
 1

Achieving 100,000,000 database inserts per second
using Accumulo and D4M

Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron, Chansup Byun, Vijay Gadepally, Matthew Hubbell,
Peter Michaleas, Julie Mullen, Andrew Prout, Albert Reuther, Antonio Rosa, Charles Yee

MIT Lincoln Laboratory, Lexington, MA, U.S.A.

Abstract—The Apache Accumulo database is an open source
relaxed consistency database that is widely used for government
applications. Accumulo is designed to deliver high performance
on unstructured data such as graphs of network data. This paper
tests the performance of Accumulo using data from the
Graph500 benchmark. The Dynamic Distributed Dimensional
Data Model (D4M) software is used to implement the benchmark
on a 216-node cluster running the MIT SuperCloud software
stack. A peak performance of over 100,000,000 database inserts
per second was achieved which is 100x larger than the highest
previously published value for any other database. The
performance scales linearly with the number of ingest clients,
number of database servers, and data size. The performance was
achieved by adapting several supercomputing techniques to this
application: distributed arrays, domain decomposition, adaptive
load balancing, and single-program-multiple-data programming.

Keywords-component; Accumulo; Hadoop; Big Data;
Graph500; D4M; MIT SuperCloud

I. INTRODUCTION
Non-traditional, relaxed consistency, triple store databases

provide high performance on commodity computing hardware
to I/O intensive data mining applications with low data
modification requirements. These databases are the backbone
of many web companies and they include: Google Big Table
[Chang 2008], Amazon Dynamo [DeCandia 2007], Cassandra
(cassandra.apache.org), and HBase (hbase.apache.org). The
Google Big Table architecture has spawned the development of
a wide variety of open source “NoSQL” database
implementations [Stonebraker 2010, 2012]. Many of these
implementations are built on top of the Hadoop
(hadoop.apache.org) distributed computing infrastructure that
provides distributed data storage and replication services to
these databases. A key element of these databases is relaxed
consistency. Traditional databases provide a high level of
ACID (atomicity, consistency, isolation, durability). High
ACID databases guarantee that separate queries of the same
data at the same time will give the same answer. Relaxed
consistency databases provide BASE (Basic Availability, Soft-
state, Eventual consistency), and guarantee that queries will
provide the same answers eventually. In exchange, relaxed
consistency databases can be built simply and provide high
performance on commodity computing hardware.

The Accumulo database (accumulo.apache.org) is the

highest performance open source relaxed consistency database
currently available and is widely used for government
applications [Byun 2012]. Accumulo is based on the Google
Big Table architecture and formally sits on top of the Hadoop
distribute file system. Accumulo was developed by the
National Security Agency and was released to the open source
community in 2011.

Accumulo is designed to handle unstructured data of the
type found in document analysis, health records,
bioinformatics, social media, computer networks, and computer
logs. Often this data is represented as large graphs of nodes
and edges. The Graph500 benchmark (Graph500.org)[Bader
2006] is designed to test a computers’ ability to process graph
data. Graph500 contains a high performance, scalable graph
generator that efficiently generates large “power-law” graphs
(i.e., graphs with a few nodes with many edges and many
nodes with a few edges).

Achieving the full performance of Accumulo requires
exploiting its ability to run on parallel computers. This
includes insuring that there is sufficient parallelism in the
application, load balancing the application across different
parts of the system, and minimizing communication between
processors. The techniques for achieving high performance on
Accumulo are similar to achieving high performance on other
parallel computing applications.

The Dynamic Distributed Dimensional Data Model
(D4M.mit.edu) [Kepner 2012] provides a uniform framework
based on the mathematics of associative arrays [Kepner 2013a]
that encompasses both traditional (i.e., SQL) and non-
traditional databases. For non-traditional databases D4M
naturally leads to a general purpose Accumulo schema that can
be used to fully index and rapidly query every unique string in
a dataset. The D4M Schema is used across the Accumulo
community [Kepner 2013b].

