics like peak per-

formance and throughpuL and highlighting others, such as

latency and failure localization.

Keeping these features in mind, we propose job

turnaround time as the most important quantitative metric

for henchmarkiag the Grid. Derivative metrics, such as ag-

gregate cost of resources (disk space, CPU time, memory.





12/12/2001 @5:B4 6506043957 NASA NAS PAGE 03/09

network bandwidth) used to complete the benchmark, _re

currently considered too poorly deft_ned to have utility out-

side the benchmarker's own organization. NGB will pro-

vide a more detailed report on the performance of Orid

components, including time to communicate data between

any two bencttmark tasks executed on (potentially differon0

platforms, and wall clock time for each task. But sines NGB

does not specify how many or which resources to employ.

the detailed report is eonsidel_.zl diagnostic in nature

While it may be desirable to determine Grid efficiency in

terms of performance achieved divided by resources used,

this is an unattainable goal in the near future, since it re,

quires normalization of resources (Grid fungzMlity). But

it may well be useful for a Grid developer to examine in-

crease, or degradation, of NGB performance if a single re-
source within a baseline configuration is varied, such as

number of processors in a parallel computation, or number

of network hops traversed in a distributed cotup_tafion,

We expect that initial quantitative NGB performance,

even on nominally Identical Grid configurations, wiU show

poor repeatability, because performance is often influettced

by (currently) unpredictably fluctuating loads on certain
Grid components. As Grid computing matures, more em-

phasis will be placed on reliability and quality of service.

This will be achieved by more explicit control eve* Grid re-

sources that will allow the user to allocate processing power,

memory, network bandwidth, and disk space. NGB can help

determine how well claimed resources are actually being

delivered. However, such resource control will not be part

of the NGB specification, just as the ability temporarily to

suppress time sharing on the ptocessorsexecutingan N'PB

code wa._not partof theNPB specificndon.

We provide an NGB reference implementation in Java_

a prototype of which is described in this paper--for the

convenience of Grid developers. This implementation al-

lows us to demonstrate some NGB usage soenarios, and

to show some interesting effects that users may encounter

when benchmarking a Grid.

2 Grid Benchmarking Requirements

Grids provide informational and computational environ-

merits that deliver new qualifies and services to users. Grid

benchmarks should explore these new parts of the Grid

space and should avoid mapping previously covered com-

puting areas. The Grid's informational component should

provide fast, well focused and detailed search, storage, and

retrieval of data, _liable collaboration between users, ac-

cess to remote instruments, etc. These services, which

are relatively application specific, require their own set of
benchmarks, to be developed elsewhere. We concentrate,

instead, on the computational aspect of the Grid environ-

ment, i.e. services used primarily for running computation-

ally demanding jobs and processing substantial data sets.
Hence, useful benchmark metrics are turnaround time and

throughput. Turnaround time is time between starting a job

and obtaining the resulting data. Throughput is submission

volume possible without affecthtg the turnaround time.

l_or henchmarldng throughput, the Grid has to be

stressed to the limit of one of its resources. This can be

done, for example, by submitting a IJwge number of in-

stances stthe same job with different initial data (.parameter

study), A throughput betaehmexk must be intrusive, con-

suming at least one of the Grid nssources completely We

consider intrusion undesirable for a Grid benchmark, one

of whose important functions is to provide continual infor-

nmtion on rite health of the Grid enviro_3ment. Hence, we

will not measure throughput.

NGB tasks are defined in terms of data flow graphs (see

Sections 3 and 4), whose nodes and axes represent computa-

tions and communications, respectively. An NGB meabmre-

meet of Grid performance is a report on the execution trace,
which Includes durations of execution of each node and of

transmission along each arc. Summation of such durations

along a critical path in the instantiation of the NGB data

flow graph (Section 4) on the Grid gives turnaround time,

which is also reported.

