
._,(-,'tl

Backtracking and Re-execution in the

Automatic Debugging of Parallelized Programs

Gregory Matthews, Rol'ert Hood,

Computer Sciences Co poration

NASA Advanced Supercom[,uting Division

NASA Ames Research Center

Moffett Field, CA 94035 USA

{gmatthew, rhood}@na _. nasa. gov

Stephen Johnson, and Peter Leggett

Parallel Processing Research Group

Maritime Greenwich Campus

University of Greenwich

London, SE 10 9LS UK

{S. Johnson, P. Leggett}@gre. ac. uk

Abstract

ht this work we describe a new app-oach using relative

debugging to find differences in compmation between a se-

rial program and a parallel version of tl at program. We use
a combination of re-execution and backtracking in order to

find the first difference in computation that may ultimately
lead to an incorrect value that the um r has indicated. In

our protoO'pe implementation We use ._,alic analysis infor-

mation from a parallelization tool in _,rder to perform the

backtracking as well as the mapping r,'quired between se-
rial and parallel computations.

1. Introduction

As the number of parallel computer, increases, so does
the demand for converting existing pro,grams into parallel

form. There are three general approaches to the conversion

process:

• manual translation, where explicit parallel and com-

munication constructs are added t_, the code;

compiler-based parallelization, v here the user em-

ploys source code directives [10, 14] to steer the com-

piler into producing efficient parallel code; and

• fully interactive parallelization too s. where user inputs

steer the parallelization process [3 [1].

Regardless of the approach used, th_ porting process is

error-prone. Even in the more automttic alternatives the
user is providing information, and it is mistakes in that in-

formation that leads to bugs in the pa-al[el program. For

example, the user might incorrectly inclicate that a loop can

be safely run in parallel by deleting ; n essential edge in

the dependence graph. The resulting program may have

race conditions in a shared-memory version, or use values

of variables that are not up-to-date in a distributed-memory
version.

Finding bugs introduced during parallelization can be

very complicated. Often the user must manually run the

serial and parallel programs side-by-side to try to find out

where the two computations differ. This technique likely

involves numerous executions of the programs in an attempt
to locate the first difference that potentially led to all subse-

quent differences.

In this paper we describe our approach for automating
the manual debugging technique described above, as ap-

plied to distributed-memory programs. We begin by dis-

cussing our general approach, including the information re-

quired and the difference detection algorithm. In Section

3 we describe our prototype implementation, and following

that we give an example of its use. In Section 5 we discuss

ways to extend our work. We then discuss related work and
draw conclusions.

2. Finding the First Difference

The manual technique of running the serial and paral-

lel programs side-by-side involves deciding where to put

breakpoints and, at hreakpoints, deciding what values to
compare. For example, if the parallel program is printing

a wrong value, the user can look at the source code and fol-

low enough statements backward from the print statement to
see where the incorrect value was calculated. He could then

insert a breakpoint at that definition point and re-execute the

program to see what values used in the calculation are in-

correct. He can repeat this process of following statements
backward until the source of the error is reached.

Automating this search for the first difference between

the computations of a serial program and its parallelized

versionrequirestwoimportantelement':

1. amethodtodrivethesearchthat_ecideswhichvalue
comparisonsareuseful,and

2. theabilitytomakecomparisonsbeweentheserialand
parallelforthevalueswechooset,,compare.

Thefirstelementcanbeprovidedbyc,_mbiningtheuser's
observationsof programbehaviorwili_data dependence

analysis, which describes how values get created and used

within a program. The possible definiti_n points of a known
bad value can be found, and further corn _arisons can be per-

formed on the values involved in those delinition points.

The second element requires determ _ning how the serial

computation has turned into a parallel _,ne. This computa-

tion mapping answers the important co, lparison questions:

• Where to compare -- the progra_ _ statements where

the serial and parallel processes should be instru-

mented to perform comparisons;

• In whom to compare -- the proct sses in the parallel

execution containing the values to _e compared;

• When to compare -- the iteration count at which the

comparison should be made in eacl process; and

• How to compare -- the comparis_,n function that de-

scribes how to construct the values to be compared

(e.g., obtain the checksum of a dislributed array), and
then describes how to determine "t quality" of the val-

ues.

In the remainder of this section we d scuss the computa-

tion mapping information we need, the,L describe our algo-
rithm and how it makes use of this infor mation.

2.1. Computation Mapping

The computation mapping from a _erial program to a

parallelized version of that program c_tn be broken down

into several components. Here we discu,s each component,

and the manner in which they facilitate mswering the com-

parison questions listed earlier.

• Source-to-source mapping can be used to answer the

"where to compare" question. It is a description of lo-

cation correspondence in the serial and parallel source

code where we can expect values to be comparable.

For example, we may want to pl:_ce instrumentation

breakpoints at one line in the serial =ode and at a corre-

sponding line in the parallel code. ' 'h,s mapping infor-

mation likely goes beyond simple line correspondence,

however, since the parallel source _ode may differ sig-

nificantly from the serial source c(, le

• Execution mapping answers the "in whom to compare"

question. This information builds on the source map-

ping given above, and describes which parallel pro-
cesses actually execute the program statements in the

parallel source code that map to a certain location in
the serial source code.

For example, if the serial program performs an initial

phase of file I/O, a typical execution mapping will in-
form us that the corresponding file I/O code in the par-

allel program is confined to the first process. Often this

mapping can only be determined at runtime, when the

number of parallel processes is known and the compu-

tation has been split up among those processes.

