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Abstract

As the Internet is evolving away from providing simple 
connectivity towards providing more sophisticated serv-
ices, it is difficult to provide efficient delivery of high-
demand services to end-users due to the dynamic shar-
ing of the network and connected servers. To address 
this problem, we present the service grid architecture 
that incorporates dynamic replication and deletion of 
services. We have completed a prototype implementa-
tion of the architecture in Legion. The preliminary 
results show that our architecture can adapt to dynami-
cally changing client demands in a timely manner. The 
results also demonstrate that our architecture utilizes 
system resources more efficiently than static replication 
system.

1.0  Introduction
The popularity of the Internet has grown enor-

mously since its early deployment in the 1970’s. To sup-
port newly emerging applications in areas such as e-
commerce and distributed high-performance computing
for science and engineering, the Internet is evolving
away from providing only simple connectivity towards
providing more sophisticated services. As a result,
diverse network services ranging from content-delivery
provided by Web servers to high performance computa-
tional servers such as in NetSolve [9] are currently
deployed across the Internet. However, due to the
dynamic sharing of the network and connected servers,
it is difficult to provide efficient delivery of high-
demand services to end-users. 

The Service Grid [8] is an infrastructure for
generic service delivery that has been designed to
address several bottlenecks of the current Internet. Most
notably, lack of reliability, transparency, and efficiency

in service delivery. Our solution is to perform dynamic
replication and deletion of services in response to u
demand and system outages. Replication is the proc
by which one or more copies of a service are ma
Although the idea of replication is not new, it presen
several interesting challenges in the context of netwo
services. For example, both server loads and netw
closeness should be taken into account when selecti
site to host a newly created service replica. The m
features of our architecture are as follows.

• adaptive: the Service Grid adapts to dynamic 
changes in client demand in a timely manner. When 
demand is high, a new service replica may be 
dynamically created. When demand is low, system 
resource utilization is increased by deleting the 
underutilized replicas from the system.

• scalable: information collection and replica manage-
ment is distributed.

• transparent: clients do not need to consider the 
degree of service replication, where replicas are 
located in the network, and which replica is best for 
them, etc. 

In this paper, we limit our discussion to the Service
Grid replication mechanisms and focus on computation-
ally-intensive high-performance services. We have com-
pleted a prototype implementation of our architecture in
Legion [1], a wide-area object-based distributed com-
puting system developed at the University of Virginia.
The preliminary results show that our architecture can
adapt to dynamically changing client demands in a
timely manner. The results also demonstrate that our
architecture utilizes system resources more efficiently
than static replication systems.
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2.0  Related Work
Many research groups [2][4][5][6][7][10][14]

[15][16][17] have developed algorithms and architec-
tures for replica selection among statically replicated
servers. Research into dynamic replication has been
mostly limited to the Web environment. In Fluid Repli-
cation [3], clients monitor their performance while inter-
acting with the service. When performance becomes
poor, a replica is created automatically. To select a rep-
lica site, they employ a distance-based discovery mech-
anism. In contrast, our solution for replica creation
considers the characteristic of the service in addition to
communication. RaDaR [13] proposes a web hosting
architecture that supports dynamic migration and repli-
cation of web pages. In their architecture, if utilization is
above a threshold, the system decides to migrate the
web page near the host where most of the clients
requests are coming from. CgR[11] proposes replication
for enhancing the current Web infrastructure. In their
work, one primary server forms the root of a logical tree
of replicated servers, which serve as part of the primary
server’s namespace. Using a client-side proxy, the client
can access either the primary server or replicated serv-
ers. The Bio-Networking Architecture [12] is inspired
by biological metaphors of population growth in nature
and provides a highly distributed replication mecha-
nism. 

3.0  Architecture
Our architecture consists of three core comp

nents: Replication Manager (RM), Group Manag
(GM), Site Manager (SM) (Figure 1). RM is the dec
sion-maker for global replica selection, creation a
deletion, and tracks the location and state of all the re
cas. Clients belong to a particular GM, established
configuration time. When a client wants to access t
service, it first contacts the GM assigned to it to rece
binding information for a replica that can provide th
best performance. Once receiving the binding inform
tion, the client can directly access the service repl
without intervention by the GM.