NGB should be representative of tasks typically exe-

cuted on the Grid, but should also specify well-defined.

measurable quantities of work- This precludes, for example,
any inleractiveornondeterministicprocesses.A benchmark

performance figuns is meaningless if the results are wrong,

so it is important that a reliable ver_/ication test be provided.

NGB should also measure, to some extent, the data trans-

fer capabilities of the communication network, particularly

latency and bandwidth. Latenci_ ate automatically in-
cluded in the turnaround time if communicating tasks of

the NGB are executed on a nontrivial subset of the Grid

In order to test battdwidth the benchmark has to send size-

able data volumes. Suitable candidate applications for Grid

computing are relatively coarse-grained, as lateneies be-

tween geographically separated C_a'id platforms are often

large. This characteristic should be reflected in NGB.

NGB should contain little initialization dora. This is a

consequence of the paper-and-pencil specification of NOB,

since any irtifialization data should be described in just a

few pages of typed text. While this requirement Gould be

waived, in principle, once a down-lendable NGB source

code implementation is provided, we consider a fairly small

source code distributionsizedesirable.

C-rid resources are typically con_roUed by a certification

mechanism that allows a legitimate user to access resources

anywhere on the Grid. This means that the user's ability to
run job_ is indcpeodcnt of having accounts on the individual

machines constituting the Grid. NGB should test the avail-

ability of this and other basic Grid services. Paraphrasing



1211212001 65:94 GSBG_43957 NASA NAS PAGE 04/09

the nomenclature of [8,p. 37]. we consider the following

set of basic servicesnecessary and sufficientfor running

jobs on the Grid: authenticate, create task, communicate.
The NGB uses the.7_e three services and can be executed in

any Grid/mplemenm6on that provides them.

NGB willneitherme_tgure nor requitesecurityand fault

tolerance,even though thesear_ crucialingredientsof a sue-

cessful Grid. They are very hard to quantify. However, it is

envisioned that they w_l become an informal part of NGB

performance reporting. For example, turning security on/off
may affect NOB turnaround time, and NGB failure rams can

indicate Grid reliability. Similarly, while it is vital to know

which resources were _volved in a cert_n performance re-
suit, we have no way of forma_ their _haracterization at

present. We envision that resource usage will also become

an informal part of NGB performance reporting, for study-

ing the trade-off between tumm_und time and consumed

resources,and eventually for pricing Grid resources.

3 NGB Design

To meet the Grid benehlnarking requirements we base

NGB on two fundamental concepts, listed below.

Basic set of Odd services. Services necessary and suf-

ficient for rtmning NGB are authenticate, create task, and

communicate (see Section 2). They do not assume any

particular implementation, hence no Globus, Legion, Con-

dor, CORBA, Grid Engine or other middleware bindings are

specified.

Modular structure, open architecture. A_ NOB of a par-

ticular class (problem size) is specified by a data flow graph

encapsulating NGB tasks (NtrB codes)and eclxtmut_eations

between these tasks. Each node and arc of the graph is en-
dowed with a veritieation test to detcxmine correctness of

its action. This makes it easy to change parameters, orga-

nize the benchmarks into classes, and diversify the tasks in

the futta_. Users can augment or customize the NGB with

their own favorite applications, as long as proper verifica-

tion tests are supplied, but only the NAS NGB version al-

lows comparisons ar_ong d.iffexe_tusers. The decision to

use NPB codes in the baseline NGB, specifically BT, SP,
LU, MG, and FT, is motivated as follows.

• The NPB codes are well-studied, well-understood,

portable, and widely accepted as scientific benchmark
codes.

• Solid verification la'Oeedures for NPB already exist.

• The NPB codes require no interaction, and no dam files

to start, in principle (but see next item).

• The NPB codes produce sizeable arrays representing
solutions on discreti_ation meshes. These can be used

as input for any of the other codes, since each is based
on structured discretization meshes covering the same

physical domain. Hence, it is fairly straightforward

to construct simple but plausible dependency graphs

rcpre_nting sets of inter_elatexl tanks ctt the Grid,

with significant data flows (solution arrays) connect-

ing them.