D4M also works seamlessly with the pMatlab
(http://www.ll.mit.edu/pMatlab) [Bliss 2006, Kepner 2009]
parallel computing environment that allows high performance
parallel applications to be constructed with just a few lines of
code. pMatlab uses a single-program-multiple-data (SPMD)
parallel programming model and sits on top of a message
passing interface (MPI) communication layer. SPMD and MPI
are the primary tools used in much of the parallel computing
world to achieve the highest levels of performance on the
world’s largest systems (see hpcchallenge.org). These tools
can also be used for achieving high performance on the
Accumulo database.

This work is sponsored by the Assistant Secretary of Defense for Research
and Engineering under Air Force Contract #FA8721-05-C-0002. Opinions,
interpretations, recommendations and conclusions are those of the authors and
are not necessarily endorsed by the United States Government.

 2

The organization of the rest of this paper is as follows.
Section II introduces Accumulo, D4M, pMatlab, and the MIT
SuperCloud system used to conduct the performance
measurements. Section III describes the Graph500 benchmark
data and the benchmark implementation. Section IV describes
the specific experiments conducted and the optimizations
employed to achieve the measured performance. Section V
shows the performance results using the Graph500 benchmark
data. Section VI summarizes the results.

II. TECHNOLOGIES
A variety of technologies were used to conduct the

performance measurements. Together, these technologies
make up the MIT SuperCloud [Reuther 2013] (see Figure 1).
The MIT SuperCloud allows big data applications such as
Hadoop and Accumulo to run on a supercomputer system.

A. Accumulo Database
Accumulo is a key-value store where each entry consists of

a seven-tuple. Most of the concepts of Accumulo can be
understood by reducing this seven-tuple into a triple consisting
of a row, column, and value. Each triple describes a point in a
table. Only the non-empty entries are stored in each row, so
the table can have an unlimited number of rows and columns
and be extremely sparse, which makes Accumulo well-suited
for storing graphs.

Accumulo is designed to run on large clusters of computing
hardware where each node in the cluster has its own data
storage. Accumulo uses the Hadoop Distributed File System
(HDFS) to organize the storage on the nodes into a single,
large, redundant file system. A table in Accumulo is broken up
into tablets where each tablet contains a continuous block of
rows. The row values marking the boundaries between tablets
are called splits. A table can be broken up into many tablets,
and these tablets are then stored in HDFS across the cluster.
Good performance is achieved when the data and the
operations are spread evenly across the cluster. The selection
of good splits is key to achieving this goal.

The various Accumulo processes are managed by
Zookeeper (zookeeper.apache.org), which is a centralized
service for maintaining configuration and naming information,
along with providing distributed synchronization and group
services.

B. D4M analytics library
D4M is open source software that provides a convenient

mathematical representation of the kinds of data that are
routinely stored in spreadsheets and large triple store database.
Associations between multidimensional entities (tuples) using
string keys and string values can be stored in data structures
called associative arrays. For example, in two dimensions, a
D4M associative array entry might be

A('alice ', 'bob ') = 'cited '
or A('alice ', 'bob ') = 47.0

The above tuples have a 1-to-1 correspondence with their triple
store representations

('alice ','bob ','cited ')
or ('alice ','bob ',47.0)

Associative arrays can represent complex relationships in
either a sparse matrix or a graph form (see Figure 2). Thus,
associative arrays are a natural data structure for performing
both matrix and graph algorithms. Such algorithms are the
foundation of many complex database operations across a wide
range of fields [Kepner 2011].

Constructing complex composable query operations can be
expressed using simple array indexing of the associative array
keys and values, which themselves return associative arrays:

A('alice ',:) alice row
A('alice bob ',:) alice and bob rows
A('al* ',:) rows beginning with al
A('alice : bob ',:) rows alice to bob
A(1:2,:) first two rows
A == 47.0 subarray with values 47.0

The composability of associative arrays stems from the
ability to define fundamental mathematical operations whose
results are also associative arrays. Given two associative arrays
A and B, the results of all the following operations will also be
associative arrays:

A + B A - B A & B A|B A*B

Measurements using D4M indicate these algorithms can be
implemented with a tenfold decrease in coding effort when
compared to standard approaches [Kepner 2012].

