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Abstract

With the advances in middleware and Web services tech-
nologies, network services are evolving from simple client-
server applications to self-configuring services that can
compose primitive components distributed in the Internet
into a value-added service configuration that provides rich
functionalities to users. A resulting research problem is
how to continuously adapt such composite service config-
urations at run time in order to cope with the increas-
ingly dynamic and heterogeneous network environments
and computing platforms. In this paper, we propose a self-
adaptation architecture that allows service developers to
specify their service-specific adaptation knowledge as “ex-
ternalized” adaptation strategies. These adaptation strate-
gies are used by a general, shared adaptation framework
to perform run-time adaptation operations that automati-
cally incorporate service-specific knowledge. In addition
to the strategies, we also identify another aspect of adap-
tation knowledge that is not addressed by previous solu-
tions: adaptation coordination. Our framework provides
integrated support for the specification and execution of
both aspects of developers’ adaptation knowledge.

1. Introduction

Network applications such as Web browsing, video con-
ferencing, instant messaging, file sharing, and online gam-
ing are becoming a necessity for more and more peo-
ple. From a user’s perspective, these network applica-
tions are used to accessservicesoffered by service de-
velopersover the Internet. Advances in middleware and
Web services technologies have enabled service develop-
ers to build value-added services using distributed software
components to satisfy particular user requirements. In or-
der to maintain the service performance and quality, such
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distributed composite services must be able to dynamically
adapt their configurations to the frequent run-time changes
in network characteristics (e.g., latency and bandwidth), re-
source availability (e.g., CPU and memory), and other en-
vironment factors.

In many cases, how to perform run-time adaptation is
highly service-specific, i.e., simply using some generic
adaptation heuristics is not sufficient, andservice-specific
knowledgeis required to appropriately adapt the service
configuration at run time. Many previous research ef-
forts to support run-time adaptation adopt an “internal-
ized” approach that requires developers to integrate their
service-specificadaptation strategiesinto the target system,
e.g., [16, 19, 9, 3]. While this approach is flexible, it forces
a developer to hard-wire the knowledge into the system, in-
creasing design complexity and development cost.

In addition to the adaptation strategies, adaptation coor-
dination is another important aspect of distributed compos-
ite services that requires service-specific knowledge. Mul-
tiple strategies may be invoked at the same time, and they
may want to make conflicting changes to the configuration.
Furthermore, the developer may design strategies that “at
cross purposes”, e.g., one strategy adds a server to improve
performance while another strategy removes a server to re-
duce cost. Such adaptation coordination issues are a chal-
lenging problem that is not addressed by previous solutions.

In this paper, we present a self-adaptation architecture
that allows service developers to easily add run-time adap-
tation capability to their services. We use an “externalized”
approach adopted in several previous studies (e.g., [11, 26]):
we define a representation for developers to express their
service-specific adaptation knowledge in the form of exter-
nalized strategies and coordination policies, and we build
a general framework that can interpret such knowledge to
automatically adapt the target system at run time. Since
the general, shared framework provides common adaptation
functionalities, our approach reduces the development cost
as the developers do not need to worry about lower-level
mechanisms.

In the rest of the paper we define the run-time adaptation



Figure 1. A video conferencing service.

problem, present the self-adaptation architecture, discuss
the support for service-specific adaptation strategies and co-
ordination policies, describe our prototype implementation,
and use simulation to demonstrate the advantages of our ap-
proach.

2. Problem statement

We focus on the problem of adding run-time adaptation
capabilities to a composite service. Therefore, we assume
that the initial configuration of a service is already con-
structed. One possibility is that the developer constructs
the configuration manually. Alternatively, the developer
can build a “self-configuring service” using an existing self-
configuration framework, e.g., [13, 12, 22, 1], that automat-
ically composes the service configuration.