The granularity of the benchmark can easily bc con-

trolled by varying the number of iterations c.atried out

by each NPB code.

The _ codes perfot-_ operatio_as thin can mmsibly

symbolize scientific computation (flow solvers: SP,

BT, LL0, post-processing (data smoother:. MG), and

visualization (specu-,du.Mysis: FT). Collections of
such t_sl_ are deemed suitablecandida_s for Grid

computing.

Good parallel versions of all NPB codes exist, which

enabl_ balancing the toad of complicated C_aid tasks

by assigning different amoums of computational re:
gOurCeS to different subtasks.

4 NGB Data Flow Graph

An instance of NGB comprises a collection of NPB

codes, each of which solves a problem defined on a fixed,

logically cubic discretization mesh. Each NPB code (BT,

SP, LU, MG, or FT) is specified by class (mesh size), num-

ber of imrations, provider(s) of the inpm data, and con-
surner(s) of solution values. Hence, an instance of NOB

is specified by a Data Flow Graph (DFG), see Figure 1.

The DFG consistsof nodes connected by directed arcS. It iS

constructed such that there is a directed path firom any node

to the sink node of the graph (indieat_l by Report in Fig-

ure 1). This is necessary to ensure that any failing node will

be registered.

All NPB's mesh based problems are defined on the three-

dimensional unit cube. However, even within the same

problem class (S, W, A_ B, or C) there are different mesh

sizes for the differem benchmark codes. Discretization

po_ts of meshes ofdifferetlt si_¢ generally do not coincide.
In o_ler to use the output from one N"PB code as input fo,

another, we interpolate the data tri-llnearly, and take arith-

metic averages of multiple inputs. The methods used by

/q_ preserve ntm_erieal stability under these operations.

DFG Node. Each node (except Launch and Report) rep-

resents a single computational task. It has a set of input

and output ares, an interpolator, a solver, and a verifier. If a
node is connected to the source node (indicated by Launch

in Figure 1), it r_ceive, conuoi directives to initiate the cum-

putmion. Otherwise it receives input, data from other node,

through its input arcs. verifies correctness of the input data



12/12/2001 05:34 6506043957 NASA NAS PAGE 05/09

Embarrassingly Distributed (F_D) Long Pipe (LP)

..._' P ,...--_ Sp._ I 'i1 I ''

,'7-----; ;,'I-------' ', --'

i b I ,

i I ,_- i I

, '.._. J-."_ '., ,

Compound Pipe (CP) Mixed Bag (MB)

Figure 1. Data flow graphs of NGB, class S (sample size), Solid arrows signify data and control flow.

Dashed arrows signify control flow only. Subsoripts of MB tasks indioate the number of iterations

carried out by an NPB code.

and interpolates it to calculate initial conditions. Each node
applies the solver to the initial data, and verifies correct-

aces of the computed result. If the node is not connected

to the sink node (indicated by Report in Figure 1), it sends

the computed sotutiou to all output arcs. Otherwise it sends

verification status and timing information to the sink node.

Each node contains an instance of }NPIJ2. The implemen-

ter is free to aVatch to the node itfformjation on the oom-

putational resources required fox performing its functions,

which can be used by a scheduler, see below.

DFG Arc. As arc has tail and head nodes. It represents

transmission of data from the tail to the head. The imple-

menter is free to attach to the arc information on me com-

munication resources required for performing its functions,

which can be used by a scheduler, see below. Communica-

tion along arcs takes place nominally through files (s_eams,

sockets). These may not be cached, but must be created
anew for each benchmark run. Dashed arcs in Figure 1 con-

ncct the nodes Launch and Report to the rest of the fjaph.

They carry no computational data, but are required for con-
trol, status, and timing.