Every site in the Service Grid runs a SM, whos
primary job is to interact with the GM to determine th
network performance between replicas and clie
groups. We believe that all hosts at one site are likely
see the same network performance when communic
ing with any host at a remote site. Therefore, the SM c
reduce the overhead associated with collecting netw
performance since only one probe between sites is n
essary to characterize the network performance betw
any pair of machines hosting a replica and a clie
respectively. 

The GM maintains a cache of local replicas all
cated to it by the RM over time. This replica pool 
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Figure 1: Service Grid Architecture: Three replicas (R1, R2, R3) are running at two different sites 
(S2, S4). R1 is dedicated to GM1 and R3 is shared across GM1, GM2 and GM3. Since we chose GM2 
as the primary GM for R3, only GM2 needs to contact RM to update status information of R3. Clients 
ci belong to a group (GMj), and may run on machines located outside the Service Grid perimeter.



ed

ue
li-
he
he
h
rk

is
nse

its
hat
 is
the
available to the clients within the GM. Each replica
maintains a list of GMs that are currently using the rep-
lica and reports its load status to them periodically so
that the GMs can have up-to-date information on the
replica status. Among all GMs that are sharing a replica,
a primary GM is responsible for propagating the infor-
mation to the RM so that the RM will also have an up-
to-date global view of the system. With this protocol,
the GM offloads much of the traffic that would other-
wise reach the RM1, promoting scalability. In addition
to information collection and replica selection, the GM
is also responsible for decision-making about when to
acquire replicas and when to release replicas based on
perceived performance and replica utilization.

Replica creation and deletion are initiated by the
GMs in a distributed fashion. When the RM receives a
replica acquisition request from the GMs, it decides
whether to return an existing replica or to create a new
replica based on the replica utilization by other groups.
When a GM sends a replica release request and there is
no other GM that is using the released replica, the RM
puts that replica in an idle replica pool. 

In addition to serving clients requests, a service
replica periodically reports its status information to the
GMs that are using it. However, the periodic status
report may consume unnecessary network resources if
the replica is not accessed frequently. To address this
problem, the replica dynamically changes the window
size for periodic status reporting. For example, if a rep-
lica is dedicated to a GM, this GM will require much
less frequent updates. By selecting a larger window size,
the network traffic between the GM and the replica can
be reduced. On the other hand, if a replica is shared
across many GMs, each GM cannot estimate the status
of the replica accurately because it lacks global informa-
tion. In this case, the replica sends its status more fre-
quently so that each GM can have up-to-date
information about the replica.

4.0  Replica Management
Both the GM and RM make replica management

decisions to improve the performance that end-users
will experience and to increase system resource utiliza-
tion. To meet these requirements, algorithms for replica
management must respond effectively to dynamically
changing status of both client demand and replica utili-
zation. For example, if a GM tries to acquire new repli-

cas due to a transient short-term increase in clients
demand, then valuable system resources may be wasted.
The following sub-sections describe algorithms for both
GM and RM replica management.

4.1  Replica Management in the GM
The GM runs three algorithms for replica manage-

ment: replica selection, replica acquisition, and replica
release. The challenge in designing algorithms for rep-
lica acquisition and replica release is that these algo-
rithms should combine the goal of providing good
performance to end-users with the goal of utilizing the
system resources efficiently. The GM runs both the rep-
lica acquistion and replica release algorithms periodi-
cally based on a configurable time parameter.

4.1.1   Replica Selection
Replica selection is the process by which the GM

selects a replica among its local cache of replicas that is
predicted to provide the best performance for the
requesting client. If the cache is empty, then replica
acquisition is required. Replica selection in the GM is
based on response time prediction. With up-to-date sta-
tus information about replicas in its local cache, the GM
can predict the response time of the service accurately. 