• Iteration Mapping answers the "when to compare"

question. If a value we wish to compare is located in a

program statement that is executed more than once, we

rely on iteration mapping information to tell us which
of those executions should be instrumented to compare

the value. Multiple executions of the same statement

may occur because of loop constructs, or perhaps be-
cause of multiple subroutine executions (e.g., recur-

sion).

• Data value mapping is used to answer the "how to

compare" question. This mapping builds on the execu-

tion mapping by providing a description of how serial-
side values may be represented in the parallel computa-

tion, and also provides an equality function with which

to compare values. For example, if the computations

perform a sum reduction on a vector, the serial pro-

gram may have a variable S whose value is actually
the sum of the S values found in the parallel processes.

Furthermore, when comparing the value of variable S

in the serial process to the sum of S values in the par-

allel processes, we might consider them equal if they

agree within some tolerance that accounts for differ-
ences in numerical method.

A fiotable subset of this mapping is data distribution

information. The description of how variables, ar-

rays in particular, are distributed across multiple ad-

dress spaces is important for debugging parallelized

programs. For example, it must indicate how a serial-
side array index expression gets mapped into a process

number and a list of indices in the parallel computa-

tion. If data decomposition is employed in the paral-

lel computation, the data distribution description must

contain information about "ghost points" and other is-

sues relating to data on the boundaries of the decom-

position.

We next describe how these pieces of information are

utilized to produce an effective approach to relative debug-

ging.

2.2. Algorithm

In this work we have automated the n mnual technique for

comparison debugging that was descrit ed at the beginning
of this section. When a user indicates a bad value in the

execution of the parallel program, we p_ rfi)rm the following

steps.

(1) Find the possible definition poi _ts of the incorrect

value using dependence analysis in formation.

(2) Examine the variable reference_ on the right-hand
sides of those definitions to delcrmine a set of sus-

pect variable references to moni_ _r in a re-execution.

<3) While there are new suspect v:_:iable references to
monitor

(3a) Instrument the suspect va iable references in

both the serial and parallel versions of the pro-

gram.

(3b) Execute the instrumented programs, stopping
when a difference (i.e., a b_d value) is detected.

(3c) If the bad value has not been seen before then

use it to determine a new set of suspect vari-

able references to instrum,-nl (as was done in

steps <1) and (2) above); otherwise allow loop
to terminate.

When the loop stops we have idem tied the first differ-

ence between the two computations that may lead to the bad

value identified by the user. While thi, strategy works, we

can improve upon it by using a limited I _rm of backtracking
[2]. In particular, if we can determine _he value that a new

suspect variable would have at a pote]_tial instrumentation

point, we can avoid the re-execution th: t takes place in step
<3>.

Although backtracking improves ou efficiency substan-

tially, its typical implementation---chc:kpointing program

variables before they get overwritten during execution--is

too costly. Instead, we are satisfied to limit the scope of our

queries about previous program states io those that can be

answered using only information in th : current state. If a

variable value created at one point in the program has not

been killed by subsequent execution, w: can evaluate it and
determine either that it is OK or bad. If it is OK, then we

can ignore it and concentrate on othe_ values. If it is bad,

we can look for values used in its defil_itions (as is done in

steps (1) and (2)). If a variable value has been killed we

can simply add the variable to the list _ f suspect references

to be monitored during a re-execution.

For example, suppose we have deter nined that the value

of w3 is bad in line L5 in Figure 1. Suppose as well that

the definitions of w3 that may reach tha point are at L2 and

LI" w2 = rl + wl

if (...) then

L2: w3 = r2 + w2

else

L3: w3 = r3 + ul

endif

L4 ul = 0

L5: x = r4 + w3

Figure 1. Simple backtracking.

L3. In that case, we will attempt to evaluate the variables

r2, w2, r3, and ul 1. If we cannot evaluate one, say u:l.,
because its value is killed between lines L3 and L5, then we

will add the use of ul at line L3 to the list of suspect refer-
ences that need to be instrumented in the next re-execution.

If we evaluate a variable, for example r2 or r3, and find

that the value matches the serial value, then we can ignore

it. If the value of one, say w2 in line L,., is not the same,
then we look at the definitions of w2 that reach the use in

L-). In this case suppose the only definition is at line L1. We
would then look at the variables rz and wl to see if they

need to be added to the list of suspect references. Suppose

rl is correct and that wl is incorrect. Then the algorithm

will proceed by evaluating the definition points of wl that

reach line L1.

We can potentially further reduce the number of re-

executions by speculatively examining the definition points

of unknown values. In the example given above, the value

of ul in line La is killed by the assignment at line L4. Since

we couldn't directly determine the value used at line L3, we

simply instrumented the use of ul at that point in order to
do a comparison in the next re-execution. However, we can

look at the definitions of ul that reach line La to see if any
of them use bad values. If we find a bad value, we can

continue the search for differences at that point, potentially

saving us a re-execution of the program.

Note that the accuracy of the dependence information

plays an important role in the efficiency of the algorithm. In

particular, having accurate interprocedural information will

allow us to examine backwards through procedure calls.