NGB Graph Set NOB employs graphs named Em-

barrassmgly Distributed fED), Long Pipe (LP), Compound

Pipe (CP), and Mixed Bag (MB), as shown in Figure 1. ED
representsthe important classof ('}ridapplicationscalled

parameter studies,which constitutemultiple independent

runs of the same program, but with differentinputparame-

ters.At NASA Ames, flow solvers---symbolized by SP-

are often used for such studies. LP represents Iotag chains

of processes, such as a set of flow computations that are run

one after the other, as is customary when brealdJlg up very

long running simulations into series of tasks. CP represents

chains of compound processes, like those encountered when
visualizing flow solutions as the simulation progresses (see

itemized list in Section 3), MB is similar to CP, but now the

emphasis is on introducing asymmetry. Different amounts
of data arc transferred between different tasks, and some

tasks take longer than others, presenting a tough job to a

scheduling agent that needs to map DFG nodes to resources.

Many important scientific applications consist of itera-

five processes that arc naturally defined iu t_rms of cyclic

graphs. Since NOB measures turnaround time, all graphs in
the graphs set are uoncyclic and ftrtilx. They t;an non,he-

lest be used to mimic itexative processes, which have as ba-

sic building blocks (sets of) computational modules whose

output can be transformed into input for the same mod-

ule(s). LP, for example, can be viewed as a partially un-

rolled cyclic process.

Nodes and arcs are abstract components of the DFG.

They are instamiated on a particular set of resources on

the Grid, but we do not specify how or where a certain

node or arc of the graph is instantiatcd. This ispart of the

beuchmaxk execution.Executing an arcdoes not necessar-

ilyimply accessinga remote tnschJne;multiple nodes may

be mapped tothe same platform.

An H(}B of a particularclasswillbe submitted for ex-

ecution on the Cmd, presumably to a scheduler. In cane

the userdoes not (want to)specifyindividualresourcesfor

nodes and arcs,the schedulercan make a decisionabout as-

signingappropriateGrid resources,depending on the avall-

abiGty of a dvscription of resources t'equired. This d_crip-

don may include number of floating point operations, m em-

ery size, and I/O volume.

5 Reference Implementation

In keeping with the spirit of the original NPBs, we pro-

vide a refe[en_e implementation tlmt cunforms to the rules

of the NGB, and can .*.erve as a starring point for develop-

ers or users of other Grid environments. It is envisioned that



12/12/2001 05:34 6506043957 NASA NAS PAGE 06/09

standardization of Grid rMddleware will lead to one or more

optimized source code implementations that can be down-

loaded and run as is (c£ [21).

For the implctaentaUon we use the Java platform [10],

since it has all the necessary features for creating a ruclh_en-

tary Grid and NOB application _ a compact a,d portable

form. Moreover, a mapping of basic Grid services onto
well-established lava e0ns_-uets is relatively stralghtfor-

w_zd, and is specified as follows.

Authentication is provided by the NOB Pad (a Java ap-
plication written for NGB), which requires the user to type

a user name and password. This authentication acts as a

proxy for each NGB task request issued from the NGB

Pad. Java suppo_ for reslzieted access to scrviccs provided

by the reference implementation is contained in package

java. security. We use Java to enable tatyk creation

through the object lookup mechanism and native process

creationcontaiucd in the j non. rml and java. jni pack-

ages,respectively.Communlcat_n (alongarcsof thegraph)

is handled by the remote method invocation mechanism and

file I/O, contained in the J ava. rmi and java. io pack-

ages, respectively.

The referenceimplemantalion involvo_two levels: the

Grid level, which provides the basic Grid services, and the

application level, which makes use of the services to imple-

ment the INGB tasks. NGB developers are expected only to

implement the application level.

HiPPI switch ]

•, et routl_r
Gild "-, - "" ",

, machines .' Launch /
machine ,

U60 : : Octane-2 ,,
/I _ , j fl

Figure 2. Network topology of mseh inca used

in the experiments.

GrM level Our rudimentary Grid environment services the

user's requests for running benchmarks and for repotting

results. Installation of the environment by a Grid adminis-

trator involves the following steps:

o Install Iava registry and bind services to the registry on

all Grid machines (executing NPB codes). At present,

the services are specific to NOB, but they can be made

completely generic. Once they are, the Grid adminis-

trator no longer needs to be involved In Installing user
codes.

o Specify th_ security policy and elj/_bte u_ers.