Response time (Tresp) consists of four components:
service time (Ts), waiting time (Tw), and communication
time (Tc) and can be formulated as Tresp = Ts + Tw + Tc.
The GM will select a replica that achieves a predicted
minimum Tresp from its cached pool. Service time
denotes the time necessary for completing the service at
the replica. Waiting time is the time that the request will
wait in the replica’s waiting queue before being serv
by the replica and is computed by multiplying Ts by the
replica queue length. The service time and the que
length in the replica is periodically updated by the rep
cas. Communication time is the time for sending t
request to the replica and receiving the result from t
replica. By periodically probing SMs associated wit
local replicas, the GM can maintain current netwo
performance between replicas and a client site. 

4.1.2  Replica Acquisition
When a service is overloaded or the network 

congested, end-users will suffer increased respo
time. By dynamically acquiring additional replicas from
the RM, the GM can provide better performance to 
end-users. The acquired replica may be a replica t
already exists or a newly created one. This decision
made by the RM based on the degree of sharing for 
existing replica and system resource utilization. 1.  Replicating the RM for very large Service Grids is the sub-

ject of future work.
3



ReplicaAcquisition(Rcurr, Rprev, Tthreshold, P, Q, M)
{
   /*
   Suppose current time is t
   Rcurr : average response time of local replicas over current time window
   Rprev : average response time of local replicas over previous time window
   Tthreshold: maximum threshold of average response time
   P: the number of consecutive time windows such that
          R(t) ≥ R(t-1) ≥ … ≥ R(t-P) and R(i) ≥ Tthreshold, where
          R(i) : average response time at time window i ------------------------------------------- (1)
   Q : the number of consecutive time windows such that R(i) ≥ Tthreshold, t-Q ≤ i ≤ t ----- (2)
   p, q : variables for storing the number of time windows that satisfy (1) and (2), respectively
   */
   if (Rcurr ≥ Tthreshold)   {
      if (Rcurr ≥ Rprev)   {
         p++;
      else
         p = 0;
      q++;
   } else
      p = q = 0;

   if (p ≥ P or q ≥ Q)
      send “replica acquisition” request to the RM
}

Figure 2: Replica Acquisition Algorithm.
Periodically, the GM computes the average
response time Tresp for all local replicas over a recent
time window. When the replica reports its status infor-
mation, it sends not only the current snapshot of the
waiting queue but also the average processing time of
the requests that it served during the time window (see
below).

Since the calculated response time includes both
server load and network performance, we believe that it
is a good indicator that represents performance that cli-
ents would experience. Once the average response time
of each replica is computed, the GM next applies the

replica acquisition algorithm to decide if it needs to
acquire an additional replica from the RM.

The algorithm is based on a response time thresh-
old (Tthreshold) and two parameters, P and Q (Q>P), that
control the degree of aggressiveness of replication (Fig-
ure 2). Each GM is free to select these parameters differ-
ently. In particular, the threshold will be client- and
service-specific. With P, the GM can avoid acquiring
unnecessary replicas due to temporary network conges-
tion or transient increase of client demand. P requires
that response time be monotonically increasing above
the threshold for P consecutive time epochs. If the test
4
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ReplicaRelease(Uthreshold, P, Q)
{
   /*
   Suppose current time is t
   NumR: number of currently cached replicas within this group
   Uthreshold: minimum utilization
   P: the number of consecutive time windows such that
          U(t) ≥ U(t-1) ≥ … ≥ U(t-P) and U(i) ≥ Uthreshold, where
          U(i) : utilization of a replica at time window i – (1)
   Q : the number of consecutive time windows such that U(i) ≥ Uthreshold, t-Q ≤ i ≤ t (2)
   M is the minimum number of replicas to retain within the group
   */

   if (NumR <= M) return;
   replia_bins = empty /* replica_bins contains candidate replicas for release */
   for (each local replica)   {
       Ucurr <- utilization of the replica over current time window
       Uprev <- utilization of the replica over previous time window

       if (Uthreshold ≥ Ucurr)   {
          if (Uprev ≥ Ucurr)   {
              p++;
          else
              p = 0;
          q++;
        } else
           p = q = 0;

        if (p ≥ P or q ≥ Q)
           insert the replica into replica_bins
    }

    find a replica in replica_bins whose utilization is the smallest and return the replica
}