Consider the example in Figure 2. Suppose we find out
that the value of w7 is incorrect at line L8. Accurate in-

terprocedural information could tell us that the statement at

line L9 might define the value of w7 that reaches Ls. (Note
that the test for a definition kill of the variables used at Lo

must check for kills from L9 to Ljo as well as check from

L7 to Ls.) If no kills are found, we can evaluate 13and r7.

] In this and the following example, we use a mnemonic for the reader's

convenience: the names of variables with wrong values begin with a "w,"

right values with an "r," and untestable values with a "u."

L6: w6 = u6 + u

LT: call sub (W7 W6)

LS: x = w7 + r6

end

subroutine sub(3, b)

Lg: a = b + r7

LIo: end

3. Prototype Implementation

We prototyped the algorithm of the previous section by

extending two existing tools to cooperate with each other.

Computer Aided Parallelization Tools (CAPTools) is

a parallelization tool from the University of Green-

wich [5, 11]. The user assists the tool in converting

serial programs into a form suitable for execution on

a distributed-memory machine. It performs sophisti-

cated dependence analysis, partitions array data, and
inserts needed communication calls.

Figure 2. Interprocedural backtracking.

Suppose we find that r7 is correct, btt b is not. The in-

terprocedural information could tell us _hat the statement at

L6 defines a value for b that might rea,h Lo. We can then

continue the backtracking by looking al the variables on the

right-hand side of L6. In the absence _ f accurate interpro-
cedural information we would have had to treat the call at

L7 as a potential definition, and use, of all actual parame-
ters as well as any global variables (i.e, those in common

blocks in Fortran.) In that case we might have had to instru-

ment every statement in sub in order _,) find an erroneous
definition of w7.

Although our examples so far have u _ed only scalar vari-

ables, our approach also works when s,_bscripted array ex-

pressions are present. Having the resul s of a sophisticated

data dependence analysis phase is criti:al to being able to
follow the flow of values in arrays from Iheir definition to
their use.

In summary, the algorithm we have t,roposed utilizes in-

formation from static analysis in three ways:

1. to find the possible definition poinls of a value V being
used at some location L,

2. to enumerate the values used in : definition at some

location L, and

3. to determine if a value V which is used in location L1

is still available in the program stae at location L2.

For the correctness of our algorithm, tae answers to these

questions must be conservative. In par:icular, we must get
all of the possible definition points in () and all of the val-

ues used in a definition in (2). For (3 ,, we must only get
a "yes" answer if the value definitely mrvives. The more

accurate this static information is, the nore efficiently our
difference finding algorithm will perfor,n. Overly conserva-

tive responses could result in extra instr,mentation points or
re-executions.

P2d2 is a debugger for parallel programs from NASA

Ames [6]. It is portable across a variety of parallel ma-

chines and its user interface scales so that it is capable

of debugging 256 processes or more.

In this section we first describe how these existing tools

were extended to produce the prototype. We then discuss
some shortcuts we took in the implementation in the inter-

est of speedy development.

3.1. Putting the Pieces Together

In the prototype, CAPTools is used to create the paral-
lel program whose correctness is dependent upon correct

user interactions. The results of dependence analysis, data

partitioning, and parallel communication insertion are de-

posited into a database. A library encapsulation of CAP-
Tools, with modifications to accommodate the information

needed in this prototype, is used as the comparison algo-

rithm proceeds.

P2d2 acts as the user interface. The user is queried for
an initial variable name and a location where that variable

is used but appears to have the wrong value. P2d2 runs the

serial and parallel programs to verify this difference exists,
then

• retrieves a list of instrumentation points from CAP-

Tools,

* inserts breakpoints in the serial and parallel programs

at those points, and

• reruns the programs, checking the appropriate values

at each breakpoint.

These steps are repeated as long as new, earlier, differ-
ences of interest are found in the values being checked at

breakpoints. If a re-execution results in the same first dif-

ference detected, then the algorithm terminates.

Toperformthefirststepabove,p2d? holds a conversa-

tion with CAPTools. The debugger iniliales by requesting

from CAPTools a list of instrumentatio a points that might

lead to the bad value just found, where _he bad value is de-

scribed with the pair

(variable name, location in so_ roe code)

for the serial version of the program. [n response, CAP-

Tools examines its database of depende_ ce information, us-

ing the algorithm described in the previ,,us section, looking

for the possible definition points of the bad value. It handles

this even if the value flows across proce_ line boundaries and

gets remapped in going from caller to ca lee. For each of the

definition points it uses a range of depc idence information
throughout the relevant call stacks to det :nnine if the values

used in the definition are still live, and then makes requests
of p2d2 for different evaluations to def_rmine the correct-

ness of values in the parallel processes.

Evaluations in the serial program arc straightforward. In

the parallel program, however, there a_e varying levels of

complexity to overcome in determining the data value map-

ping needed for performing evaluations In the simple case,

a value may be duplicated in all paralk I processes, or per-

haps in a statically defined subset of th, se processes. CAP-

Tools need only indicate to p2d2 the p_ocesses of interest,
and the stack frame in each process wh,'re the value can be

found. A more complex case involve_ a dynamically de-

fined mapping from a serial value to a t arallel value. CAP-

Tools must then providep2d2 with a de:,cription of the map-

ping in order to facilitate such evaluatfi_ns. For example, a

request for an evaluation of an array that is partitioned in

the parallel program would include adc _cription of the par-
tition boundaries that hold for each par: IM process.