Given the initial service configuration, we have identi-
fied two aspects of a developer’s service-specific knowl-
edge that can be used to guide the adaptation of the con-
figuration at run time: adaptation strategies and coordi-
nation policies. Let us first use an example to illustrate
these. In Figure 1, five users want to hold a video confer-
ence. Two use MBone conferencing applications vic/SDR
(VIC), two use NetMeeting (NM), and one uses a receive-
only handheld device (HH). Suppose the initial configura-
tion for the users consists of a video conferencing gateway
(VGW) that translates different conferencing protocols, a
handheld proxy (HHP) joining the session on behalf of HH,
and three End System Multicast (ESM) proxies that provide
wide-area multicast functionality for the users.

At run time, the service configuration needs to be
adapted to accommodate environmental changes. For ex-
ample, to handle run-time problems such as high load and
congestion at the VGW, the developer may have the follow-
ing two strategies:

• S1: (VGW overloaded)→ (replace VGW with a high-
capacity VGW)

• S2: (VGW congestion)→ (replace VGW with a high-
bandwidth VGW)

These strategies are service-specific because another devel-
oper may have different strategies, e.g., VGW overload and
congestion could be handled by reducing the codec quality
and bit rate.

Another important aspect of the adaptation knowledge
is how the strategies should be “coordinated”. For exam-
ple, suppose at run time, S1 and S2 above are invoked at
the same time. If the two strategies want to replace the
VGW with different candidates, obviously only one of them
should be allowed to execute.

Our goal is to build an adaptation framework that allows
a developer to add self-adaptation capabilities to a service
and adapts the system based on the developer’s knowledge.
In this paper, we limit our scope tolocal adaptation, i.e.,
we focus on how to support adaptation strategies involving
only “local” actions and how to coordinate such strategies.
Specifically, a local adaptation only changes a single com-
ponent (e.g., changing the parameters of a component, re-
placing a component, etc.) and has limited “indirect” effects
(e.g., it only affects the component it changes).

3. Overview of adaptation architecture

In our architecture (Figure 2), a developer uses our
knowledge representation to express its service-specific
adaptation knowledge, includingadaptation strategiesand
coordination policies. This knowledge, along with the
initial configuration of the service, are given to the self-
adaptation framework, which consists of anadaptation
manager(AM), an adaptation coordinator(AC), and the
supporting infrastructure.

The supporting infrastructure provides the common
functionality required for run-time adaptation, e.g., a net-
work measurement infrastructure for measuring critical net-
work performance metrics, a service discovery infrastruc-
ture for finding new components, a component manage-
ment/deployment infrastructure for controlling/deploying
the components, etc. In this paper, we assume the necessary
infrastructures exist, and we focus on how the developers’
knowledge can be represented and on how the AM and the
AC can make use of the adaptation and coordination knowl-
edge to adapt the target service configuration.

At run time, the AM handles a developer’s adaptation
strategies by monitoring the configuration to detect run-time
problems. When a problem occurs, e.g., a component be-
comes overloaded, and one of the developer’s strategies is
designed to handle the problem, the AM invokes the strat-
egy to adapt the configuration, e.g., replace the overloaded
component. When a strategy is executed, it generates apro-
posalspecifying how it wants to change the configuration,
and the proposal is sent to the AC. If a proposal does not
conflict with other proposals, the AC accepts the proposal
and asks the AM to change the configuration accordingly.



Figure 2. Architecture for run-time local adaptation support.

Otherwise, the AC rejects the proposal.
Next, we discuss our design of the knowledge represen-

tation for specifying the adaptation strategies and coordina-
tion policies, and we describe how such knowledge is used
to perform run-time adaptation.

4. Adaptation strategies

Previous studies have proposed many run-time adapta-
tion solutions based on “internalized” adaptation strategies
(i.e., the adaptation logic and mechanisms are hard-wired
into the system itself), for example, [16, 19, 9, 3]. While
this approach gives the service developer complete control
over how adaptations are performed, it typically results in
high development costs.

The “externalized” approach adopted by some previous
projects, e.g., [11, 26], addresses this problem by separat-
ing the strategies and mechanisms from the actual system.
This enables the development of a general adaptation frame-
work that can be reused by different systems, and the devel-
oper of a system can add run-time adaptation capabilities by
designing externalized strategies without modifying system
components. Therefore, the development cost is potentially
much lower than with the internalized approach.