Figure 3: Replica Release Algorithm.
on P fails, we apply the Q test which is less restrictive.
Q requires that the response time be simply above
threshold for Q consecutive time epochs. Smaller values
of P and Q lead to more aggressive replication. P allows
an immediate response to rapidly growing demand,
while Q permits some performance fluctuation and is
more conservative (Q>P). Counters for P and Q are
reset when the measured response time goes below
threshold to help eliminate the risk of a transient
response.

4.1.3  Replica Release
If the GM caches more replicas than it needs to

meet its current threshold, some replicas may be idle
and system resources would in turn be wasted. The GM
will release unnecessary replicas back to the RM as long
as clients requests can be serviced within the response
time threshold. 

As a utilization metric, the number of requests that
the replica has served within this group over the time
window is used. This is the local utilization. The replica

may be actively used by other groups. As in replica
acquisition, the GM should not respond to a transient
decrease in client demand. We apply the same principle
within the release algorithm as in replica acquisition.
The difference is that the algorithm should be applied
against each local replica. Figure 3 shows the replica
release algorithm.

As in the replica acquisition algorithm, there are
three configurable parameters: Uthreshold, P and Q. If
there are multiple underutilized replicas, the GM selects
the least frequently used replica and releases it. Release
does not mean that the replica is deleted. Deletion is a
decision that is ultimately up to the RM, analogous to
replica creation. A replica that has been released by all
GMs is idle, and is a possible candidate for deletion by
the RM. In the current version of the release algorithm,
it will release at most one replica each time it is run (at
each time interval). In addition, the GM indicates the
minimum number of replicas it wishes to keep cached
(M) irrespective of their utilization.
5



Table 1: Service Grid testbed

Host Name O/S
Benchmarked Processing Time (ms)

for 400x400 matrix mult

University of Minnesota (UMN)

juneau.cs.umn.edu Linux 11776.624

sitka.cs.umn.edu Linux 11687.796

University of Virginia (UVA)

centurion172.cs.virginia.edu Linux 18049.087

centurion173.cs.virginia.edu Linux 18054.539

centurion174.cs.virginia.edu Linux 18032.441

centurion175.cs.virginia.edu Linux 18036.933

centurion176.cs.virginia.edu Linux 18040.933

University of California, Berkeley (UCB)

u6.cs.berkeley.edu SunOS 79193.893

u7.cs.berkeley.edu SunOS 78950.285

u8.cs.berkeley.edu SunOS 78241.115

u9.cs.berkeley.edu SunOS 79670.393
4.2  Replica Management in RM 
The RM must perform the following replica man-

agement tasks, replica acquisition and replica release.
Replica acquisition first examines the pool of available
replicas not currently used by the group making the
request. The RM determines whether an existing replica
can provide predicted performance below the groups
threshold while not compromising the performing of
other groups sharing the replica. If these criteria cannot
be met, the RM will create a new replica. Replica
release simply indicates to the RM that the replica has
been removed from the GMs cache. The RM notifies the
replica of this change which allows the replica to elimi-
nate any status updates to this GM savings network

resources. In addition, the RM periodically checks the
status of idle replicas (replicas released by all GMs).
The RM is configured to maintain a minimum pool of
idle replicas in the system. When this limit is exceeded,
the RM will delete the replica that has been idle for the
longest period of time.

