
Novel Algebras for Advanced Analytics in Julia

Viral B. Shah∗, Alan Edelman†, Stefan Karpinski‡, Jeff Bezanson§, Jeremy Kepner¶
∗Email: viral@mayin.org

†Email: edelman@math.mit.edu
‡Email: stefan@karpinski.org
§Email: bezanson@mit.edu
¶Email: kepner@ll.mit.edu

Abstract—A linear algebraic approach to graph algorithms
that exploits the sparse adjacency matrix representation of graphs
can provide a variety of benefits. These benefits include syntactic
simplicity, easier implementation, and higher performance. One
way to employ linear algebra techniques for graph algorithms is
to use a broader definition of matrix and vector multiplication.
We demonstrate through the use of the Julia language system
how easy it is to explore semirings using linear algebraic
methodologies.

I. INTRODUCTION

A. Semiring algebra

The duality between the canonical representation of graphs
as abstract collections of vertices and edges and a sparse
adjacency matrix representation has been a part of graph
theory since its inception [5], [6]. Matrix algebra has been
recognized as a useful tool in graph theory for nearly as long
(see [3] and references therein). A linear algebraic approach to
graph algorithms that exploits the sparse adjacency matrix rep-
resentation of graphs can provide a variety of benefits. These
benefits include syntactic simplicity, easier implementation,
and higher performance. One way to employ linear algebra
techniques for graph algorithms is to use a broader definition of
matrix and vector multiplication. One such broader definition
is that of a semiring. For example, in semiring notation we
write matrix-matrix multiply as:

C = A+ . ∗B

where
+.∗

denotes standard matrix multiply. In such notation, a semir-
ing requires that addition and multiplication are associative,
addition is commutative, and multiplication distributes over
addition from both left and right. In graph algorithms, a
fundamental operation is matrix-matrix multiply where both
matrices are sparse. This operation represents multi source
1-hop breadth first search (BFS) and combine, which is the
foundation of many graph algorithms [2]. In addition, it is often
the case that operations other than standard matrix multiply are
desired, for example:

1) MaxPlus: C = A max .+B
2) MinMax: C = A min .maxB
3) OrAnd: C = A |.&B
4) General (f and g) : C = Af.gB

With this more general case of sparse matrix multiply, a
wide range of graphs algorithms can be implemented [4].

II. APPLICATION EXAMPLE

A classic example of the utility of the semiring approach
is in finding the minimum path between all vertices in graph
(see [11] in [4]. Given a weighted adjacency matrix for a
graph where A(i, j) = wij is the weight of a directed edge
from vertex i to vertex j. Let C(i, j)2 be the minimum 2-hop
cost from vertex i to vertex j. C2 can be computed via the
semiring matrix product:

C2 = A min .+A

Likewise, C3 can be computed via

C3 = A min .+Amin .+A

and more generally

Ck = Ak

III. JULIA

It has become clear that programmers and scientists prefer
high-level, interactive, dynamic environments for algorithm
development and data analysis. Systems such as Matlab [7],
Octave [9], R [10], SciPy [8], and SciLab [12] provide greatly
increased convenience and productivity, yet C and Fortran re-
main the gold standard for computationally-intensive problems
because these high-level dynamic systems still lag significantly
in performance. As a result, the most challenging areas of
technical computing have benefited the least from the increased
abstraction and productivity offered by higher level languages.
Julia [1] is a high-level, dynamic language, designed from
the ground up to take advantage of modern techniques for
executing dynamic languages efficiently. As a result, Julia
has the performance of a statically compiled language while
providing the interactive, dynamic experience and productivity
that scientists have come to expect.

Julia also introduces many powerful computer science tools
to scientific computing, including a sophisticated type system,
multiple dispatch, coroutines, Lisp-style metaprogramming
(including real macros), and built-in support for distributed
computation. Although a powerful type system is made avail-
able to the programmer, it remains unobtrusive in the sense
that one is never required to specify types, nor is performance
dependent upon doing so: unless the programmer wants to take
advantage of Julia’s dispatch system or create C-compatible

types, their code will work just as well without ever mentioning
types. Likewise, coroutines, macros and distributed program-
ming primitives are right there, should the programmer ever
need them, but are not required for day-to-day programming.

We recommend trying the code examples in this paper.
Just a few moments may convince the reader that Julia is
simple yet powerful. All of the code may be found on GitHub:
github.com/ViralBShah/SemiringAlgebra.jl .
First time users should readily be able to google, download,
and install Julia.

Julia is a novel new paradigm constructed with high
performance computing in mind. Roughly speaking, high
performance computing has been significantly difficult that
getting codes up and working and in production has taken
so much time, that there all too often has been little time for
algorithmic exploration or software experimentation. Julia is
a game changer for high performance computing; but that
is not the focus of this work. In this work, our goal is
to demonstrate the expressiveness and utility of Julia in the
context of semirings. We invite readers to imagine what a
semiring implementation might look like, how long it would
take to implement, and how it might perform using their
favorite programming methodology.

