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Abstract 
 

The increasingly common practice of (1) replicating 
datasets and (2) using resources as distributed data stores in 
Grid environments has lead to the problem of determining 
which replica can be accessed most efficiently.  Due to diverse 
performance characteristics and load variations of several 
components in the end-to-end path linking these various 
locations, selecting a replica location from among many 
requires accurate prediction information of end-to-end data 
transfer times between the sources and sinks. 

In this paper, we present a prediction system that is 
based on combining end-to-end application throughput 
observations and network load variations, drawing from their 
merits of capturing whole system performance and variations 
in load patterns respectively. We develop a set of regression 
models to derive predictions that characterize the effect of 
network load variations on file transfer times. We apply these 
techniques to the GridFTP data movement tool, part of the 
Globus Toolkit™, and observe performance gains of up to 
10% in prediction accuracy when compared to approaches 
based on past system behavior in isolation. 
 
Keywords: Grids, data transfer prediction, replica selection. 
 
1. Introduction 
 

As the coordinated use of distributed resources, or Grid 
computing, becomes more commonplace, basic resource usage 
is changing. Many recent applications use Grid systems as 
distributed data stores [DataGrid02, GriPhyN02, HSS00, 
LIGO02, MMR+01, NM02, TPW+00] where pieces of large 
data sets are replicated over several sites.  For example, several 
high-energy physics experiments have agreed on a tiered Data 
Grid architecture [Holtman00, HJS+00] in which all data 
(approximately 20 petabytes by 2006) is located at a single 
Tier 0 site; various (overlapping) subsets of this data are 
located at national Tier 1 sites, each with roughly one-tenth the 
capacity; smaller subsets are cached at smaller regional Tier 2 
regional sites; and so on.  Therefore, any particular data set is 
likely to have replicas located at multiple sites.  

More often, these datasets are replicated for performance 
or proximity reasons. Variations in performance 
characteristics, among these replica locations, are bound to 

exist due to different storage system architecture, network 
connectivity, network traffic and system load. Thus, users may 
want to be able to determine the site from which particular data 
sets can be retrieved most efficiently, especially as data sets of 
interest tend to be large (1–1000 MB).  It is this replica 
selection problem that we address in this paper. 

One way a more intelligent replica selection can be 
achieved is by having replica locations expose performance 
information about past data transfers, which can then be used 
to make predictions about the future behavior between the sites 
involved. 

In previous work [VSF02], we examined using logs of 
past data transfers of large files to predict future behavior. 
These results had errors on average of about 20%, due to the 
sporadic nature of the transfers and the lack of current 
information about the network conditions. In this paper we 
examine using another data stream, lightweight regular 
sensors, and combine this information with past observations 
for better predictions. 

We develop a predictive framework that combines 
infrequent but very accurate end-to-end GridFTP [AFN+01] 
file transfer data with frequent Network Weather Service 
[Wolski98] small probe data. Since these values are correlated, 
we use regressive techniques to combine the two data. We 
analyze several approaches that use different data filling 
techniques, and show a 5-10% improvement in prediction error 
over a small, wide-area testbed.  
 
2. Related and Previous Work 
 

Our goal is to obtain an accurate prediction for file 
transfer times between a storage system and a client.  
Achieving this can be challenging since numerous devices are 
involved in the end-to-end path between the source and the 
client, and the performance of each (shared) device along the 
end-to-end path may vary in unpredictable ways. 

One approach to predicting this information is to construct 
performance models for each system component (CPUs at the 
level of cache hits and disk access, networks at the level of the 
individual routers, etc.) and then use these models to determine 
a schedule for all data transfers [SC00], similar to classical 
scheduling [Adve93, Cole89, Crovella99, ML90, CQ93, 
Schopf97, TB86, ZLP96]. In practice, however, since system 
components are shared their behavior can vary in unpredictable 
ways [SB98]. 



Alternatively, observations from past application 
performance of the entire system can be used to predict end-to-
end behavior, which is typically what is of interest to the user.  
This technique is used by Downey [Downey97] and Smith 
[SFT98] to predict queue wait times and by numerous tools 
(Network Weather Service (NWS) [Wolski98], NetLogger 
[NetLogger97], Web100 [Web100Project02], iperf [TF01], 
and Netperf [Jones02]) to predict network (for small file 
transfers) behavior. 