5.0  Experiments
We have built a Service Grid prototype using the

Legion system, a wide-area object-based distributed
computing infrastructure [1]. In our Service Grid proto-
type, a service replica is implemented by a Legion
6

Table 2: Configurable parameters for GM

Parameters UMN UVA UTSA

maximum threshold (ms) 65000 85000 55000

P (replica acquisition) 3 3 2

Q (replica acquisition) 7 7 5

minimum utilization 5 5 3

P (replica release) 4 4 4

Q (replica release) 9 9 9



f
as
n

ed
es

ce
it

ila-
ch
rep-
hen
ood
nd

nt
ce
er-
ce
nt
r
 of

 A
s-
ve
an
uch
k
se
a

object and accessed via remote method invocation. In
this paper, we present results for a matrix multiplication
service. In the prototype, the replica acquire/release
algorithms are run every 2 minutes, the service replica
transmits its status every 10 seconds if it is dedicated to
a single GM, otherwise it transmits its status every 1
second to each GM that is using it.

We present data for a subset of our larger testbed
(Table 1). Clients are deployed across three sites (two of
which are Service Grid sites), University of Minnesota
(UMN), University of Texas at San Antonio (UTSA)
and University of Virginia (UVA). In our experiments,
UMN has 8 clients, UVA has 8 clients and UTSA has 5
clients. We generated a synthetic workload of client
requests to the matrix multiply service that is shaped to
contain both demand growth and decline (Figure 4). 

5.1  Response Time Prediction
Accurate prediction of response time is critical to

replica management. The experimental results show that
the response time prediction can be done with high
accuracy for this service, often within 10% (Figures 5).
However, predictions can drift when the rate of request
generation exceeds the rate of information exchange.
We are implementing an adaptive mechanism for con-
trolling the interval for information collection.

5.2  Performance Comparison
To compare performance of our replica manage-

ment scheme, we selected several parameter values for
experimentation (Table 2). When a GM is created, it
acquires an initial replica from the RM and always
maintains at least one replica in its local cache (i.e.
M=1). 

We compare performance against pure static repli-
cation (2 and 8 replicas), and hybrid static/dynamic rep-
lication. In the hybrid approach, two replicas are
statically replicated on UMN and UVA and each GM
starts with these two replicas. In dynamic and hybrid
schemes when client demand increases, the GM
acquires additional replicas, and when clients demand
decreases, the GM releases underutilized replicas until
the number of local replicas is at most two. Replica
acquisition may return an existing replica or may result
in the creation of a new replica depending on the current
system state.

Figures 6-7 show the response time measured at
the client sites under the different schemes. Static repli-
cation with 8 replicas achieves the lowest response time
as it uses a large number of replicas. However, it suffers
from very low utilization (Figure 8). In contrast, static
replication with 2 replicas cannot meet demand in the

high-demand regimes and the response time is very
poor. In fact, the response time peak follows the work-
load peak in duration. 

Both dynamic and hybrid schemes are able to
achieve performance below threshold (the performance
objective) at a lower cost (higher utilization) Interest-
ingly, they have the effect of “shortening” the impact o
the workload peak. It appears that 4 static replic
would likely achieve the best overall performance give
this workload, but in general this cannot be predict
apriori. In addition, suppose that only enough resourc
for two replicas were available at the time this servi
was initially deployed. A static scheme cannot explo
newly available resources were they to become ava
ble later. Dynamic replication schemes make mu
more efficient use of system resources because they 
licate only when necessary and release resources w
demand declines. The hybrid scheme achieves a g
balance of low response time and good utilization a
appears to be a promising approach.

6.0  Conclusions 
We described a new architecture for the efficie

delivery of high-demand network services, the Servi
Grid. To achieve scalable, reliable, and adaptive p
formance, the Service Grid performs dynamic servi
replication and deletion in response to changing clie
demand. It implements an algorithmic framework fo
dynamic replica management that controls the degree
aggressiveness in creating and removing replicas.
Service Grid prototype was built using the Legion sy
tem and preliminary results for a compute-intensi
service indicate that dynamic replica management c
be done to meet end-user performance goals at a m
lower cost than fully static replication. Future wor
includes investigating the sensitivity of both respon
time and utilization to the parameters of the replic
management algorithms.
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