IV. SEMIRING ALGEBRA IN JULIA

Julia’s ordinary matrix multiplication is recognizable to
users of many high level languages:
A=rand(m,n)
B=rand(n,p)
C=A*B
or one can equally well use the prefix notation
C = *(A,B)
instead of the infix notation.

We believe that users of matrix-multiply who are used to
such compact expressions would prefer not to have overly
complicated syntax to express the more general semirings.
Julia offers two approaches that are readily available for
exploration:

1) Star overloading: This method is recommended for
interactive exploration of many semiring operators. Without
introducing any types, define *(f,g)(A,B) to perform the
semiring operation very generally, with no a-priori restriction
on the binary functions f or g. Upon overloading the star op-
erator, and defining the ringmatmul, the following immediately
work in Julia:

*(max,+)(A,B)
*(min,max)(A,B)
*(|,&)(A,B)
(+,)(A,B)

The last example computes the usual matrix product.

2) Creation of semiring objects: This method is recom-
mended for users who are working exclusively in one semiring
and wish to optimize notation and performance. In this method,
a semiring type is created, and one overloads scalar + and
scalar * only. Julia’s generic definitions for matrix multiplica-
tion, which depends only on having appropriate definitions for

f u n c t i o n r i ngmatmul (+ , ∗ ,
A : : Matr ix , B : : Ma t r i x)

m, p = s i z e (A) ; n = s i z e (B , 2)
C = [A[i , 1] ∗B[1 , j] f o r i =1 :m, j =1 : n]
f o r i =1 :m, j =1 : n , k =2: p

C[i , j] += A[i , k]∗B[k , j]
end
return C

end

∗ ((+) : : Func t i on , (∗) : : F u n c t i o n) =
(A, B)−> r i ngmatmul (+ ,∗ ,A, B)

Fig. 1. SemiRing matrix multiply by overloading + and *. This seemingly
textbook matrix multiply routine is anything but ordinary because + and * are
local variables. Inside the subroutine + and * take on any semiring operations
with which they are called. Thanks to Julia internals, users may execute this
code at the prompty by simply typing *(max,+)(A,B) or the more familiar
infix notation A *(max,+)B .
Overloading allows users to conveniently explore multiple semiring operations
on the same data.

+ and * does the rest, allowing one to immediately compute
matrix products in the newly defined semiring, using the usual
notation for matrix products.

A. Star Overloading

The star overloading functionality may be explored by
typing the example in Figure IV-A directly into a Julia session.
The ringmatmul function is straightforward – it is a stan-
dard naı̈ve triple loop matrix multiply. The function takes four
arguments, the first two, + and *, are functions that will serves
as the local versions of addition and multiplication, while the
last two are the matrices to multiply using those operations.
This highlights a few relevant features of the Julia language.
First, functions are first-class values that can be passed into
other functions as arguments and then used with standard
function call syntax. Second, the + and * operators are just
regular functions with some special syntax. For example, the
expression C[i,j] += A[i,k]*B[k,j] is translated into
C[i,j] = +(C[i,j],*(A[i,k],B[k,j])) where the
functions + and * are looked up in the current scope just like
any other variables would be. The second function definition
says that if “*” is called with two arguments, both of which
have the type Function, then the result is a function itself
which takes two arrays as arguments, and calls ringmatmul
with arguments f,g,A,B. This highlights a few more features
of Julia: it uses multiple dispatch by proding a new behavior
for * when its areguments are functions; it returns a function
as a value, which can then be used elsewhere, again with the
standard function call syntax.

B. Semiring Objects

Here we create a “max-plus” semiring type. Other semir-
ings can be implemented by changing the definitions of “+”
and “*”, which are set to use “max” and “plus” (Figure IV-B).
The new type does not need to be taught matrix multiply;
matmul will work with any underlying numeric type (e.g.
int, float, ...), and will also work with both dense and sparse
matrices. Arrays of the new semiring type will use the same

immutab le MPNumber{T} <: Number
v a l : : T

end

+(a : : MPNumber , b : : MPNumber)
= MPNumber (max (a . va l , b . v a l))

∗ (a : : MPNumber , b : : MPNumber)
= MPNumber (a . v a l +b . v a l)

show (i o : : IO , k : : MPNumber)
= p r i n t (io , k . v a l)

z e r o {T } (: : Type{MPNumber{T}})
= MPNumber (typemin (T))

one{T } (: : Type{MPNumber{T}})
= MPNumber (z e r o (T))

p r o m o t e r u l e {T<:Number } (: : Type{MPNumber} ,
: : Type{T})