To support externalized strategies, one important de-
sign decision is how to specify such strategies. As cat-
egorized in [26], an adaptation strategy can be specified
as a high-level “utility” function or an explicit “event-
action” rule. The utility approach allows a service devel-
oper to specify a utility function indicating the “desirable”
configurations, and the adaptation mechanisms automati-
cally modify the service configuration towards higher util-
ity. This approach is for example used in run-time adap-

tation solutions that focus on dynamic resource allocation,
e.g., [17, 21, 26]. However, our scope of adaptation is
much broader and includes component-level adaptations
such as replacing/adding/removing components. Therefore,
the utility approach is not feasible.

The event-action approach lets a developer specify rules
dictating what “actions” should be taken when a particular
“event” occurs. For example, when the event “component X
becomes overloaded” occurs, the appropriate action is “re-
place X with a higher capacity one”. This approach is used
in previous studies where the target system involves differ-
ent, heterogeneous components, e.g., [11, 8]. Therefore, we
adopt the externalized, event-action approach for strategy
specification.

4.1. Strategy format

Our support for adaptation strategies is built on the exter-
nalized approach presented in Rainbow [11]. An adaptation
strategy consists of the following three parts.

• Constraint: A strategy is invoked when its constraint is
“violated”. A constraint is a condition on certain prop-
erties of the configuration, e.g., “load(X) < C” where
X is a component in the configuration. The properties
can be performance metrics, e.g., bandwidth and la-
tency, or component properties. At run time, the AM
monitors the constraints of the strategies and invokes a
strategy when its condition becomes false.

• Problem determination: A constraint violation may be
caused by multipletriggering problems. When a strat-
egy is invoked, it may need to, for example, query
more specific configuration properties to determine the



actual triggering problem. For example, in the video
conferencing example, a strategy triggered by “low
HH video quality” needs to determine whether the ac-
tual problem is HHP failure, low quality codec used by
the HHP, or congestion at the HHP.

• Tactic: A tactic consists of a set ofactions that are
used to address a particular triggering problem. Ac-
tions range from changing a run-time parameter of a
component to changing the configuration by insert-
ing/removing components. In the example above,
“HHP failure” can be addressed by a tactic that re-
places the failed HHP with a new one, “low qual-
ity codec” can be addressed by “increasing the codec
quality”, and so on.

4.2. Strategy specification

We now discuss how each part of a strategy is speci-
fied. Our self-adaptation framework is based on the self-
configuration framework we built previously [13]. Specif-
ically, we leverage the existingabstract configuration API
andobjective function API. The abstract configuration API
includes data structures representing components and com-
ponent types in a service configuration and functions for
adding/removing/connecting components in the configura-
tion. We assume the initial configuration is given to our self-
adaptation framework as a data structure that is constructed
using this API. Therefore, an adaptation strategy designed
by a developer can “reference” components or component
types in the configuration. The objective function API in-
cludes data structures representing performance metrics and
other properties of components/connections in the configu-
ration and operators in an objective function for component
selection.

In addition to the above existing functionality, new data
structures and functions are needed for specifying all parts
of a strategy. Table 1 summarizes the additions. We now
describe how a developer can use these APIs to specify each
part of an adaptation strategy.

• Constraint: A developer can use the objective func-
tion API to construct a function of the relevant prop-
erties of components and connections in the config-
uration. A constraint can then be constructed using
RelationOp and BooleanOp with the function.
When a constraint is violated, the “violator” in the con-
figuration is passed to the corresponding strategy (sim-
ilar to Rainbow [11]), which can then operate on the
appropriate component.

