Dynamic Load Balancing for Distributed Search

L. Huston! A. Nizhner? P. Pillail

R. Sukthankar'?> P. Steenkiste’? J. Zhang?

! Intel Research Pittsburgh; > Carnegie Mellon University; 3 University of Michigan

Abstract

This paper examines how computation can be mapped
across the nodes of a distributed search system to effectively
utilize available resources. We specifically address compu-
tationally intensive search of complex data, such as content-
based retrieval of digital images or sounds, where sophisti-
cated algorithms must be evaluated on the objects of inter-
est. Since these problems require significant computation,
we distribute the search over a collection of compute nodes,
such as active storage devices, intermediate processors and
host computers. A key challenge with mapping the desired
computation to the available resources is that the most effi-
cient distribution depends on several factors: relative power
and number of compute nodes; network bandwidth between
the compute nodes; the cost of evaluating query predicates;
and the selectivity of the given query. This wide range
of variables renders manual partitioning of the computa-
tion infeasible, particularly since some of the parameters
(e.g., available network bandwidth) can change during the
course of a search. This paper proposes several techniques
for dynamic partitioning of computation, and demonstrates
that they can significantly improve efficiency for distributed
search applications.

1. Introduction

Rapid advances in storage technology and digital media ac-
quisition has led to an explosive growth in the volume of
large, rich datasets. Acquiring the data is only one part of
the problem and many obstacles impede the efficient use
of this data. This paper focuses on one of these problems:
search — the ability to efficiently extract a set of data items
that meet some user-specified constraints.

For text and numerical data, the standard approach has
been to build indexes and employ these for efficient re-
trieval. Unfortunately, this approach requires that the data
items be reduced to a small number of numeric values. For
many rich data items (e.g., brain MRIs), it is impossible to
distill the interesting features into a small set of numbers.
Instead, a search may require performing expensive com-
putation over the entire dataset to find the items that match
the desired characteristics.

Performing computation on this large body of data intro-
duces several challenges. First, such searches are compu-
tationally expensive, typically demanding a distributed ap-
proach. Second, unlike many distributed computing tasks,
the data objects can be very large. Naively transferring ob-
jects over the network to a centralized compute server or
idle machines can be prohibitively expensive in terms of
the system I/O cost, and may erase the benefits of distribut-
ing the computation. A practical approach to the problem
requires balancing the benefits of additional computational
resources against the cost of shipping data.

We have developed a system, Diamond [9], that ad-
dresses this problem by distributing the search over a col-
lection of machines. A key element of the Diamond ar-
chitecture is the use of active storage [1, 10, 13], storage
devices with local processing, to eliminate irrelevant data
from the dataset before shipping it over the network (see
Figure 1). Application-specific filtering code, termed a
searchlet, is distributed across the active storage devices and
the user’s host machine (and optionally, over several inter-
mediate compute nodes).

We summarize several salient aspects of our system de-
sign. First, while discarding all of the irrelevant data at
the storage device would be ideal in terms of network re-
source utilization, performing the necessary computation at
the storage nodes is typically infeasible given their limited
processing power. Diamond must resolve the tension be-
tween fully utilizing the available computational resources
while ensuring that irrelevant data is not unnecessarily prop-
agated through the system. Second, the optimal distribution
of computation across the system may change over time: as
hardware upgrades affect the balance of processing power
between the nodes, as changes in the network affect the cost
of transferring large quantities of data, and as concurrent
searches add load to different parts of the system. Further-
more, the correct distribution depends on the selectivity and
computational requirements of the queries, and on the dis-
tribution of data on the storage devices. Our approach is
to dynamically distribute the load across the components of
the system. Performing the load balancing at the system
level allows the developers of search applications to focus
on building effective domain-specific filters.

Host System

Intermediate Nodes

Searchlet

Diamond
Runtime

Searchlet

Diamond
Runtime

Searchlet

Diamond
Runtime

—
A~
<
3
=
o
g
g
153
%]

Domain
App.