As shown in Figure 1, 64KB NWS measurements indicate 
that the bandwidth is about 0.3 MB/sec, while end-to-end 
GridFTP had a significantly higher transfer rate. This shows 
that NWS, by itself, does not predict end-to-end GridFTP 
throughput.  

In [VSF02], we analyzed using GridFTP data in isolation 
by developing a series of predictors to predict transfer times 
and observed 15-24% error on average. Although these 
predictions account for all of the components in the end-to-end 
path, the data is too sporadic to reflect current conditions. 

The NWS has demonstrated adaptive linear regression 
models [FSW+99] under similar circumstances with 
distributed data intensive applications such as the Storage 
Resource Broker (SRB) [BMR+98] and SARA [SARA02] in 
controlled experiment settings. This work compared transfer 
times obtained from a raw bandwidth model (Transfer-Time = 
ApplicationDataSize/NWS-Probe-Bandwidth, with 64KB 
NWS probes) with predictions from regression models and 
observed performance gains ranging from 20% to almost 
100% for the sites examined [FSW+99].  

In this paper, we consider similar techniques for GridFTP 
but extend the body of work by considering regression models 
ranging from linear to quartic (polynomial) to improve 
prediction accuracy, and develop strategies to account for the 
lack of sufficient GridFTP data and compare our approach 
against past predictors.  
 
3. Predicting GridFTP Throughput using 

Regression 
 

In order to obtain an accurate prediction for selecting 
replicas, we analyze the use of NWS bandwidth data in 
combination with GridFTP log data. This section describes the 
two monitoring approaches, an initial correlation test, and our 
regression techniques for predictions.  
 
3.1. GridFTP and NWS data streams 
 

GridFTP data measures the end-to-end application 
throughput including component overheads and is gathered 
only when a file is transferred between two sites. NWS 
network data measures the throughput of small 64KB probes at 
regular intervals. Our goal is to use regression techniques to 
extrapolate these two data streams. 

GridFTP [AFN+01] is part of the Globus Toolkit™  
[FK98] and is widely used as a secure, high-performance data 

transfer protocol [AFN+01, CFK+01, DataGrid02, GriPhyN02, 
SS01]. It extends standard FTP implementations with several 
features needed in Grid environments, such as security, parallel 
transfers, partial file transfers, and third party transfers, etc.  

Figure 1:  LBL-ANL GridFTP (approximately 400
transfers at irregular intervals) end-to-end
bandwidth and NWS (approximately 1,500 probes
every five minutes) probe bandwidth for the two-
week August’01 dataset.

We instrumented the GridFTP server to log the source 
address, file name, file size, number of parallel streams, 
stripes, TCP buffer size for the transfer, start and end 
timestamps, nature of the operation (read/write), and logical 
volume to/from which file was transferred, etc. [VSF02]. 

The Network Weather Service monitors the behavior 
of various resource components by sending out probes at 
regular intervals [Wolski98]. NWS sensors exist for 
components such as CPU, disk, and network. Of interest to us 
is the network bandwidth sensor that uses small periodic 
probes (64KB) to estimate the current network throughput.  
 
3.2. Correlation  
 

The first step in analyzing if a combination of data 
streams will result in better predictions is to evaluate how 
highly correlated they are. The correlation coefficient is a 
measure of the linear relationship between two variables, and 
can have a value between –1.0 to +1.0 depending on the 
strength of the relation. A coefficient near zero suggests that 
the variables may not be linearly related but instead might 
share a nonlinear relationship [Edwards84, OM88]. The 
correlation coefficient for GridFTP, (G), and NWS, (N), data is 
computed using the formula: 

where “size” is the number of values in the data stream.  
We compute rank-order correlation for each of our 2-

week data sets. Since our data was collected over a short 
duration, we might not always have enough observations to 
fulfill the standard normal distribution criteria required for the 
correlation computation. Rank correlation provides a 
distribution free, non-parametric alternative to determine if the 
observed correlation is significant or not. Rank correlation is a 



widely applicable, general form of correlation that works by 
converting data to ranks by assigning a specific rank to each 
value in the data stream, as determined by the position of the 
value when the data stream is sorted.  