When CAPTools has finished its exal liv,ation of the static

and dynamic information, having exha _sled all backtrack-

ing possibilities from live variables, it r .:turns to p2d2 a list
of 3-tuples

(variable, location in source code, process)

that need to be instrumented in a rerun _,t"the serial and par-
allel programs. Each entry in this list ta_es into account the

computation mapping from serial to p _rallel, using previ-
ously evaluated dynamically defined n,apping attributes if

necessary. The conversation between , ?APTools and p2d2

for the first step of this iteration of th._ algorithm ends at

this point. The remaining steps of inscrting breakpoints at

the instrumentation locations and reru ruing the programs

are then performed by p2d2.

When there are no new interesting d fferences found be-

tween the computations, p2d2 returns _o the user the most

recent difference discovered by the aIg, Mthm, which is the

first that occurs between the computa_i,,ns that may have

caused the bad value reported by the u;,.:r.

3.2. Limitations of the Prototype

In the interest of speedy implementation, we limited the

need for the computation mapping information described in
Section 2.1.

We temporarily eliminated the need for a source-to-

source mapping by restricting comparisons to compu-

tations of programs that have the same source code.

Essentially we take a parallelized pro_am that has cor-

rect behavior when run with one process but incorrect

behavior when run with N processes, and compare the

two computations.

The prototype does not yet perform sophisticated iter-

ation mapping. The test executions that we are mak-
ing are constructed so that the mapping is either not

needed, or the effect of not having the mapping is min-

imal (i.e., we know what the result would be if we did

have iteration mapping).

The prototype does only a partial job of data value

mapping. CAPTools takes care of mapping variable

references from the sequential execution to their loca-

tion in the distributed address space. We do not yet,
however, perform any comparisons other than tests on

simple expressions. For example, we do not aggregate

values from the parallel execution into a single value

for comparison against a value in the sequential run.

In addition, we currently perform only strict equality

tests of the values being compared. Furthermore, the
tests are done on the ASCII strings the debugger uses

to print the values, not the bit representations of the
values.

In Section 5 we describe our plans for removing these re-
strictions.

4. Example

In order to illustrate the power of automated relative de-

bugging, consider the following scenario. The user has par-
allelized a serial version of the NAS Parallel Benchmark

program LU [12] using CAPTools, implementing a 1-D de-

composition in the "J" dimension. In doing so, he inadver-

tently introduces errors in the parallel program by instruct-

ing the parallelization tool to ignore some dependences.

When the resulting parallel version is executed using just

one process, program output exactly matches that of the se-

rial version and every verification test in the benchmark suc-
ceeds. Executing the parallel version with two processes,

however, results in different program output and failure of

every verification test.

subroutine ssor()

do k=nz-l,2, -I

call buts(v,k)

enddo

return

end

subroutine buts(v,k)

call cap__receive(v(l, i,: igh+l,k) ,

.... cai_ eight)

do j=high, low, - 1

do i=nx-l,2, -i

do re=l,5,1

tv(m,i,j) = f(v,t')

treat(re, l) = d(m,l i,j)

enddo

tv(l,i,j) = tv(l,i,

v(l,i,j,k) = v(l,i,

enddo

enddo

call cap_send(v(l,l,low

return

end

Pipelined (unmodified aependences)

) /treat (i,i)

, <)-tv(l,i,j)

k) cap_left)

subroutine ssor()

do k=nz-l,2, -i

call cap_exchange(v(l,l,high+l,k),

v(l,l,low,k),

.... cap_right)

call buts(v,k)

enddo

return

end

subroutine buts(v,k)

do j=high, low,-i

do i=nx-l,2,-I

do m=l,5,1

tv(m,i,j)

treat (m, 1)

enddo

tv(l,i,j)

v(l,i,j,k)

enddo

enddo

= /(v, tv)

= d(m,l,i,j)

= tv(l,i, j)/tmat (I, i)

= v(l,i,j,k)-tv(l,i,j)

return

end

Full>' parallel (removed dependences)

Figure 3. Effects of dependence modifications on parallelization.

4.1. User Interaction with the Prototype

The user first looks at the verificati, n subroutine to find

what values might have caused failure ; in the two-process
execution. One of the verification tests i_ a check of whether

a scalar variable in the program has the ,:orrect value, and so

this variable and source code location _sentered into p2d2

to begin the relative debugging algorithm

After our prototype has performed 'ire iterations of in-

serting instrumentation and re-running the one-process and
two-process executions, it reports thal the first difference

between the computations is in the an_y tv at line 272 of

subroutine buts. (Note that the first _lifference the proto-

type should have reported is in the arny v at this location•
See the next subsection for our discussion of this•)

With this information in hand, the u,:er opens CAPTools,

loads the database of information gent rated when the par-

allel version of the benchmark was c1,'ated, and begins to

scrutinize the data dependence choices that were made for

subroutine buts• CAPTools reports that the original analy-
sis of the serial source code, before any user modification of

dependences, indicated the subroutine might be amenable

to partial parallelization using a pipeline, but not to a full

parallelization. During the parailelization process, however,
the user erroneously removed dependences for several vari-

ables (including tv) within the subroutine. This allowed

a full paratlelization without the need for communication

within the subroutine body to update values. See Figure 3

for a code comparison.