Searchlet

Diamond
Runtime

Searchlet

Diamond
Runtime

Searchlet

Searchlet

Diamond
Runtime

=

Diamond
Runtime

Searchlet

Diamond
Runtime

Searchlet

=

Storage
Runtime

=

Searchlet

Diamond
Runtime

Searchlet

Searchlet

Diamond
Runtime

Diamond
Runtime

Active Storage Devices

Figure 1: Distributed search

This paper proposes several techniques that exploit
search characteristics to perform dynamic load balancing.
These algorithms accommodate for variations in process-
ing capacity, network bandwidth, storage capacity and het-
erogeneity of active storage components. Our experiments
demonstrate that these techniques significantly improve
search efficiency across a variety of system and query con-
figurations.

This paper is organized as follows. Section 2 presents an
overview of our system and discusses some related work.
Section 3 describes our algorithms for dynamic load bal-
ancing. Section 4 presents experimental results. Section 5
concludes the paper.

2. Distributed Search

This section summarizes our system architecture for dis-
tributed search (see Figure 1). The user formulates a query
using a domain-specific application on the host system.
The application translates this query into a searchlet that
the storage devices and compute nodes use to determine
whether a particular data element matches the query. The
searchlet is thus a proxy of the application that encapsu-
lates the domain-specific knowledge necessary to perform
the search task.

A searchlet consists of a set of machine-executable tasks

(filters) and associated configuration state, such as filter pa-
rameters and dependencies between filters. For example,
a searchlet to retrieve portraits of people in dark business
suits might contain two filters: a color histogram filter that
finds dark regions and a detector that locates human faces.
Each filter’s return value indicates whether the given ob-
ject should be discarded, in which case the searchlet evalu-
ation is terminated for the current object. Objects that pass
through all of the filters are sent to the domain application
for further processing.

A filter can pass state to another filter by adding at-
tributes to a temporary copy of the data element being
searched; these attributes can be read by any subsequent fil-
ter. For example, in a content-based image retrieval applica-
tion, an earlier filter could preprocess the image to generate
intermediate representations, such as color histograms, for
use by later filters. These attributes can be very large, of-
ten larger than the original image and can impact the cost
of sending the partially-processed object over the network.
The Diamond runtime optimizes the order of filter execu-
tion based on measured rejection rates and execution times
while ensuring that any partial ordering constraints imposed
by the application are satisfied [9].

Diamond exploits several characteristics of the search
task to minimize the problems associated with distributed
computation. First, it assumes that data can be indepen-

dently processed in smaller units, termed objects (e.g., indi-
vidual images in a image retrieval system or segments of a
movie). Second, search tasks typically permit stored objects
to be examined in any order. This order-independence of-
fers several benefits: easy parallelization within and across
storage devices, significant flexibility in scheduling data
reads, and simplified migration of computation. Third, most
search tasks do not require maintaining state between ob-
jects. Finally, search tasks only require read access to data,
allowing the system to avoid locking complexities and to
simplify security issues.

Databases address a similar issue with query planning.
Before a query is performed, the query planner maps a
query to the available resources to get the best performance.
This approach has several limitations for our problem, pri-
marily in that it assumes perfect knowledge of resource
availability at the planning stage. Our queries may run for
long periods and as a result, the system must handle the case
where available resources (e.g., network bandwidth) may
change during the execution of the search. Another limi-
tation of the planning approach, is that the planner needs
good a priori estimates for the cost of evaluating each fil-
ter as well as its selectivity. Unlike a typical database, our
queries are difficult to predict in advance because the sys-
tem can run arbitrary application code and the selectivity of
a predicate can vary widely based on the parameter settings
as well as the data being searched.

Several systems explore the problem of dynamically
adapting the distribution of computation over a set of pro-
cessors. Coign [7] profiles running programs and allocates
components to machines so as to minimize communications
cost. River [3] handles adaptive dataflow control generi-
cally in the presence of failures and heterogeneous hard-
ware resources. Eddies [4] adaptively reshapes dataflow
graphs to maximize performance by monitoring the rates
at which data is produced and consumed at nodes. River
and Eddies differ from our approach in that they work with
small data elements and are primarily concerned with effi-
cient usage of computational resources not with minimizing
the cost of moving data across machine boundaries. Aba-
cus [2] automatically moves computation between hosts or
storage devices in a cluster based on performance and sys-
tem load. Abacus tries to tackle a more general distributed
computing problem while we focus specifically on search
and exploit the characteristics of the search domain.