• Problem determination: Since our framework is im-
plemented in Java and exports Java interfaces and
classes for specifying strategies, a strategy designed

Data structure
RelationOp : Represent relation operators such as
“==”, “ >=”, etc.
BooleanOp : Represent boolean operators such as
“AND”, “OR”, etc.
Condition : Represent a combination of “Term
RelationOp Term ”.
Constraint : Represent a combination of
“Condition BooleanOp Condition ”.
Tactic : Represent the base class for a tactic; develop-
ers implement tactics by creating specializations.
Strategy : Represent the base class for a strategy;
developers implement strategies by creating specializa-
tions.

Function
replaceComponent(c) : Represent an adaptation
action that replaces an existing componentc in the cur-
rent configuration.
changeParameter(pn,pv) : Represent an adapta-
tion action that changes the value of the parameterpn of
a component topv .
connect(c1,c2) : Represent an adaptation action
that connects componentsc1 andc2 .
setTacticObjective(obj) : Set the component
selection objective for a tactic toobj , which will be used
for, e.g., thereplaceComponent actions.
setConstraint(C) : Associate the constraintCwith
an adaptation strategy.
invokeTactic(T) : Invoke the tacticT.

Table 1. API for specifying adaptation strate-
gies.

by a developer is basically a small Java class. This
approach gives the developer significant flexibility in
implementing the problem determination logic.

• Tactic: Since we focus on “local adaptation”, our
API allows a tactic to specify actions such as
replaceComponent , changeParameter , and
connect . Similar to our previous self-configuration
framework, when a tactic requires a new component, it
specifies an objective function as the component selec-
tion criterion usingsetTacticObjective . The
support infrastructure will then use this objective func-
tion to select the best server to execute the component,
given current runtime conditions.

• Strategy: Finally, we need a data structure to represent
a strategy. The constraint of a strategy can be assigned
usingsetConstraint , and a strategy can invoke a



tacticNewNM : This tactic connects a new NM user to
the VGW.
tacticNewVIC : Connect a new VIC user to the clos-
est ESMP.
tacticNewHH : Connect a new HH user to the HHP.
tacticVGWFail : Replace a failed VGW with a high-
capacity one.
tacticVGWOverload : Replace an overloaded VGW
with a high-capacity one.
tacticVGWCongest : Replace a congested VGW
with a high-bandwidth one.
tacticVGWLowQual : Increase the VGW’s codec
quality.
tacticESMPFail : Replace a failed ESMP with a
high-bandwidth one.
tacticESMPCongest : Replace a congested ESMP
with a high-bandwidth one.

Table 2. Tactics for the video conferencing
service.

particular tactic usinginvokeTactic .

We believe our self-adaptation framework can also be
applied to other component-based services frameworks
such as Ninja [12], SWORD [22], and ACE [1]. The major
requirement is that such a framework (1) provides a repre-
sentation of the service configuration allowing our frame-
work to reference the components in the configuration and
(2) provides an interface allowing our framework to make
changes to the configuration according to the developers’
knowledge.

4.3. Example

We use the video conferencing service as an example
to illustrate how a developer’s adaptation strategies can be
specified using the above APIs. Suppose the developer im-
plements the tactics shown in Table 2. Based on these tac-
tics, the developer then designs the strategies shown in Ta-
ble 3 (for simplicity, the actual code is not shown). As seen
in Table 3, the constraints for these strategies are as follows:

• C1: (config.numUnconnectedUsers == 0)

• C2: (NM.videoQuality >= Tn)

• C3: (VIC.videoQuality >= Tv)

Therefore, the adaptation strategies are instantiated and as-
sociated with their constraints using the following state-
ments:

stratNewUser : This strategy is triggered when a new
user joins the session. It determines the triggering prob-
lem and invokes the appropriate tactic as follows.

New NM user→ tacticNewNM
New VIC user→ tacticNewVIC
New HH user→ tacticNewHH

stratNMQual : Triggered when the video quality of
NM is below a thresholdTn.

VGW failed→ tacticVGWFail
VGW overloaded→ tacticVGWOverload
VGW congested→ tacticVGWCongest
VGW poor codec→ tacticVGWLowQual

stratVICQual : Triggered when the video quality of
VIC is below a thresholdTv.