These modifications are plausible candidates for the

cause of the incorrect behavior. A parallelized version of

the subroutine would behave similarly to the serial version

when executed with one process, because the degenerate

case of one parallel process does not encounter the difficulty
of stale values. If a dependence modification was indeed

made incorrectly, then stale values could become a problem

Figure 4. Portion of call graph of LU.

definitions of the f re 3 used here are inspected. This brings

us to a communication call that performs a global summa-
tion of this variable, so the definitions of frc3 used in this

summation are then inspected. The definition encountered
is:

frc3=frc3+ (phil (j ,k) +phil (j+l,k) +

phil(j,k+l)+phil(j+l,k+l)+

phi2 (j,k) +phi2 (j+l,k) +

phi2(j,k+l)+phi2 (j+l,k+l))

when two or more processes were used m the parallel execu-

tion. Parallelizing the serial source cod_' without these user-

introduced errors generates a parallel p c;gram that behaves

correctly when executed with any number of processes.

and the arrays phil and phi2 are inspected to determine

if they are correct. When more than one location in an array

is wrong, we find the "most incorrect" element in the array

on any process. In this case, both phil and phi2 prove
incorrect with the "worst" values identified being:

4.2. Behind the Scenes

Our tests with the LU benchmark _,ere conducted with

the "sample" class size (i.e., class S). I1 uses a 12 x 12 x 12

mesh and is executed on 2 processes Thus, for a three

dimensional array A that represents the entire mesh, pro-

cess 0 owns A (1 : 12,1 : 6, 1 : 12) _nd process 1 owns
A(I:I2, 7:12, 1:12).

The automatic debugging algorithm starts by examining
the definition points of the user-indicat,_d incorrect value of

variable xei in routine verify. (S :e also the relevant

part of the call graph shown in Figure 4). The variable is

not defined there, but rather is an argument passed in, so the
search moves to the calling routine. This in turn leads to the

routine pintgr in which the variable _now named frc) is
defined. The definition statement is:

frc=0.25d+00* (frcl+fr_ 2--frc3)

phil (6,7) (on process l)

phi2 (6,6) (on process 0)

The search then continues for the definition of these incor-

rect values, leading to the statement:

phi2 (j, k) =c2" (u (5, if in, j, k) -

0.50d+00*

(u(2,ifin,j,k)**2+

u (3, ifin, j , k) **2+

u(4,ifin,j,k)**2)/

u(l,ifin,j,k))

still in routine pintgr. Evaluation establishes that c2 is
correct and that ifin = 11, so the search then focuses on

u(1:5,11,6,6) on process0.

In subroutine pintgr the array u is in a common block.
The definition of u is found to be in routine ssor at the

statement

where frcl, frc2, and frc3 are n(,_ _;verwritten before

the current execution state (i.e., at a bre: kpoint in ver i fy).
However, they are variables local to p ir=tgr and since it

has already exited, they cannot be evahmted. Therefore, an

instrumentation point is set in routine _ intgr at the point

where frc is set and a re-execution is performed.

On reaching the definition of fro, lhe value of frc3

in the parallel execution proves to be i _correct when p2d2
compares it to the serial value. The s_ arch therefore con-

tinues for its defining statements. One is t0und in the state-
ment:

frc3=deta*dzeta*I::c3

where the values of deta and dzeta prove correct. The

incorrect value must therefore be frc !. However, the old

value was overwritten by this very assi_mment and thus can-

not be tested. Rather than issuing another instrumentation

for this variable (especially since this s the statement im-

mediately prior to the previous instrun _er=tation point), the

u (m, i, j , k) =u (m, i, j , k) +tmp*rsd (m, i, j , k)

where all used variables are potentially overwritten before

reaching the state available to p2d2, so instrumentation

points are set and a re-execution performed.

On reaching an instrumentation point, we search for the

statements that define rsd (1,11,6,6) on process 0. It
is defined in routine buts at the statement:

v(l, i, j ,k) =v(l, i, j ,k) -tv(l, i, j)

The values of tv and v cannot be tested in the current state,

so we search for their definition points. Array tv is defined
in the statement:

tv(l, i, j) =tv (i, i, j) /treat (i, i)

where, although treat cannot be checked, it is defined as

tmat(m,1)=d(m,l,i,j)

within the same i and j loops. Furthermore, the value of

d (1,1,11,6) on process 0 proves c_ rrect so treat does
not need to be instrumented. Obviousl,,, the used value of

tv has been overwritten, so an instrunentation point for

tv is set and a re-execution performe_, l_he definition of

tv that is then located is the assignmem

tv (m, i, j) =f(v, t-. I

in Figure 3, and this is the statement t_ e prototype reports
to the user as the location of the first dilference.

The current implementation of the a g(,rithm reports the

use of tv in the statement as the proble_n. The actual prob-
lem, an incorrect value for v (1,11, 7 6) on process 0

due to the missing pipeline communication, will be found

when the prototype has the iteration napping information

described in Section 2.1. This extensioq to the prototype is
discussed in Section 5.1.

For simplicity, the above example ,_peration of the al-

gorithm omits many other successful variable compar-

isons and instrumentation points that were never reached.
These were essential to ensure that the problem would not

be missed, but proved unnecessary as the algorithm pro-
gressed.

5. Extending the Prototype

While the prototype described in S'ction 3 establishes

the proof of concept of the use of backtracking and re-

execution in the debugging of paraltqized programs, it
doesn't yet meet our vision for a comp ehensive automatic

debugger for parallelized programs. In this section we de-

scribe how we plan to extend the functi ,nality of the proto-

type to handle a wider variety of probh.ms.