3. Dynamic Load Balancing

As described above, the search task (encapsulated by a
searchlet) consists of a series of filters that is evaluated on
each stored object. To achieve the best performance we
want to efficiently distribute the processing of the filters
across the set of available processors. One can view the

path from a data source (storage node) to the data sink (the
host) as a pipeline of processing stages separated by queues.
Our goal is to dynamically adjust the processing performed
at each stage so as to maximize system utilization and data
throughput. In this section we introduce our dynamic load
balancing algorithm in three steps. We first focus on a sin-
gle processor and show how it can minimize the amount
of data it forwards. Next we present the load balancing al-
gorithm for a complete storage-to-host processor pipeline,
and finally we present algorithms to handle heterogeneous
configurations.

3.1. Mapping Search Filters to Processors

We first consider the problem of mapping filters to available
compute nodes. In our model, an object passes through a
chain of processors on its way to the host. Each processor
tests the object against one or more filters, discarding it on
failure. An important goal is to find an assignment of filters
to processors that minimizes inter-processor network traf-
fic. This is worthwhile for two reasons: (1) in many WAN
configurations, the network may be the bottleneck; (2) even
for searches that are CPU-bound, reducing network traffic
can significantly reduce CPU load [5, 6, 12].

3.1.1 Bypass-based evaluation

We abstract the problem as follows. At each node, we define
B to be the fraction of the arriving work that should be per-
formed locally. This work consists of a set of filters {F;},
that still need to be applied to a given object. We assume
the execution order of the filters is fixed and given by the
sequence Fy, Fi,...,F,_1. Clearly, there are multiple ways
to achieve a desired . Two simple examples are dividing
the data into disjoint subsets, each of which is handled by
particular compute nodes (data partitioning), or assigning
specific filters to nodes (filter partitioning).

To more precisely specify the filters that a node will ex-
ecute, we define the bypass fraction b; of filter F; as the
average fraction of objects that are locally evaluated by F;,
as shown in Figure 2. Using this terminology, data par-
titioning is expressed via bypass assignments of the form
bo =P, by =--- = b,—1 = 1, while filter partitioning will
correspond to b =1, ---,bj =1,bj11 =0,--- ,b,_1 =0.
The run-time simply interprets b; as a probability — when
any object reaches filter F;, it has a random chance, 1 — b;,
of being immediately sent to the next compute node in the
chain without further local evaluation.

We now present our partitioning algorithm for selecting
the appropriate filters to run locally, while minimizing the
data transferred. Details are in our technical report [11].

Filter 2 —

——(OH Filer1

Figure 2: Bypass-based evaluation

3.1.2 Assigning bypass fractions

Let ¢; be the average running time of filter F;, and let the
conditional pass rate p; represent the fraction of objects
evaluated by F; that pass filter F;. The average CPU time
needed to evaluate all filters on each object is given by

n—1
C=Y po--pi-ici.
i=0

The CPU time spent locally on the average object under the
bypass assignment b = (by,...,b,_1) is given by

n—1
C(b)=Y po---pi-1bo---bici.
i=0

Thus a bypass assignment satisfying a computation parti-
tioning of B is one such that C(b) = BC.

We define the efficiency of a filter as the decrease in the
average bytes transmitted per unit computation; efficiency
is affected by the filter’s selectivity as well as the average
amount of meta-data added by the filter. Efficiency can be
used to compute bypass assignments. Intuitively, one can
see that for a desired B, we want to set the bypass assign-
ments to include the filters with the highest efficiency.