ESMP failed→ tacticESMPFail
ESMP congested→ tacticESMPCongest

Table 3. Strategies for the video conferencing
service.

stratNewUser S1 = new stratNewUser();
S1.setConstraint(C1);
stratNMQual S2 = new stratNMQual();
S2.setConstraint(C2);
stratVICQual S3 = new stratVICQual();
S3.setConstraint(C3);

The strategies are given to the AM, which monitors the con-
figuration and invokes a strategy when its constraint is vio-
lated.

5. Adaptation coordination

Our goal with respect to adaptation coordination is to
only require a service developer to specify the service-
specific coordination knowledge without worrying about
the underlying mechanisms. We identified three important
coordination issues: detecting conflicts between proposals,
resolving conflicts between proposals, and identifying in-
compatible strategies (i.e., strategies that work at cross pur-
poses). Next, we discuss how we address these three issues.

5.1. Conflict detection

We categorize conflicts into two types:action-leveland
problem-level. An action-level conflict occurs when two
proposals want to make “conflicting changes” to the con-
figuration. For example, if one proposal wants to replace
server A with B, and another proposal wants to replace A
with C, then obviously only one can be accepted. In other
words, the two proposals attempt to change the same “tar-
get” in different ways. The AC can automatically detect



such conflicts by looking at the actions in different propos-
als.

A problem-level conflict occurs when the “intentions” of
two proposals conflict with each other, i.e., they are address-
ing two problems that should not be addressed at the same
time. For example, strategy S1 connects a new VIC user
to the closest ESMP in the configuration, and S2 replaces
a failed ESMP with a new one. Suppose there are three
ESMPs (A, B, and C) in the configuration. User U wants
to join the video conference, and at the same time C fails;
as a result, both S1 and S2 are invoked. Among A, B, and
C, B is closest to U, so S1 proposes to connect U to B. At
the same time, S2 proposes to replace C with D. Since D
is closer to U than B is, a developer may want to delay S1
until after C has been replaced with D. In other words, there
is a problem-level conflict between the proposals of S1 and
S2 (i.e., the “new VIC user” and “ESMP failure” triggering
problems should not be addressed at the same time).

However, this is not the only solution. Another devel-
oper may prefer S1 and S2 to be executed together so that
the new user join will not be delayed. In other words, they
do not consider this a problem-level conflict. Therefore,
problem-level conflicts are service-specific and cannot be
detected automatically. A developer must specify explic-
itly whether the triggering of two problems simultaneously
constitutes a “problem-level conflict”.

To allow a developer to specify problem-level conflicts,
we observe that since each problem is addressed by a tac-
tic, a problem-level conflict can be specified as a conflict
between two tactics. Our framework provides the following
function for specifying such a conflict between tactics T1
and T2.

addProblemConflict(T1, T2);

As an example, a developer for the video conferencing
service may specify the following problem-level conflicts.

addProblemConflict(tacticNewNM,
tacticVGWFail);

addProblemConflict(tacticNewNM,
tacticVGWOverload);

addProblemConflict(tacticNewNM,
tacticVGWCongest);

addProblemConflict(tacticNewVIC,
tacticESMPFail);

addProblemConflict(tacticNewVIC,
tacticESMPCongest);

Based on this specification, the AC constructs a set of co-
ordination policies and uses them to detect problem-level
conflicts at run time.

As discussed earlier, when performing coordination we
focus on the “direct” effects of an adaptation. Although it
is difficult to detect “indirect” conflicts automatically, such

Figure 3. Two conflict resolution approaches.

conflicts can still be specified as problem-level conflicts if
the developer knows that, for example, the actions of two
tactics may conflict indirectly.

5.2. Conflict resolution

Figure 3 illustrates two different approaches for resolv-
ing conflicts between proposals. There are six proposals,
and conflicts exist between p1 and p2, between p2 and p3,
and between p4 and p5. In addition, p2 has a higher priority
than p1, i.e., p2> p1, and similarly, p2> p3 and p4> p5.
We now briefly describe the two different approaches.