5.1. Iteration Mapping

Our current prototype assumes that o fly a trivial iteration

mapping is needed to compare the seri,d and parallel com-
putations. Any statement that is executt d more than once is

assumed to be instrumentable in both tte serial and parallel

programs without having to worry about aligning iterations.

In terms of loop iteration matching, i first-order approx-
imation of this mapping will describe 1 ,op transformations

and unrolling performed at the sourc_ code level. More

precise approximations might also inc ude those loop op-

timizations performed by the compiles used to generate

the serial and parallel executables. In addition, the itera-

tion mapping will need to describe pro_ ram statements that

are executed multiple times because of epeated calls to the
same function.

Once an iteration mapping is produc ?d there are still fur-

ther issues to consider. In our protot pc, CAPTools will

communicate to p2d2 the necessary ite_ation conditions for

each instrumentation point. These conditions can then be

checked each time the instrumentation is triggered. For a

nested loop this might be unacceptably slow, though, and

to solve this we could instrument locations progressively

closer to the actual location. For example, instrumentation

could be placed in the outer-loop of the loop nest to check

when its iteration condition is met, and then each successive

inner-loop would be instrumented in the same manner until
our desired location and iteration is reached.

Additional improvement can be obtained by looking

into different types of instrumentation. Conditional break-
points offer an easy way to accommodate iteration condition

checking, but typically execute much slower than the pro-

gram itself. Instrumentation that runs at full program exe-
cution speed (such as offered by Dyninst [4]) is desirable,

assuming the required types of condition checking can be

implemented.

5.2. Different Program Sources

In the interest of minimizing implementation time, we

limited our prototype to comparing one-process and multi-

process executions of the same program. That is, given an

MPI code produced by CAPTools, we can compare a single

process execution with a multiprocess one. The user may,

however, be more interested in comparing an execution of

the original serial program (with no MPI calls in it) to a

multiprocess execution of the MPI version.
There are two issues that arise if we are to relax this lim-

itation of our prototype. First, the parallelization tool will

need to provide the source-to-source mapping discussed in

Section 2.1. This mapping may be difficult to produce, be-

cause, for example, the parallelization tool may have in-
troduced new functions as a result of either outlining or

cloning.

A second issue that comes up concerns the order of exe-
cution of statements in the two versions of the code. While

this issue has been studied by Watson and Abramson in

Guard [16], the addition of backtracking introduces further

complexity to the situation. Consider the following two sit-

uations addressed by Guard.

• If we have multiple instrumentation points in the pro-

gram, there may be no guarantee that they will be en-

countered in the same order in the serial and parallel

executions. The problem then is that we must con-

tinue past one of the instrumentation points in order

for the execution to make progress. By continuing we

may destroy values that are needed for comparison at

the point when the second execution reaches the cor-

responding point. Thus, the implementation must take

care to checkpoint information required for compari-
son.

Temporal displacement concerns _ le possibility that a

collection of values in one progra n may not exist all

at the same time during executioa of the other pro-

gram. This situation can arise, fir example, as a re-

sult of scalar expansion or loop fu, ioa. To address this

situation Watson and Abramson st ggest an array con-

structing technique that collects _nd checkpoints the

values needed in a comparison.

In Guard, the values being compared a e explicit. Thus, if

checkpointed values or constructed arr;Lys are needed, it is

clear which values should be saved. If _:e add backtracking

to relative debugging, the values that we may want to ex-

amine are not known a priori. Instead as our comparison
algorithm backtracks we determine tht. _alues of interest.

The question we need to address, theref _re, is which values

should we checkpoint? One extreme .vould be to check-

point an entire program state. Alternati' ely, we might want

to anticipate the backtracking that wil be done and only

checkpoint values that might be investi!:ated.

5.3. Manually Parallelized Progra Ills

In order to extend the prototype to manually parallelized

programs, we need to acquire the typer t_f information de-

scribed in Section 2 that are currently pr ;_vided by the paral-

lelization tool: data dependence and c_,mputation mapping
information. There are two possibilities fi)r each class of in-

formation. Either we can try to acquire the information au-

tomatically or we will need to ask the t_scr for it. In our es-

timation, automatic methods are clearly p_eferable, because

the user will likely find the process ofp_ ,viding information

to be tedious and he may make mistake ,.
Fortunately, it seems straightforwar t vo collect the de-

pendence analysis information. By running a variant of the

CAPTools analysis phase on both the se:ial and parallel ver-
sions of the code, we should be able to mswer the dataflow

questions that come up during the relati ve debugging.

It is not as straightforward to colh ct the computation

mapping. For example, acquiring the soarce mapping infor-

mation automatically may be an intere:;ting research prob-
lem, depending on the similarity of th,' serial and parallel

programs. If, for example, functions iv the serial code are

present in the parallel code, then there is a natural starting

point of correspondence. It may be po_ sible to use incom-

plete mapping information that is automatically derived to

bracket an error, and then rely on the tt,er to provide more

complete mapping information in ordt r !o zero in on the
bug.

Determining the other mapping int_rmation automati-

cally seems more problematic. There has been previous

work done on straightforward ways fo a user to describe

the data distribution [7, 9, 15, 17]. Similar approaches may
work for other aspects of data value nmpping. When the

data value mapping is combined with dependence analysis

information we may be able to construct execution and iter-

ation mapping automatically.