Let us first focus on a simple case where filters can be ex-
ecuted in any order. If the filters are ordered in decreasing
efficiency, the most effective bypass assignment, for a given
B, will execute as many of the early filters as possible [11].
To achieve this assignment, we define a partitioning scheme
(termed Aggressive) that for each object always executes
the first & filters locally, the next filter (Fy41) locally a frac-
tion of the time, and never executes the remaining filters
locally. This corresponds to a bypass assignment of b; = 1
fori <k, b; =0fori>k-+1, and by such that C(b) = BC.
Figure 3 shows the relationship between [and the outgoing
network traffic. The slopes of the line segments correspond
to filter efficiencies. Note that increasing 3 reduces the av-
erage number of bytes per object sent downstream.

3.1.3 Filter clustering

In practice it is not possible to execute the filters in any or-
der, since some filters may depend on other filters. More-
over, some filters can add meta-data to the object possibly

Average bytes transferred

B

Figure 3: B vs. average bytes transferred for the ideal Ag-
gressive scheme

Average bytes transferred

Cluster containing
E and E

Figure 4: B vs. average bytes transferred for a typical Ag-
gressive scheme

resulting in a negative efficiency. As a result we cannot al-
ways execute the most efficient filters first. The solid line
in Figure 4 shows an example of what the Aggressive algo-
rithm can achieve in this case; filter dependencies prevent us
from moving F; before F;. Note that in this case, increasing
B does not necessarily decrease the network traffic.

Even if we cannot arbitrarily order filters, we can still
apply the Aggressive scheme to minimize the outgoing net-
work data by grouping adjacent filters to create a cluster.
The Aggressive algorithm treats clusters as atomic units (if
the first filter in the cluster is locally evaluated, the remain-
ing filters in that cluster must also be executed locally). This
clustering employs a simple agglomerative scheme where
any adjacent filters that are not in order of decreasing ef-
ficiency are combined. The effect of combining two such
filters is illustrated by the dashed line in Figure 4.

We implement and compare the following partitioning
schemes:

e Simple: the data partitioning scheme introduced in
Section 3.1.1. This scheme is equivalent to collapsing
all of the filters into a single atomic unit.

e Greedy: an application of Aggressive without cluster-
ing.

e Hybrid: an application of Aggressive with clustering
as described above.

3.2. Load balancing across a compute pipeline

To perform load balancing, each of the compute nodes
should determine the fraction of computation that should
be performed locally. For CPU-bound scenarios, an effec-
tive partitioning should keep all of the compute nodes con-
tinuously busy for the duration of the search, such that the
nodes finish their tasks simultaneously. Given complete and
accurate knowledge of processing rates at all nodes, objects
stored on each active storage device, and the network band-
widths, one could determine the allocation of processing
that minimizes search time. Unfortunately, such an analyti-
cal approach is likely to fail in practice due to variability in
system behavior and the unpredictable impact of concurrent
searches. Therefore, we advocate schemes that adapt each
compute node’s behavior. The challenge is for the compute
nodes to find an effective partitioning based solely upon lo-
cal observations.

We describe two methods for load balancing. The first,
termed “queue adaptation”, makes simple per-object deci-
sions on when to queue an object. The idea is that each
compute node should check its output queue after evaluat-
ing a filter (or cluster of filters). If the number of items in the
queue drops below a specified threshold, the current (par-
tially processed) object is enqueued. Thus, without explic-
itly calculating a 3 value, the given compute node automat-
ically matches its processing to the observed drain rate on
the output queue by delegating work to downstream nodes
as necessary. A potential drawback is that the network traf-
fic generated by this method may be higher than that using
an explicit bypass assignment. Nevertheless, as shown in
Section 4.2, this simple adaptive scheme is quite competi-
tive for real-world tasks.