• First-Come, First-Serve (FCFS): This approach ac-
cepts or rejects proposals as they are received. A pro-
posal is accepted if no other conflicting proposals are
being executed. If a proposal is received when another
proposal is being executed, the AC performs conflict
detection between the two proposals. If a conflict is
detected, the new proposal is rejected.

In the figure, p2 is rejected because p1 is proposed ear-
lier and is being executed. Similarly, p5 is rejected
since p4 is in progress. However, p6 is allowed to start
since there is no conflict between p4 and p6.

• Epoch/priority: This approach divides time into dis-
crete “epochs”. At the end of an epoch, the AC per-
forms conflict detection among all proposals received
within the epoch. If proposals conflict, the one with
the highest priority is accepted, and all the others are
rejected. Priorities are assigned to tactics by the devel-
oper according to service-specific knowledge.

In the figure, only p2 is allowed to execute in the first
epoch. Similarly, p5 is rejected in the second epoch.

The FCFS approach supports more limited conflict res-
olution while the epoch/priority approach is more flexible.



However, the flexibility of the epoch/priority approach is
gained by sacrificing “agility” [19]: all proposals within
an epoch have to wait until the end of the epoch. For
this reason, the epoch/priority approach is used for appli-
cations where simplifying assumptions about the timing
of events can be made, e.g., coordinating rules in active
databases [15, 5]. However, when coordinating adaptations
in a distributed self-adapting service, a fast response to con-
straint violations is often important, e.g., to recover quickly
from failures or poor performance. Therefore, we use the
FCFS approach because of its agility.

When a proposal is rejected, the AC informs the AM of
the decision. The AM can handle the rejection in differ-
ent ways. If the triggering condition is still true, the AM
can re-propose the same proposal immediately. However,
if many strategies are triggered frequently, this may create
contention at the AC, and therefore the AM may want to
back off the retries. Another possibility is that the AM can
drop the proposal, and the proposing strategy will be in-
voked again if the triggering condition is still true. In our
evaluation, we use the simple mechanism that rejected pro-
posals are retried immediately. However, understanding the
effects of these different approaches requires further study.

5.3. Identifying incompatibility

To prevent adaptation strategies from working at cross
purpose, we need to identify “incompatible” strategies. For
example, let us assume that strategySa adds a new server
when an existing server is overloaded, andSr removes a
server when existing servers are under-utilized. These two
strategies are intended to maintain the system in an efficient
operating region. However, if their triggering conditions are
not defined carefully, they can potentially cause a “cycle”
of adding/removing a server to/from the service, i.e., it can
result in “thrashing”.

If we want to automatically determine whether such cy-
cles exist, The AC need to determine the exact effects of
strategies (e.g., how much load is reduced by adding a
server) and whether one strategy’s effects will trigger an-
other. Such analysis is difficult since it requires domain
knowledge, and the exact run-time effects may be difficult
to predict.

Instead of solving the general problem, we observe that it
is usually sufficient to identify strategies that have opposite
goals (and thus may cause undesirable cycles) and warn the
developer. The developer can then verify that the goals are
correct and that cycles will not occur. Note that although so
far we have discussed incompatibility at the strategy level,
we actually need to analyze incompatibility at the tactic-
level since the unit of coordination in our architecture is
tactics.

To automatically identify incompatible tactics, we let de-

velopers “annotate” the tactics with causes and effects. We
assume that all causes and effects are changes in perfor-
mance metrics, which can be specified using the objective
function API. Therefore, our framework exports the follow-
ing functions for cause and effect specification:

addTacticCauses(List increasedMetrics,
List decreasedMetrics)

addTacticEffects(List increasedMetrics,
List decreasedMetrics)

Continuing the earlier example, supposeSa invokes tactic
Ta, andSr invokesTr . The tactics can then be annotated as
follows:

// a1 { load }, a2 { }
// a3 { }, a4 { load }
Ta.addTacticCauses(a1, a2);
Ta.addTacticEffects(a3, a4);

// r1 { }, r2 { load }
// r3 { load }, r4 { }
Tr.addTacticCauses(r1, r2);
Tr.addTacticEffects(r3, r4);

This indicates, for example, that tacticTa is invoked in re-
sponse to an increase in load (i.e., the cause) and results in
a reduction in load (i.e., the effect). Given this information,
the potential cycle between the strategies can be automati-
cally detected by the AC.