0 In.stallNGB Pads on Launch machines--from which

NGB execution is initiated-----to provide authentication
and access to Grid services. At p_esent,authentication

and the application interface are integrated, which limits

the generality o± our rudimentary Grid environment.

Application level The application level uses the basic Grid

services to implement the NOB. Launch machines axe cre-
ated by the installation of_e NGB Pad. The Pad, which can

run on any machine that is able to access C_rdd machines via

the HTIP protocol, is a grapkical u,er interface (Figure 3)

that encapsulates the basic Grid services. It reads a textual

d¢scription of the DFO, turns it into s graph object, sub-

mits it for execution on the Grid specified within the DFG,

and collects and displays the benchmark performance re-

port. Currently, nodes of the DFG have to be mapped onto

the Grid expl.ickly. The mapping includes the name of a

Grid machine, mtmber of processors used, and a program-

ming paradigm (MPI, Java, HPF, OponMP). We use an ex-
plicit mapping, since a connection with a Grid scheduler

(resource broker) has not been implemented at the time of

wrldng. In return, the user gets a beachmaxk perforataace

report containing turnaround time and veritication status for

the whole benchmark, and for each node in the DFG.

Benchmark installation and execution involves the fol-

lowing steps:

* Compile and installNPBs on Grid machines (currently

requiresGrid administratorprivilegesand istherefore

carriedout inthe installationstepatthe Grid level).

* Create DFG (in textual format).

* Invoke NGB Pad.

• Identify self as NGB Grid user.

* Submit DFG for execution on the Grid.

* Obtain benchmark repoa.

Experimental Setup. We installed the NGB services on

a compact Grid comprised of 4 machines at NAS: a 24-

processor SGI Origin 2000 (O2K), a 16-processor SUN

El0000 (E10K), a 4-processor SUN Ultra.4 ('[14), and a

2-processor SUN Ultra-60 (U60). The machines were

connected by fast, switched Ethernet--supplemented with

some I-_PPI connections---with a typical round-trip time of

0.5 ms, see Figure 2. Only one processor was used on each

of the machines. The NGB Pad ran on a single processor



1211212001 05:34 850_043957 NASA NAS PAGE 07189

LP,S timings (see)

I Turnaround time
• Accumulated time

Figure 3. Prototype NGB Pad Graphical User Interface, Background artwork reproduced with per-
mission of the artist, Julia Frumkin,

SGI Octane-2 by a user who did not have accounts on two

of the four Grid machines.

Experimentat Results. We executed the LP, S benchmark

.CFigure 1), mapped onto the ring U60-O2K-E10K-U4, in

three modes, illustrated in Figure 4. Here each "wave"

consumtes a snapshot of an instance of LP.S, which has

at most one executing task (sharp peak) at any one time.

Figures 4b and 4c each show snapshots of two iltstanees of
LP.S, mapped onto the ring of Grid machines in the same (b)

and opposite (o) direc6on.% respectively. The co<[i.rected

waves were started at different times, so that they never oc-

copied the same machine simultaneously. We measured the
turnaround time of LP.S and accumulated CPU time for all

nodes of LP-S for a number of runs during a single day.

Results shown in Figure 5 provide quantitative insight into

Grid overhead and timing consistency.

The graphs show that the compact Grid--whose ma-

chines were not forming in dedicated mode for our

experiments-----exhibited the dming consistency of a single

processor in a multiuser mode, keeping variation of the

turnaround time within 10%. We define Grid overhead as

the difference between total ttlmaround time,---which in-

eludes time spent in comraunieations---and accumulated

CPU time within the nodes of a node critical path. A node

critical path is defined as the critical path of the instanfiation

of the DFG wllen ignoring all communication and synchro-
nization times. For the LP benchmark the Grid overhead

is simply the difference between turnaround time and accu-

mulated CPU time. ]t follows from Figure 5 that the Grid

overhead was below 5 % percent for all cases, indicating that
the communications did not dominate the benchmark exe-

cutions, and that the lava server overhead was acceptable.