The beta estimation method monitors the enqueue rate
on the input queue (e) and the drain rate of the output queue
(d»). Here we focus on the case where there is a single in-
put and output queue; the more general case is discussed
in the next section. Based on the observed rates (see Fig-
ure 5) this method adjusts B to match local processing to
the drain rate of the output queue. However, when the input
queue is the bottleneck (e.g., a disk-bound case), we con-
serve network bandwidth by increasing local computation.

input queue Compute Node output queue

— —= |processing rate = Ia - —=
el dl e2

x1 k1 x2 k2

B1 B2

Figure 5: Beta Estimation

To achieve this goal, we independently compute an input
and an output value for [based on the state of the upstream
and downstream queues. The maximum f is used. As a
secondary objective, we try to avoid overfull and underfull
queues by driving the number of items in the queue, x; and
X», toward specified target values, k; and k. The algorithm
is summarized by:

x1—k
di = e+ lAtkl

o —
@ = c;z)— 2At :
B = ar

1

B =)
B = max(Pi,f2).

3.3. Heterogeneous Devices

As stated earlier, our goal is to finish processing all of the
objects at the same time. To achieve this goal, downstream
compute nodes should provide a disproportionate share of
their compute resource to assist slower upstream compute
nodes. Although the above discussion assumes a single ag-
gregate input queue, each node actually maintains a separate
queue for each upstream path and computes 3 values using
the aggregate statistics.

To determine how we service the multiple input queues,
we employ a credit-based mechanism. Each input queue, i,
corresponds to a different upstream branch, and is alloted a
certain number of credits, d;, representing its share of pro-
cessing. Objects are dequeued from the input stream with
the highest credit count, which is decremented proportional
to the processing time consumed by the object. The sys-
tem is work conserving: if the particular queue selected
is empty, the system simply continues with the next best
one. Each credit count is replenished by the corresponding
d; value when no non-empty queues have a positive credit
balance.

To aid in assigning credits, each upstream node periodi-
cally provides statistics about the number of remaining ob-
jects that it must process and its current processing rate. The
given node uses this information to estimate each upstream

node’s time-to-completion and allocates credits according
to one of the two schemes described below.

The first scheme (termed “proportional allocation’) finds
the earliest completion time among all upstream nodes.
Each upstream node is assigned credits proportional to the
difference between its expected completion time and this
minimum. The second scheme (termed “greedy allocation’)
finds the latest completion time among all upstream nodes
and assigns it C credits. All of the other upstream nodes are
assigned a single credit.

4. Experimental Evaluation

Diamond is implemented on Linux as user-level code with
multiple threads. The host runtime is implemented as a li-
brary that links against the domain application. The stor-
age runtime is implemented as a multi-threaded daemon
running on the storage devices and the intermediate nodes.
Background threads are used to read data objects to reduce
I/O stalls. Network communication is implemented using
sockets over TCP.

The storage devices and intermediate nodes are imple-
mented using rack-mounted computers (1.2 GHz Intel®
Pentium III processors, 512 MB RAM and 73 GB
SCSI disks), connected via a 1 Gbps Ethernet switch.
The host system contains a 3.06 GHz Intel® Pentium®
Xeon™processor, 2 GB RAM, and a 120 GB IDE disk.
The host is connected via Ethernet to the storage platforms.
We vary the link speed between 1 Gbps and 10 Mbps de-
pending on the experiment. Some experiments require us to
emulate slower active storage devices; this is done by run-
ning a real-time task that consumes a fixed percentage of
the CPU.

Our search task was content-based image retrieval on
a large, non-indexed collection of digital photos. Table 1
summarizes two queries generated using using a content-
based image retrieval application (SnapFind [8]) that were
used to evaluate our algorithms. Each of the storage de-
vices was allocated 5,000 images (1.6 GB). As the num-
ber of storage devices increased, so did the total number
of images involved in a search. For each experiment we
performed 3 runs of each test, and reported the mean value.
We chose the size of our data set to be large enough to avoid
startup transients but manageable enough to enable the va-
riety of experiments described below.

4.1. Impact of Partitioning Schemes

The first experiments examine how the three algorithms de-
scribed in Section 3.1 affect the amount of data transmitted
on the network. This experiment employs a single storage
device directly connected to the host. We run several ex-
periments with different fixed values for 3 and measure the

Query Description

Flower Pot Looks for images that contain flower
pots by searching for multiple color dis-
tributions; terra-cotta for the pots, and

red and green patches for the plants.