6. Implementation and evaluation

We have implemented a prototype of the self-adaptation
framework based on our earlier self-configuration frame-
work. As mentioned earlier, we added additional function-
ality to the knowledge specification APIs to allow develop-
ers to specify their strategies and coordination policies. We
built the AM and the AC to handle the strategies and coor-
dination at run time, respectively.

To evaluate our approach, we applied our framework to a
simulated massively multiplayer online gaming service, de-
picted in Figure 4. Below we summarize the key simulation
properties.

Service components. There are two types of nodes in
a service configuration: users and servers. Users move
around randomly in the virtual game space, and each server
handles a partition of the space, including all the users
within that partition.

Adaptation strategies. The gaming service has five adap-
tation strategies:join connects a new user to the correspond-
ing server,leavedisconnects a user from its server,cross



Figure 4. A massively multiplayer online gam-
ing service.

moves a user’s state from one server to another,split adds
a new server when an existing one becomes overloaded,
andmergeremoves a server by merging two under-utilized
servers. Since each strategy only invokes one tactic, the
names also refer to the tactics.

Simulator. We generate traces of user arrivals and depar-
tures where the inter-arrival time has an exponential distri-
bution, and the stay duration has a bounded Pareto distribu-
tion. Each simulation has a duration of 500 minutes, and the
average number of users at any time is 142.12. We imple-
mented an event-driven simulator that takes such a trace and
simulates the gaming service described above. The simula-
tor is integrated with the self-adaptation framework, which
interprets the above adaptation knowledge to perform run-
time adaptation.

In this paper, we present two sets of simulation results
to show that our approach allows developers to concentrate
on the service-specific policies without worrying about the
underlying mechanisms. First, let us assume that the gam-
ing service developer uses our API to specify the following
coordination policies.

addProblemConflict(join, split);
addProblemConflict(join, merge);
addProblemConflict(leave, split);
addProblemConflict(leave, merge);
addProblemConflict(cross, split);
addProblemConflict(cross, merge);

We assume that if a proposal is rejected, the proposing tactic
will re-propose as soon as possible, i.e., a rejected adapta-
tion is delayed. To see the effects of the coordination poli-
cies, Table 4 shows the number and percentage of delayed
adaptations of each type. The percentage of delayed adap-
tations is much higher for split/merge operations than that
for join/leave/cross operations. This is because there are
way more join/leave/cross operations than split/merge op-
erations. However, overall the impact of the delays is small

Num.
adapt.

Adapt.
delayed

Percent.
delayed

join 50149 258 0.51
leave 49992 384 0.77
cross 6194675 38146 0.62
split 789 715 90.62
merge 783 746 95.27

Table 4. Number and percentage of delayed
adaptations

Num.
adapt.

Adapt.
delayed

Percent.
delayed

join 50149 184 0.37
leave 49992 0 0
cross 6375261 28528 0.45
split 623 573 91.97
merge 613 587 95.76

Table 5. Number and percentage of delayed
adaptations: “no leave conflicts”.

because (1) few join/leave/cross operations are delayed and
(2) although most split/merge operations are delayed, they
are much less frequent, and they are expensive anyway (re-
quiring 520 ms without delays), so the delay (maximum
about 100 ms) has limited impact.

To see how easily a developer can apply a different set
of coordination policies, consider the following scenario.
Suppose that the above developer improves the server im-
plementation such that it is able to handle the departure of a
user in parallel with other adaptations, i.e., the “leave” adap-
tation no longer conflicts with other adaptations. To take
advantage of this new capability, the developer can simply
remove the lines specifying conflicts that involve “leave”,
resulting in the following policies.

addProblemConflict(join, split);
addProblemConflict(join, merge);
addProblemConflict(cross, split);
addProblemConflict(cross, merge);

We perform another simulation (with the same parameters
except the policies) to verify that such a simple change in
the specification indeed results in the expected coordination
behavior at run time. Table 5 shows the number and per-
centage of delayed adaptations of each type.