Figure 1. MIT SuperCloud architecture consists of seven
components. (1) Lustre parallel file system for high performance
file I/O, (2) D4M & pMatlab ingest processes, (3) Accumulo
parallel database, (4) D4M & pMatlab analytic processes, (5)
Accumulo web monitor page, (6) Grid Engine scheduler for
allocating processes to hardwared, and (7) the TX-Green
supercomputer.

Figure 2. A graph describing the relationship between alice, bob,
and carl (left). A sparse associative array A captures the same
relationships (right). The fundamental operation of graphs is finding
neighbors from a vertex (breadth first search). The fundamental
operation of linear algebra is matrix vector multiply. D4M associative
arrays make these two operations identical. Thus, algorithm
developers can simultaneously use both graph theory and linear
algebra to exploit complex data.

 3

C. pMatlab parallel computing library
pMatlab is open source software that allows a Matlab

program(mathworks.com) or a GNU Octave program
(octave.org) to be launched in parallel. In a pMatlab program
all NP parallel instances of the program persist for the life of
the program, have a unique identifier (PID), and can directly
communicate with all the other instances of the programs. The
only differences between the instances are the PIDs. This
parallel programming model is called single-program-multiple-
data (SPMD). The communication between each PID is
handled by message passing. In addition, pMatlab provides
scalable mechanisms for creating distributed arrays so that each
PID knows exactly which part of the array it owns and where to
find all the other pieces.

pMatlab implements the distributed arrays parallel
programming model used to achieve high performance on the
largest computers in the world. This model gives the
application precise control of its computations and
communications when running on a parallel computing system.

D. Lustre parallel file system
The MIT SuperCloud has two forms of storage: distributed

and central. Distributed storage exists on the compute nodes
that are used for running Hadoop and Accumulo applications.
Central storage is implemented using the open source Lustre
parallel file system (lustre.org) on a commercial storage array.
Lustre provides high performance data access to all the
compute nodes, while maintaining the appearance of a single
filesystems to the user. The Lustre filesystem is used in most
of the largest supercomputers in the world.

The MIT SuperCloud leverages both types of storage to
dynamically start, stop, checkpoint, relocate, and restart (or
clone) Accumulo databases by storing their data in the Lustre
filesystem when they are stopped. This dynamic database
management system allows many more Accumulo databases to
be hosted on the system than would otherwise be possible.
Groups of users can quickly create their own Accumulo
databases to share data amongst themselves without interfering
with other groups. In addition, because all the Accumulo
instances are running directly on the compute nodes, they can
run at maximum performance.

E. Grid Engine scheduler
Supercomputers require efficient mechanisms for rapidly

identifying available computing resources, allocating those
resources to programs, and launching the programs on the
allocated resources. The open source Grid Engine software
(gridscheduler.sourceforge.net) provides these services and is
independent of programming language (C, Fortran, Java,
Matlab, …) or parallel programming model (message passing,
distributed arrays, threads, map/reduce, …).

The Grid Engine scheduler coordinates the starting and
stopping of Accumulo database instances in the MIT
SuperCloud. An Accumulo user authenticates using a web
page that shows them only the databases they are allowed to
access. They can then start and stop any of these databases.
When a database is started Grid Engine determines the
computing requirements of the database, finds the computing
resources, allocates them to the database, copies all the

database files to the appropriate computing nodes, assigns
dynamic alias domain name entries to the compute nodes, and
starts the database processes.