Lawn Find images of lawns through color and
texture filters.

Table 1: Test queries

MBytes Transfered
_ = N
=
S S
S 3
L
/

0 10 20 40 60 80 100

Percent Computation at Storage

— -+ — simple —#— greedy - - & - - hybrid‘

Figure 6: Bytes transferred for flower query.

network usage. Figures 6 and 7 show the results for the
“Flower Pot” and the “Lawn” queries.

The results show that the Hybrid algorithm minimizes
the bytes transferred for both queries. In the “Flower Pot”
query, the Hybrid and Simple algorithms are equivalent and
minimize the bytes transferred for all settings of . In the
“Lawn” query, Hybrid is better than the other algorithms
over large ranges of 3. This validates our belief that the Hy-
brid scheme minimizes network usage for a target [3; thus,
we employ Hybrid for all of the remaining experiments.

4.2. Impact of CPU Load Balancing

The next set of experiments evaluate the adaptive CPU load
balancing algorithms on system configurations with varying
numbers of storage devices, network bandwidth and proces-
sor speeds, as shown in Table 2. For each configuration, we
first generate a baseline measurement (for each query) by
exhaustively searching for a fixed that minimizes search
time. This baseline is the best CPU load balancing using a
static [for the given query and system configuration.
Figures 8 and 9 show the performance of the queue-
based and the B-estimation load balancing algorithms rel-
ative to their respective baselines. As a comparison we also
give two additional results: (1) where all of the computation

MBytes Transfered

0 10 20 40 60 80 100

Percent Computation at Storage

— ¢ — simple —®—greedy -- & -- hybrid‘

Figure 7: Bytes transferred for lawn query.

Name | Network | Number of | Processor
Speed Devices Speed
4-slow | 10 Mbps | 4 25%
4-fast 1 Gbps 4 100%
8-slow | 10 Mbps | 8 25%
8-fast 1 Gbps 8 25%

Table 2: System configurations

occurs at the host; (2) where all of the computation occurs
at the active storage device.

These results show that both of the adaptive techniques
perform well, particularly since they are fully automated
and require no a priori knowledge. The [estimation is
within 6% of the baseline while the queue-based approach
has slightly longer runtimes (primarily due to transferring
more data on the network). Our experiments confirm that
adaptive approaches work well without making assump-
tions about the hardware configuration or tuning for specific
queries.

4.3. Heterogeneous Configurations

This experiment evaluates the two algorithms for coping
with heterogeneity in compute node processing power (de-
scribed in Section 3.3). We evaluate the algorithms using
two different configurations. In both cases we use four stor-
age devices connected to the host computer via 1 Gbps Eth-
ernet. The first configuration uses the“Lawn” query and the
four storage devices are configured with the following rel-
ative speeds: CPUI runs at 75%; CPU2 and CPU3 run at
50%; and CPU4 runs at 25%. The second configuration
uses the*Flower Pot” query and the four storage devices are
configured with the following relative speeds: CPU1 runs at
75%; CPU2 runs at 50%; and CPU3 and CPU4 run at 25%.

Normalized Time

3
B
=
|
o gz&
3 k&
K =
> &
kS K
= &
kS =
- =
s -
=
S =
5 =
4 &
4 Devs 4 Devs 8 Devs 8 Devs
10 Mbps 1 Gbps 10 Mbps 1 Gbps
1/4 Speed Full Speed 1/4 Speed 1/4 Speed
Host Only [Beta Queue B Disk Only

Figure 8: Dynamic CPU Partitioning for lawn query.

1,50 23.33 6.36 37.79 3.45
1.25
(5]
E1.00 -
[l
]
Q
80.75
<
=)
$0.50 -
Z .
0.25 A
0.00 - — = ==
4 Devs 4 Devs 8 Devs 8 Devs
10 Mbps 1 Gbps 10 Mbps 1 Gbps
1/4 Speed Full Speed 1/4 Speed 1/4 Speed
Host Only [Beta Queue B Disk Only

Figure 9: Dynamic CPU Partitioning for flower query.