Of course, as expected, no leave adaptations are delayed
with the new policies. Furthermore, eliminating “leave con-
flicts” actually results in fewer split/merge adaptations. This



is because having fewer leave conflicts stabilizes the config-
uration such that fewer split/merge operations are necessary.
In turn, this allows more join/cross adaptations to be exe-
cuted without delay. Finally, because the users now spend
less time “waiting” (i.e., being delayed), they have more
time to move around in the game space, resulting in more
cross adaptations as seen in Table 5.

This example demonstrates that our approach of separat-
ing the knowledge from the mechanisms allows a service
developer to easily implement service-specific coordination
policies without worrying about the underlying coordina-
tion mechanisms.

7. Related work

Many projects have studied ways of adding run-time
adaptation capabilities to different types of systems. For
example, some projects have focused on communication
adaptation in a client-server system, e.g., [16, 19, 6, 2].
Other studies use similar “parameter-level” adaptation tech-
niques in more general distributed systems, e.g., [9, 21, 3,
8]. Another class of adaptation solutions is based on dy-
namic resource allocation using utility functions, e.g., [7,
26, 17], or using application models specifying resource
requirements, e.g., the ARA mechanisms [24] in the RT-
ARM system [14]. In the context of high performance
computing, adaptation mechanisms have also been devel-
oped to cope with changes in the run-time environment,
e.g., the QuO framework monitors and adapts applica-
tions according to their QoS contracts [18]; the adaptation
framework in [4] determines when to adapt, and it uses a
tunability interface to modify the run-time parameters of
applications. Since we target both component-level and
parameter-level adaptations in distributed composite ser-
vices, previous component-level adaptation solutions such
as [23, 10, 25, 20, 11] are more relevant to our work.

Many of the above solutions rely on generic adapta-
tion heuristics. As discussed throughout this paper, such
heuristics may not be sufficient in many cases, and service-
specific knowledge may be required. Of course, for a large-
scale system, specifying all the necessary knowledge may
be a tedious task for the developer. Therefore, for generic
adaptation scenarios that do not require service-specific
knowledge, the mechanisms developed in previous generic
solutions may be leveraged to make our framework more
“intelligent”.

Our work is built on the externalized event-action ap-
proach for specifying adaptation strategies, similar to Rain-
bow [11]. However, one difference is that Rainbow supports
more global adaptation strategies while we focus on local
adaptation. Secondly, while Rainbow enables developers
to choose the most appropriate architectural style for adap-
tation, we leave it to developers to design service-specific

strategies. Finally, Rainbow and other previous solutions
do not address coordination issues. In contrast, we provide
integrated support for conflict detection, conflict resolution,
and identification of incompatible strategies.

Previous run-time adaptation solutions do not explicitly
support adaptation coordination. Some use a single mono-
lithic adaptation strategy that makes all adaptation deci-
sions, so conflicts cannot occur. Others divide the target
system into partitions and assume adaptations from differ-
ent parts are independent. Most related to our work are
studies that look at coordinating the execution of event-
condition-action policies [5] and coordinating update rules
in active database systems [15]. However, they adopt the
epoch/priority approach for conflict detection and resolu-
tion and therefore rely on assumptions that do not hold in
our context.

8. Conclusions

We presented a reusable self-adaptation framework that
provides common adaptation functionality and yet can take
advantage of developers’ service-specific adaptation knowl-
edge. Our framework allows a developer to specify not
only adaptation strategies but also coordination policies.
We identified and addressed three adaptation coordination
issues: conflict detection, conflict resolution, and identify-
ing incompatible strategies. We implemented a prototype
of the framework and evaluated our solution using a simu-
lated gaming service. Results show that coordination works
as expected and that our approach also allows developers to
easily design and change coordination policies.
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