Figure 2 shows a tabulated listing of the 95% 
confidence interval for the correlation coefficients. The 
confidence interval denotes that the correlation for 95% of the 
sample falls within a certain upper and lower limit and is 
computed by obtaining a Fisher transformation (a normal 
distribution) for the coefficient, finding the standard error for 
the distribution and then computing the interval [Edwards84]. 
From the figure, we can infer the presence of a moderate 
correlation between GridFTP and NWS data streams, 
encouraging the application of several regression models on 
these two datasets. 
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(Ni, Gj)(Ni+1, _)…(Ni+(k-1), _)( Ni+k, Gj+1) 
where Gj, and Gj+1 are two successive GridFTP file transfers 
and Ni, and Ni+k are NWS measurements that occurred in the 
same timeframe as the two GridFTP transfers. The sequence 
also consists of a number of NWS measurements between the 

(Ni, Gj)(Ni+1, _)…(Ni+(k-1), _)( Ni+k, Gj+1) N
Match 
values 
close in 
time Filling-in Techniques

| NoFill | LV | Avg |
G

Matched set

(Ni, Gj)(Ni+1, GFill)…(Ni+(k-1), GFill)( Ni+k, Gj+1) 

Temporal Filter 

Limit set to “n” 
days worth of data 

Regression Functions 
| Linear | Quadratic | Cubic | Quartic |

Prediction 

Figure 3: Algorithm for deriving predictions out
of GridFTP (G) and NWS (N) data streams using
regression techniques. 
 Aug’01 Dec’01 Jan’02 
 Upper Lower Upper Lower Upper Lower 
LBL-ANL 0.8 0.5 0.5 0.3 0.6 0.2 
LBL-UFL 0.7 0.5 0.7 0.4 0.6 0.1 
ISI-ANL 0.8 0.5 0.6 0.4 0.7 0.3 
ISI-UFL 0.9 0.4 0.6 0.2 0.5 0.1 
ANL-UFL 0.5 0.2 0.6 0.2 0.6 0.1 

Figure 2: 95% Confidence for the Upper & Lower 
limits of the Rank-Order Correlation Coefficient for 
the GridFTP and NWS datasets between four sites 
in our testbed. 
3. Regression Techniques and Algorithm 

Regression uses various models to support 
lationships between datasets, and is a powerful tool that can 
 used to derive predictions. Regression provides techniques 
 study the impact of the independent variable, NWS, (N), on 
e dependent variable, GridFTP, (G). However, additional 
ocessing on the data must be done to result in the one-to-one 
apping expected by these techniques. 

In Figure 3 we show the process we use to derive 
edictions. The key components are two data sources (G and 
), filling in techniques, temporal filter, and the black box of 
ssible regression functions. Each dataset entry consists of a 
estamp, observed throughput value pair: (TG, G) for 

ridFTP and (TN, N) for NWS.  

3.1. Matching 

In our data sets, it is rare that any two points from the 
o data sources have the same timestamp. Therefore, before 
is data can be analyzed, the closest related pairs between the 
o data streams must be matched. For each GridFTP data 
int (TG, G), we match a corresponding NWS data point 
N, N), such that TN is the closest to TG, is established. By 
ing this, the pair (Ni,Gj) represents an observed end-to-end 

ridFTP bandwidth (Gj) resulting from a data transfer that 
curred with the network probe value (Ni). At the end of the 
atching process the sequence looks like the following: 

two transfers for which there are no equivalent GridFTP 
values, such as (Ni+1, _). 
 
3.3.2 Filling-in Techniques 
 

Two successive GridFTP transfers are almost always 
interspersed with many NWS values, given the nature of these 
datasets. In the matched sequence above, these values are 
represented as: (Ni+1, _)…(Ni+(k-1), _). Regression techniques 
expect a one-to-one mapping between NWS and GridFTP 
datasets, so we need mechanisms to compensate for the lack of 
sufficient GridFTP data. We use three techniques namely 
NoFill, LV and Avg. 
 

I. Discard unaccounted NWS data (NoFill):  With no-fill we 
simply omit the unmatched NWS data. The drawback of this 
approach, shown in Figure 4b, is that we throw away useful 
data. This was the approach used in [FSW+99]. 

 
II. Last Value filling (LV): In this approach we fill in the last 

GridFTP value for each unmatched NWS value, as shown in 
Figure 4c. 