No Greedy
Adaptation

B CPUI CPU2 EICPU3 BHCPU4 ETotal

Proportional

Figure 10: Heterogeneous adaptation for configuration 1

We evaluate the following three cases: (1) uniform, non-
adaptive, credit allocation among the different devices; (2)
greedy credit algorithm; (3) proportional credit allocation.
Figure 10 and Figure 11 show the time for each node to
finish processing its data, as well as the total search time
(determined by the progress of the slowest node).

For the uniform credit allocation, we observe that there
is a large difference between the completion times of the
fastest and slowest nodes, leading to a longer total search
time. Using either of the adaptive credit allocation schemes
reduces the total search time by disproportionately allocat-
ing the host’s compute resources to aid the slowest nodes.
We observe no significant difference between Greedy and
Proportional on these experiments. For the second configu-
ration, the decrease in total run time is not as significant as
the first configuration because the single host can not offer
enough additional compute resources to offset the impact of
the two slow disks. We expect to see larger improvements
as the performance disparity between the host and the stor-
age devices is increased.

4.4. Multi-Level Hierarchies

These experiments explore the performance of the adaptive
schemes as intermediate compute nodes are added to the
system. Our initial setup consists of 8 storage nodes, each
running at 25% speed, connected to the host via a 10Mbps
network, executing the “Flower Pot” query. This corre-
sponds to running queries from a remote host over a WAN.
We then examine the improvement achieved by adding two
100% speed intermediate compute nodes, each connected
via 1Gbps network to four storage devices and 10Mbps to
the host. These correspond to additional local processing
available at the data center.

s

REREs

%

RS

eteteteteteletetelety!

o

No Greedy
Adaptation

HCPUI EICPU2 ECPU3 BCPU4 ETotal

Proportional

Figure 11: Heterogeneous adaptation for configuration 2

‘ Configuration \ Time (s) |
No Intermediate 1067
Intermediate with 691
Dynamic Adaptation
Intermediate with 768
Static Partitioning

Table 3: Multi-level configurations

We conduct two experiments: (1) dynamic adaptation
using [estimation load balancing for the intermediate
nodes; (2) applying a static calculated from relative pro-
cessor speeds. Table 3 shows that, while both schemes re-
duce the total search time, the dynamic adaptation using 3
estimation outperforms the static scheme. We hypothesize
that the static scheme performs less well because relative
processor speeds do not account for the CPU overhead in-
volved in networking and disk I/O.

4.5. Adapting to Dynamic Conditions

This experiment examines how well the Diamond system
reacts to dynamic configurations. First, we execute the
“Flower Pot” query on four storage nodes (CPU1-CPU4),
without intermediate nodes. After 30 seconds (while the
first query is still running), we initiate a concurrent search
using the “Lawn” query from a different host computer on
a subset of the storage nodes (CPU1, CPU2). In this exper-
iment, Diamond uses B estimation for load balancing and
the proportional credit allocation to handle heterogeneous
environments.

On CPU1 and CPU2 we observe that B decreases for the
first search and increases for the second. Both of these val-

CPU 1
100
[=}
g 80
£ % 60
£a
8 = 40
S 20
0 Bl T T
0 100 200 300 400
Elapsed Time : Ela(z;/x;::r Pot
CPU 3
100

%]
o

e\
o O O

1
l-\

% Computation
at Disk

o
L

0 100 200 300 400

Elapsed Time = Flower Pot

% Computation

% Computation

CPU 2

100
80
2 60
@)
= 40
a
20 F ——
0 T T T T
0 100 200 300 400
Elapsed Time : Elamer Pot
CPU 4
100
80 -
% 60
)
= 40 Il
201 =
0 T n T T T
0 100 200 300 400

Elapsed Time = Flower Pot

Figure 12: Dynamic adaptation

ues reach a stable point around 37%. This indicates that a
significant fraction of the processing moves downstream to
the host processor in response to the increased load. We
see that the 3 values for CPU3 and CPU4 increase when the
second search starts, in response to the greater allocation of
host resources to CPU1 and CPU2 (which have been slowed
by concurrent searches). This is the desired behavior as the
host provides greater share of resources to the loaded nodes
that have now become the bottleneck for the first query.