Apparendy, the load experienced by the NAS machines was

steady during the period of testing.

We also made the followi_ observations in our experi-

ments, see Figure 5. Solhary waves (left) exhibited a steady



12/12/2881 05:34 6586843957 NASA NAS PAGE 88/89

a) wave b) wave 2 C) wave 2

...--.._ - ,-----_ wave I ^------_ wav.._e 1o,,, o .o
U60 O2K EIOK I02 U60 O2K E10K U2 U00 O2K EIOK U2

Figure 4. Solitary and binary wav_m in Grid simee, Peal_ Indicate prooessor activity. The two binary
wav_ travel in the same (b) and opposite {0) direotions, respectively.

fii _. 1_.r,,.,_.,_I

I v4we I acoumulattd _--_

tO 10 10

0 o 0
0 I 2. 3 4 8 $ ? S l 0 2 4 B ¢ 0 2 4 e

Figure 5. One-day sampling of compact Gdd performaloo using LP,$.

behavior inGrid space.Co-directed binarywave, (middle)

exh_bitsdbehavior similarto thatof solitarywaves. The

second wave, travelingin the "wake" of the first,had a

smalleaaverage Grid overhead. Collisionsof antidirectad

binary waves (right)resultedin occasionalincreaseof Grid
overhead.

While we should resistdrawing deep conclusionsfrom

thissimpleexperiment, itillustrat¢_how NOB may serveto

gain insight in the quantitative behavior of distributed ap-

plications on the Grid.

6 Related Work and Conclusions

A number of projects mmnd to probe the quality of Grid

environments, for exm_ple, the Globu, Heart Beat Moni-
tor [15] (part of the Glob_ [9] m.ta_omputlng toolkit), the

Network Weather Service [14],and the sLmulation projects

WARMstones [4], MicroC._d [12], and Bricks [13].

The Heart Beat Monitor allows a process to be tracked

and periodic heartbeats to be sent to one or mor_ mo_dtors,

but it provides no performance statistics, The goal o_ the

Network Weath_ Service is to provide accuratef_recasts

of dynamically chaagi_ performance characteristicsfrom

a distributedsetof metacomputing resources.Itdoes not

aim tO provide a standardized set of tasks whose per/or-

mance on ditferent hardware/softwaro systems can be com-

pared meaningfully.

The WARMstones projectdoes plan to provid_ a touch-

stone for realisticcomparisons between scheduling algo-
rithms for wide-area distributed systems, but it will do so

by simulatingthe system tmde,r cotlsidcrationand deriving

performance results fxom the simulation. The Bricks and

MicroC_cridpmjt_t_ have similar goals, MicroGrid spcciii-

tally targets distributed applications executed under control

of Globns [9],

NGB ¢ompieanents the above efforts by providing stan-

dardized te,ts that m_ not tied to any particular Grid mid-

dlcwar¢,but thatnonethelesscan be executed withina real

Grid environment, This allows NGB to be used forregres-

sion t_sSsof Grid s_vic, ss, and to cox_tp_rc b_tw¢_'n difft_r-

ent Caid environments. A full specification and reference
i_ple_tentation will be released shortly.

Acknowl_gements. This work was supportrM by the

NASA High Performance Computi_8 a_d Con'tmunJcafions

P_ogram, RTOP #725-10-31. We are _ateful tothe mem-

ber_ of the AJgodtb_s, Tools, and A.rchitectur_ group in

NASA Ames' NAS divisionfor constzuctivesuggestions,

and to Sandy Iohan forreviewing our lavacod_.

References

[1] D-H. Bailey, J. Barton, T. Lasinski, and H. Simoo

(Eds. ). The NAS Parallel Benchmarka. NAS Technical



12/12/2001 05:34 8506043957 NAS_ bIAS P_GE 09/09

Report RNR-91-D02, NASA Arne8 Research Cen_t,

Moffett Field, CA, 1991.