 
III. Average filling (Avg): This is similar to the previous 

approach, except that instead of the last GridFTP value, an 
average over the past day’s worth of data transfers is 
computed and is used as a filling, as shown in Figure 4d. 
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(c) Last Value Filling (LV) 

 

 
3.3.3. Temporal Filters 
 

Regression techniques can function over a variety of 
data sizes with differing results. We use a temporal filter to 
truncate the dataset, much in the same way as a sliding 
window is used in averages.  
 
3.3.4 Regression Models 
 
After this pre-processing, a set of pairs is fed to the regression 
function to calculate the coefficients necessary to obtain 
predictions. We use regression models ranging from linear to 
quartic to account for diverse relations between variables. 
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(d) Average Filling (Avg) 

(N26, G2) 

 

 
Linear regression attempts to build linear models 

between NWS, N, and GridFTP, G, data. We constructed a 
linear model between two variables N and G as follows: G| = 
a + bN, where G| is the prediction of the observed value of G 
for the corresponding value of N. The coefficients, a and b are 
calculated based on a regression function that accounts for 
previous Ns and Gs, using the method of least squares. The 
regression coefficient, a is calculated using the formula: a = 
Mean(G) – b*Mean(N), while the coefficient, b is 
calculated using the formula: 

 
where “size” is the total number of values in the dataset  
[Edwards84]. 

(N75, G4) 
(N26, G2)(N75, G4) 

Figure 4: (a) Depicts six measured successive GridFTP transfers and NWS observations during those
transfers between LBL and ANL. (b) Depicts discarding NWS values to match GridFTP transfers. (N26,
G2) denotes that the 26th NWS measurement and the 2nd GridFTP transfer occur in the same timeframe.
(C) Filling in last GridFTP value (LV) for NWS values between six successive file transfers. Graph follows
a step function. Actual transfers are shown along with the filling. (d) Average (Avg) of previous GridFTP
transfers as a filling for NWS values. 



To improve prediction accuracy we also developed a 
set of nonlinear models adding polynomial terms to the linear 
equation. For instance, a quadratic model is as follows: G| = 
a + b1N + b2N

2; cubic and quartic models with additional 
terms b3N

3 and b4N
4 respectively. Similar to the linear model 

the coefficients in quadratic, cubic and quartic models, b2, b3, 
and b4 are computed using the method of least squares. 
Adding polynomial terms to the regression model can reach a 
saturation point (no significant improvement in prediction 
accuracy observed) suggesting that a particular model 
sufficiently captures the relationship between the two variables 
[OM88, Pankratz91]. 
 
4. Results and Analysis 
 

We evaluated the performance of our regression 
techniques on datasets collected over three distinct two-week 
durations, namely August2001, December2001 and 
January2002. In the following sections we illustrate the 
experimental setup, prediction error calculations and our 
results obtained from these datasets. 
 
4.1. Experimental Setup 
 

Our experiments comprised controlled GridFTP 
transfers and NWS network sensor measurements between 
four sites in our testbed: Argonne National Laboratory (ANL), 
the University of Southern California Information Sciences 
Institute (ISI), Lawrence Berkeley National Laboratory (LBL) 
and University of Florida at Gainesville (UFL).  

GridFTP experiments included transfers comprising 
several file sizes ranging from 10MB to 1GB, performed at 
random time intervals within 12-hour periods. These transfers 
were performed with tuned TCP buffer settings (1MB) and 
eight parallel streams to achieve enhanced throughput. Logs of 
these transfers were maintained at the respective sites and can 
be found at [Vazhkudai02]. In our previous work [VSF02], we 
observed that GridFTP throughput varied with transfer file 
sizes and thus grouped several file sizes into categories. We 
categorized our data into four sets: 0–50 MB as 10M, 50–250 
MB as 100M, 250–750 MB as 500M and more than 750 MB 
as 1G, based on the achievable bandwidth, for the sites we 
examined. Our results in the next section are based on these 
settings. 

Configuring NWS amongst a set of resources 
involves setting up a nameserver and memory to which sensors 
at various sites can register and log measurements [Wolski98]. 
In our experiments, we used ANL as a registration and 
memory resource. NWS network monitoring sensors between 
these sites were setup to measure bandwidth every five 
minutes with 64KB probes. 

The accuracy of a regression function depends on the 
size of the dataset that can be minimal initially. For this reason 
we use a training set of 15 GridFTP and NWS data points so 
the regression function can adjust. 
 