These results demonstrate that our adaptive algorithms
for load balancing are effective at handling run-time
changes in resource availability.

The above evaluation results show that, on average, the
best performance results are obtained using the Hybrid clus-
tering algorithm for selecting the filter to execute on each
node, combined with the B estimation method for load
balancing among processing nodes, and the proportional
algorithm for distributing processing over multiple input
queues.

5. Conclusion

This paper motivates the need for dynamic partitioning of
computation among the components of a distributed search
system. We present algorithms that efficiently distribute
computation by considering the relative capabilities and

number of compute nodes, the available interconnect band-
width, the size and placement of the data on the storage
nodes, and the characteristics of the current query. These
techniques have been implemented for a content-based im-
age retrieval application in Diamond, a distributed architec-
ture that supports large-scale interactive brute-force search
of complex data. Our experiments demonstrate that dy-
namic adaptation significantly improves efficiency by en-
suring that compute nodes within the distributed system are
maximally utilized. We believe that the techniques for load
balancing described in this paper are broadly applicable to
other forms of distributed computation (e.g., parallel visu-
alization). Finally, within our present application domain,
we would like to investigate how our adaptation techniques
interact with other performance optimizations such as com-
putation caching.

Acknowledgments

The authors would like to thank M. Satyanarayanan
for valuable discussions, and R. Wickremesinghe and
D. Hoiem for their work on the SnapFind image retrieval
application.

References

(1]

(2]

3

[

[4

—_

[5

—

[6

—_

[7

—

(8]

[9

—

[10]

(11]

[12]

[13]

A. Acharya, M. Uysal, and J. Saltz. Active disks: Program-
ming model, algorithms and evaluation. In Proceedings of
ASPLOS, 1998.

K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic
function placement for data-intensive cluster computing. In
Proceedings of USENIX, 2000.

R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. Culler,
J. Hellerstein, D. Patterson, and K. Yelick. Cluster I/O with
River: Making the fast case common. In Proceedings of
Input/Output for Parallel and Distributed Systems, 1999.

R. Avnur and J. Hellerstein. Eddies: Continuously adaptive
query processing. In Proceedings of SIGMOD, 2000.

J. Chase, A. Gallatin, and K. Yocum. End-System Optimiza-
tions for High-Speed TCP. [EEE Communications Maga-
zine, 39(4):68-74, 2001.

D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An Anal-
ysis of TCP Processing Overhead. IEEE Communications
Magazine, 27(6), June 1989.

G. Hunt and M. Scott. The Coign automatic distributed par-
titioning system. In Proceedings of OSDI, 1999.

L. Huston, R. Sukthankar, D. Hoiem, and J. Zhang.
SnapFind: brute force interactive image retrieval. In Pro-
ceedings of International Conference on Image Processing
and Graphics, 2004.

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satya-
narayanan, G. R. Ganger, E. Riedel, and A. Ailamaki. Dia-
mond: A storage architecture for early discard in interactive
search. In Proc. USENIX Conference on File and Storage
Technologies, 2004.

K. Keeton, D. Patterson, and J. Hellerstein. A case for intel-
ligent disks (IDISKs). SIGMOD Record, 27(3), 1998.

A. Nizhner, L. Huston, P. Steenkiste, and R. Sukthankar.
Network-aware partitioning of computation in Diamond.
Technical Report CMU-CS-04-148, School of Computer
Science, Carnegie Mellon University, June 2004.

G. Regnier, D. Minturn, G. McAlpine, V. A. Saletore, and
A. Foong. ETA: Experience with an Intel Xeon Processor
as a Packet Processing Engine. IEEE Micro, 24(1):24-31,
2004.

E. Riedel, G. Gibson, and C. Faloutsos. Active storage for
large-scale data mining and multimedia. In Proceedings of
VLDB, August 1998.

10