= MPNumber

mparray (A : : Array) = map (MPNumber , A)
a r r a y {T} (A : : Array {MPNumber{T}})

= map (x−>x . va l , A)
mpsparse (S : : SparseMatr ixCSC)

= SparseMatr ixCSC (S .m, S . n , S . c o l p t r ,
S . rowval , mparray (S . n z v a l))

Fig. 2. An altnerative approach to that of Figure 1 is the MPNumber type
with Max-Plus Algebra properties. Comparing with the overloading approach,
this approach automatically works with dense and sparse matrices of any type
without requiring the user to redefine matrix multiply. The code sets up a
MaxPlus number (MPNumber), defines a plus and times operator max and
+, sets ut the identity elements (zero=typeminT and one=zero(T)).
Users simply type A*B on arrays of the right type, and the semiring operation
will just work. (See Fig. 3)

amount of memory as “primitive” arrays of the underlying
numeric type.

The first definition describes the MPNumber type. Then
plus and times are defined as max and plus respectively,
followed by a routine IO function.

The zero and one in this semiring are defined as the
identity elements for max and plus, and the promote rule is a
Julia construction which allows semiring numbers and ordinary
numbers to work together.

Finally the last three functions allow for the conversion
between ordinary arrays and the semiring, with a special extra
constructor for the important use case of sparse arrays.

Some examples of using the code are presented in the figure
below:

V. PERFORMANCE

Pne. The goal of Julia is to have the right combination
of reasonable performance for the machine and productivity
for the human. On a Macbook Pro, with dual-core 2.4 GHz
Intel core i5, 8GB RAM, we compared a dense BLAS run of
matmul with an MPNumber{Float64} run in the semiring. The
BLAS time was 0.26msec (practically free!) for a 100 × 100
array. The semiring time was 313 msec. This is no surprise.

Random MPNumber a r r a y
A= mparray (r and (3 , 3))
B= mparray (r and (3 , 3))

M u l t i p l y two m a t r i c e s
A∗B

Square a m a t r i x
Aˆ2

C re a t e a s p a r s e i d e n t i t y m a t r i x
C= mpsparse (s p a r s e (eye (3 , 3)))

Square a s p a r s e m a t r i x
C∗C

Fig. 3. Example creation of an mparray. Users simply create an mparray,
and operate normally from there. The operations * and ∧ are automatically
the max-plus operations without any user definition.

More interesting and more useful is the comparison for
sparse matrices. For an n×n sparse random array with density
1/n, where n = 100, 000 the ordinary matrix multiply took 21
msec, and the semiring matrix multiply took a comparable 22
msec. For a higher density of 5/n, we found that the ordinary
sparse matrix multiplication again was on par with the semiring
version, taking 450 msec in each case.

VI. CONCLUSION

Julia facilitates the implementation and exploration of
graph algorithms through the semiring notation of general-
ized matrix mutliply. These algorithms appear in applications
to data analysis and related fields. Exploitation of sparse
data strucutres provides easy implementations with reasonable
performance. Sparse semiring performance is comparable to
ordinary sparse matmul in the Julia language.

VII. ACKNOWLEDGEMENTS

We gratefully acknowledge funding from Citigroup, Intel
ISTC, VMware, and the Deshpande Foundation. The other
authors thank Jeremy Kepner for raising our awareness of the
importance of semirings in high performance computing and
data analysis.

REFERENCES

[1] Jeff Bezanson, Stefan Karpinski, Viral Shah, and Alan Edel-
man. Julia: A fast dynamic language for technical computing.
http://arxiv.org/abs/1209.5145, 2012.

[2] John R. Gilbert, Steve Reinhardt, and Viral B. Shah. A unified
framework for numerical and combinatorial computing. Computing in
Sciences and Engineering, 10(2):20–25, Mar/Apr 2008.

[3] Frank Harary. Graph Theory. Addison-Wesley Publishing, 1969.
[4] Jeremy V. Kepner and J. R. Gilbert. Graph algorithms in the language

of linear algebra. Society for Industrial and Applied Mathematics,
2011.

[5] Dénes Kőnig. Gráfok és mátrixok. Matematikaiés Fizikai Lapok,
38:116–119, 1931.

[6] Dénes Kőnig. Theorie der Endlichen und Unendlichen Graphen:
Kombinatorische Topologie der Streckenkomplexe. Akad. Verlag., 1936.

[7] MATLAB. http://www.mathworks.com.
[8] Numpy. http://www.numpy.org.
[9] Octave. http://www.octave.org.

[10] R. http://www.r-project.org.
[11] Charles M. Rader. Connected components and minimum paths. In

Jeremy V. Kepner and J. R. Gilbert, editors, Graph algorithms in
the language of linear algebra. Society for Industrial and Applied
Mathematics, 2011.

[12] Scilab. http://www.scilab.org.