4.2. Performance 
 

In this section we discuss the performance of our 
regressive techniques, compare the various approaches used to 
account for network data, compare linear and nonlinear 
models, and analyze the effect of window sizes on prediction 
error. We use our August 2001 dataset to illustrate these 
points. Complete results for all our datasets can be found at 
[Vazhkudai02]. 

We calculate the prediction accuracy using the 
normalized percentage error calculation:  

 
where “size” is the total number of predictions and the 
MeanBW, is the average measured GridFTP throughput.  

In Figure 5, we show the average performance (based 
on all transfer sizes) for our predictors. We compare the 
normalized percent errors for predictors based on past 
GridFTP behavior and predictors based on linear regression 
between our various site pairs. For our datasets, we 
consistently observed a 5 to 10% improvement in prediction 
accuracy when regression techniques with LV or AVG filling 
were used. Regression with NoFill provides us with no 
significant improvement when compared to past predictors.  

Figure 6, depicts the regression results between LBL 
and ANL for the 500M category. The figure shows how 
predictions using Avg fill regression and past moving average 
closely follow the measured values. Corresponding error rates 
for the Avg and PastMavg is shown in Figure 7, where we can 
see at least a 5% improvement in accuracy. 

Figures 7 through 10 study the effect of filling in 
techniques for various transfer sizes. We show our predictions 
for various site pairs and for several file sizes highlighting that 
our predictors work considerably well for several transfer 
sizes. For almost all transfer sizes filling in techniques 
performed better than discarding network data. We observe 
error rate improvements of up to 10% when we use last value 
(LV) or average (Avg) filling as against simply discarding 
(NoFill) NWS data or using past predictors.  

 Moving  
Avg 

Regression 
NoFill 

Regression 
LV 

Regression 
Avg 

L B L - A N L 24.4% 22.4% 20.6% 20% 

L B L - U F L 15% 18.8% 11.1% 11% 

I S I - A N L 15% 12% 9.5% 9% 

I S I - U F L 21% 21.9% 16% 14.5% 

A N L - U F L 20% 21% 20% 16% 

Figure 5: Average normalized percentage errors for 
GridFTP predictions based on (1) Past GridFTP 
behavior and (moving average predictor), (2) 
Regression with no filling, (3) Regression with last 
value fills, and (4) Regression with average fills. All 
error rates are for linear regression models.  



For our datasets, we did not observe any noticeable 
improvement in prediction accuracy by using polynomial 
models for our site pairs. Figure 11 shows the performance of 
linear, quadratic, cubic and quartic regression models for 
various transfer sizes between LBL and ANL with Avg filling. 
All our models performed similarly.  

We further studied the impact of different window 
sizes on regression error rates. In general, we observe that 
regression functions perform better with more data. Figure 12 
depicts regression with Avg filling over five days, ten days and 
over all the data. We did not notice any substantial 
improvements since our datasets were collected over short 
durations. 
 
5. Conclusion 
 

In this paper, we describe the need for predicting the 
performance of GridFTP data transfers in the context of replica 
selection in Data Grids. We describe our previous work on 
deriving predictions from past GridFTP behavior and highlight 
that using GridFTP in isolation has limited use in predictions 
due to the sporadic nature of large data transfers. 

As an alternative, we explore the possibility of using 
regressive techniques between GridFTP and NWS network 
data streams to mitigate the problems with our prior approach. 
We develop a set of regression models to account for the 
relation between GridFTP and NWS data, and experiment with 
several data-filling techniques. With this approach, we obtain a 
5-10% increase in prediction accuracy when compared with 
predictions based on only past GridFTP behavior.  

As a next step, we plan to examine the effects of disk 
I/O load on application throughput using similar techniques 
explained in this paper. 
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Figure 7: Depicts the improvement in prediction
accuracy due filling in techniques for all file
transfers between LBL and ANL. 
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Figure 8: Depicts the improvement in prediction
accuracy due filling in techniques for all file
transfers between ISI and ANL. 

 Figure 9: Depicts the improvement in prediction
accuracy due filling in techniques for all file
transfers between LBL and UFL. 

 
 
 

Figure 6: Depicts NWS, measured GridFTP,
GridFTP predictions using linear regression with
average filling and predictions using the moving
average past predictor for 500MB file transfers
between LBL and ANL. We can see that
predictions closely track measured values.
Predictions include an initial training set of 15
values.
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