5.4. Shared-Memory Parallelism

One of the restrictions we placed on the prototype imple-

mentation concerned the parallel programming paradigms

supported. In particular we limited it to handling only MPI
programs 2. In the future we would like to relax this restric-

tion by providing support for shared-memory parallel pro-

grams, such as OpenMP programs.
One obstacle to relaxing this restriction is in the imple-

mentation ofp2d2. The debugger uses a client-server archi-

tecture [6], and the current implementation of the server is

layered on top of gdb, the debugger from the Free Software

Foundation. Unfortunately, gdb does not support a full set

of thread control operations. For example, there is no gdb

command to single-step one thread (and leave others where

they are).

In order to compare the computations of an OpenMP

program and its serial counterpart, we must be able to con-
trol individual threads in the OpenMP program. To do this

using the gdb command set, we need to be able to hold some

threads when we continue others. One way to do this is to

modify the program counter of each thread to be held so that

it effectively busy waits while the non-held threads execute
their normal instruction stream. We have tested this tech-

nique in a prototype debugger server and it seems promis-

ing. Some work remains to make it robust enough to use in

the general case.

Besides the underlying debugger work needed, our pro-

totype would need to find sources for the dependence anal-

ysis and computation mapping information currently pro-

vided by CAPTools. Fortunately there is a tool, CAPO [8],
which is based on the CAPTools code base and can generate

OpenMP programs. It should thus be straightforward to get
the information we need.

There are also paradigm issues to consider in automatic

relative debugging of shared-memory programs. In particu-
lar, user errors, such as incorrectly indicating that it is safe

to run a loop in parallel, could lead to race conditions in

the program that cause nondeterministic behavior. Since it

will be important for the relative debugging tool to produce

consistent answers, detecting and handling nondeterminis-

tic execution in the target code will be critical.

2While the prototype currently handles only MPI programs, extending
it to other message-passing libraries, such as PVM [13], is straightforward.
There are two issues to address: tool generation of the code and debugging
codes of that type. CAPTools already produces codes containing calls to
CAPLib, a generic message-passing library. With the exception of process
startup, p2d2 is independent of the message-passing library used. Thus,
accommodating a new distributed communication library reduces to im-
plementing CAPLib in terms of the library and having the library's process
creation mechanism notifyp2d2 when there are new processes to debug.

5.5. Identifying and Correcting Bllgs

Detecting the first difference is not necessarily the end

of the story for our relative debugging mechanism. In the

parallelized version of a serial progrm i we can expect to

encounter certain classes of bugs that ire symptomatic of

mistakes made in manual parallelizatio_ s and incorrect user

inputs in the parallelization process. A mechanism that not

only isolates the location of difference,, but also identifies

the type of bug that caused the differeJ_ce along with a po-
tential corrective action, could be of tremendous value to

the user.

We would like to expand the scope t f our difference de-

tection mechanism to include an analy,ds of the difference.

The following are some common bug types in distributed-

memory message-passing programs we believe can be iden-

tified using this analysis:

• a missing communication;

• a communication that does not ,unvey all required
data;

• a communication that overwrites __:_rrectdata with in-

correct data; and

• missing computation (i.e., where a computation is per-

formed in serial but where no m:+tching computation

is performed in any parallel proc :ss, perhaps due to
errors in distributed loop limits, el,:.

For example, suppose that in one pl _cess of the parallel
execution there is a variable that is fir-t assigned a correct

value and then used. In another process of the parallel ex-

ecution, though, the same variable is used without being

assigned, triggering the detection of a difference between

the parallel and serial computations. A_mIysis of the defini-

tion and use of the variable among th : parallel processes
might indicate that a communication is missing between

those processes.

Additionally, difference analysis in _ prototype that has

been extended as described in Section 5 4 might help isolate

the following bug types in shared-me+n(,ry OpenMP pro-

grams :

The definition, use, and sharing of values could be ana-

lyzed to identify these bugs, similarly to the way defini-

tion, use, and communication of values might be analyzed

in distributed-memory programs.

6. Related Work

Backtracking has existed in debuggers for more than 30

years. Agrawal's thesis [2] surveys several approaches that

roll back execution from an erroneous state, looking for the

original bug in the program. Typically, these mechanisms

use a combination of dependence information from a static

analysis pass and trace information collected during an ex-
ecution.

Agrawal also reviews filtering techniques that use static

analysis information. Program slicing and program dicing

attempt to obtain the subset of a program that may have had

an effect on a given variable. A slice reduces the search

space for bugs, but does not provide, on its own, a compre-

hensive way to isolate them. Program dicing improves upon

slicing by narrowing down the search space of a slice using
information about correct variables.

There has been considerable work done in the last few

years on Relative Debugging [1]. For example, the Guard

debugger [16] allows the user to indicate comparisons that
should be made at runtime between two executions. Dur-

ing execution, it performs the comparisons, even taking care

of potential execution order changes between the two pro-

grams, and stops when a difference is detected. As part of
this work, Watson and Abramson [15, 17] detail an algebra

for describing data distributions.

Relative debugging has been applied previously to the

specific problem of finding differences between serial and

tool-generated parallel programs [7, 9]. In those efforts,
the user indicates what variable is wrong and where it is

wrong in the program. The debugger then queries the par-

allelization tool to find out which routines modify the vari-
able and under what name it is modified. With that data,

the debugger then inserts comparison instrumentation at en-

try and exit of those routines. When the serial and parallel

programs are then run side-by-side, the debugger is able to
narrow down the difference to a single subprogram.