[21 D.H. Bailey, T- Harris, W.C. Saphu; R.E Van tier

W_jngaart, A.C. Woo, M. Yarrow. The NAS Parallel

Benchmarks 2.0. NAS Technical Report NAS-95-020,

NASA Ames Research Center, Moffett Field, CA,

1995.

[3] R. Ben-Naten. CORBA: A Guide to Common Ob-

ject Request Braker Architecture. McGraw-Hill, New

York, 1995.

[4] S.L Chapin, WARMsrvnes: Benchmarking Wide-Area

1_esource Management Schedulers. Draft white paper,

Syracuse Univorsity,

http:t/www.hpdc.syr.edu/z:hapin/cur_entproj.htmL

[5] H. J_, M. Frumkin, 3. Yen. The OpenMP Imple-

mentation of NAS Parallel Benchmarks and Its Perfor.

mance, bIAS Technical Report NAS-99-011, NASA

Ames Research Center, Moffett Field, CA, 1999.

[6] M. Frumkin, H. Jin, I. Yen. Implementation of

NAS Parallel Benchmarks in High Performance For-

tran. Proc. l.nternafiottal Parallel Processing Sympo-

sium, 1999, http:lfipdps.eece.unm.edu_

[7] M. Frurakin, M. Schultz, H. J'ia, 1. Yen. Implemen-

tation of NAS Parallel Benchraark4 in Java. Presented
at a Poster session at ACM 2000 Java C_,rande Confer-

ence, 2000.

[8} The Grid. Blueprint for a New Computing Infrastruc-

ture. I- Foster, C. Kesselman, F-Ms-, Morgan Kaufmann

Publishers Inc., San Francisco, CA, 1999.

[9J I. Foster, C. Kesselman. Globuz: A Metacomputin8

lnfra_rtructure Toolkit. Int. J. Supercomputer Applica-

tions, 11 (2): 115-128, 1997, http://www.globus.org.

[10] C.S. Hotstmaxtn, O. CornelL Core Java 2, Volume 2,"

Advanced Features. 4th edition, Prentice I-laD, 1999,

see al_o htap:/ljava.sun.comlj2se/1,3ldocs.

[11] M_ Livny, J. Basney, R. Rarnan, T. Tarmea-

baum. Mechanisms for High Throughput Corn-

puting. SPEEDUP Journal, Vol. 11(1), 1997,

http:/twww.cs.wisc.edu/condorL

[12] I-l,J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X.

Zhang, K. Taura, A, Chien. The MicroGrid: a Sci-

entOqc Tool for Modeling Corrtputational Grids. Proe.

Supercomputlng 2000, Dallas, TX, 2000.

[13] A. Takefusa, S. Matsuoka, H. Nakada, K. Aide, U.

Nagashima. Overview of a Performance Evaluation

System for Global Computing Scheduling Algorithms.

Pro<:. High-Performance and Distributed Computing

8, pp. 97.104, 1999.

[14] R. Wolski, N.T. Spring, J. Hayes. The Network

Weather Service: A Distributed Resource Perfor-

mance Forecasting Service for Metacomputing, I.

Future C_netation Computing Systems, 1999, also

UCSD Technical Report Number TR-CS98-599,

1998, http :llnws.rapaeLed_SL

[15] Gtobus Heartbeat Monitor

http:t/www.globus.org,'hbm/.

[16] NASA Information Power Grid.

http:/lwww_nas.nasagov/IPG.

[17] Codine 5.2 Manual, Revision A. Sun Microsys-

terns, Inc., Palo Alto, CA, September 2000,

http://www.aun.com/gridware.

[18] Legion 1.6, Developer Manual. The Legion Research

Group, Dept_ Computer Science. U. Virginia, Char-

lottesville, VA, 1999, httpJ/legion.virginia.edu.