• invalid parallel execution of a set ial loop, producing
nondeterministic behavior due to _ata races;

• mis-declaring a shared variable t_ be private, leading
to data being lost when the paralh:l r,:gion is exited;

• mis-declaring a private variable t,, be shared, leading

to overwriting of values by other +treads; and

• missing synchronization, leading t+_ the use of stale
values.

7. Conclusions

The automation of relative debugging for parallelized

programs can provide a significant reduction in the effort
required of users to find where a serial and parallel compu-

tation diverge. The steps typically performed by the user

can be more quickly and comprehensively performed using

mapping and data dependence information, potentially from

a parallelization tool, to inform the actions of a parallel de-

bugger.

In this work we have described Ihe implementation

of a practical mechanism that uses backtracking and re-

execution to automate a relative debug_ ing session. Instru-

mentation points are determined using _'_xisting static anal-

ysis information along with dynamicallv retrieved program

state, without requiring that trace infor+nation be collected

during executions. This allows us to amid both excessive

re-execution and excessive instrumentm ion by exploiting as

much current information as possible at every stage.

The practicality of using automated relative debugging

continues to be of interest to us, and our prototype im-

plementation helps to shed light on wl+ere algorithmic im-

provements and better utilization of cu¢rently available in-

formation can lead to further reducti¢,ns in required user

knowledge and time. This issue is of 1,articular concern to

the high performance community due to the great need for

porting of large- scale, long-running I rograms to parallel

forms.

Acknowledgments

We wish to thank Cos Ierotheou aad Emyr Evans for

their helpful inputs on both technical tnd presentation is-

sues. We also want to express appre_ iafion to Henry Jin

and Parkson Wong for their reviewing the paper and mak-

ing suggestions for improvements.

This work was partially funded thr_,ugh NASA contract

DTTS59-99-D-00437/A61812D.

References

[1] Abramson D., Foster, I., Michalakes, t., and Sosic, R.

"Relative Debugging and its Applicat ot_ to the

Development of Large Numerical M, dets." Proceedings of

IEEE Supercomputing 1995, San Die '.o, December 1995.

http ://citeseer. nj. nec. com/a :_ramson95

relative.html.

[2] Agrawal, H. "Towards Automatic Delmg, ging of Computer

Programs." Ph.D. Thesis, Departmenl ot Computer

Sciences, Purdue University, West La Ia3 ette, IN, 1991.

http://citeseer.nj.nec.corn/3 _4139.html.

[3] Computer Aided Parallelization Toob ((?APTools).

http://captools .gre. ac.uk/.

[4] The Dyninst API. http ://www. cs. :m<]. edu/projects/

dyninstAPI/.

[5] Evans, E. W., Johnson, S. P., Leggett. P F., and Cross, M.
"Automatic and Effective Multi-Dim_ nsional

Parallelisation of Structured Mesh B:,wd Codes." Parallel

Computing 26, pp 677-703, 2000.

[6] Hood, R. "The p2d2 Project: Building a Portable

Distributed Debugger." Proceedings of the ACM

SIGMETRICS Symposium on Parallel and Distributed

Tools, May 1996, Philadelphia, PA, pp. 126-137.

[7] Hood, R. and Jost, G. "Support for Debugging

Automatically Parallelized Programs." Proceedings of

AADEBUG '2000, Munich, Germany, 2(/00.

[8] Jin, H., Frumkin, M., and Yan, J. "Code Parallelization with

CAPO--A User Manual." NAS Technical Report,

http://www.nas .nasa.gov/Research/Reports/

Techreports/2OOl/nas+Ol-OOS-abstract. html.

[9] Jost, G. and Hood, R. "Relative Debugging of

Automatically Parallelized Programs." To appear in the

Journal of Automated Software Engineering.

[10] Intel, Incorporated. KAP/Pro. http : //www. ka ±. corn/

parallel/kappro.

[11] Leggett, R F., Marsh, A. T. J., Johnson, S. P., and Cross, M.

"Integrating User Knowledge with Information from

Parallelisation Tools to Facilitate the Automatic Generation

of Efficient Parallel FORTRAN Code." Parallel Computing

22, pp 259-288, 1996.

[12] The NAS Parallel Benchmarks. http ://www. nas. nasa.

gov/Software/NPB.

[13] Sunderam, V. S. "PVM: a Framework for Parallel

Distributed Computing." Concurrenc3; Practice and

Experience 2 (4), pp. 315-340, 1990. http ://cieeseer.

nj .nec. com/sunderam90pvm, html.

[14] Veridian, Incorporated. VAST/Parallel Fortran and C

Automatic ParalleIizing Preprocessors. http://www.

psrv. com/vast_paral lel. html+

[15] Watson, G. "The Design and Implementation of a Parallel

Relative Debugger." Ph.D. thesis, Monash University,

Melbourne, Australia, 2000.

[16] Watson, G. and Abramson, D. "The Architecture of a

Parallel Relative Debugger." Proceedings of the 13th

International Conference on Parallel and Distributed

Computer Systems, Las Vegas, Nevada, August 2000.

[17] Watson, G. and Abramson, D. "Programming Language

Array Constructs For Parallel Relative Debugging."

http://citeseer.nj .nec. tom/watson98

programming, html.