F. TX-Green hardware
The TX-Green supercomputer consists of 270 HP servers

connected to a single 10 GigE Voltaire core switch. The Lustre
central storage system uses a 1 Petabyte DDN and a 0.5
Petabyte Seagate storage array that are directly connected to
the core switch. This architecture provides high bandwidth to
all the nodes and the central storage. Each server has 32 cores
(x86 instruction set), 128 Gigabytes of memory, and 12
Terabytes of storage. The storage is hot-swappable RAID5 so
that each node can tolerate one drive failure.

TX-Green is housed in an HP EcoPOD mobile data center
that uses ambient air cooling to maximize energy efficiency.
The EcoPOD is located near a hydroelectric dam that delivers
clean energy that does not contribute green house gases to the
environment.

The MIT SuperCloud software stack, which contains all the
systems and applications software, resides on every node.
Hosting the application software on each node accelerates the
launch of large applications (such as Accumulo) and minimizes
their dependency on the central storage.

III. BENCHMARK DESIGN
Accumulo’s ability to handle sparse tables makes it well

suited for graph applications. Our approach to measuring
Accumulo performance begins with generating large graphs,
breaking up the graph so it will work well with Accumulo’s
table structure, and finally creating a parallel program to insert
the graph as quickly as possible. High performance insertion
of graph data is the first step of many graph applications and is
often a key bottleneck. Testing the graph insert performance
over a range of system parameters (e.g., number of server
processors and number of ingest processes), establishes the
upper performance bound on this graph processing step. Other
important performance metrics include the query performance
and query latency of large graphs. These metrics have been
well explored in other work [Sen 2013, Sawyer 2013] and are
not explored here.

A. Graph500 benchmark
Measuring graph performance begins with generating a

graph. The Graph500 benchmark is designed to operate on
large graphs. Graph500 has a scalable data generator that can
efficiently generate power-law graphs. The number of vertices
and edges in the graph are set using a positive integer called the
SCALE parameter. The number of vertices, N, and the number
of edges, M, are then computed as follows:

N = 2SCALE M = 8 N

For example, if SCALE = 17, then N = 131072 and M =
1048576. The Graph500 generator uses a recursive matrix
algorithm [Chakrabarti 2004] to generate a set of starting
vertices and ending vertices corresponding to edges in a graph.
This graph can then be represented as a large NxN sparse
matrix A, where A(i,j) = 1 indicates an edge from vertex i to
vertex j. Figure 3 shows such a matrix for a SCALE=17 graph.

 4

A SCALE=17 Graph500 graph is used as a building block for
the performance measurements. Three additional parameters
determine the overall table that will be ingested. Nserver is the
number of servers used by the Accumulo database and is set to
1, 2, 4, 8, 16, 32, 64, 128, or 216. Ningest is the number of ingest
processes per server and is set to 1, 2, 3, 4, 5, 6, or 7. Ntablet is
the number of tablets per ingest process and is set to a value of
32. Using these parameters, the overall table is constructed by
stacking Nserver Ningest Ntablet base graphs to create a single large
Nrow x N table, where

Nrow = Nserver Ningest Ntablet N

For the above values, this results in a tables ranging from 4M x
131K with 33M entries to 5.4B x 131K with 43B entries. This
approach allows the table to grow with the size of the system
and number of ingest processes. In parallel computing, this is
referred to as scaled problem (i.e., the problem size grows with
computing resources). If the system performance scales
linearly, then the ingest time will be constant for any value of
Nserver and Ningest.

B. Domain decomposition
Achieving high performance on any parallel computing

problem requires that the data and operations are evenly split
amongst the resources. Scaling the table with the number of
computing resources simplifies the mapping of specific rows to
specific servers, ingest processes, and tablets. Each ingest
process generates a base SCALE=17 Graph500 table, converts
the triple values to strings, and constructs a D4M associative
array out of these triples. Next the ingest process computes
where its Ntablet starting rows should be for this table and
assigns new row values to the associative array. Finally, the
associative array is inserted into the Accumulo table. This
graph construction process results in a perfectly balanced table
that is ideal for determining the upper limit on Accumulo ingest
performance for graph data.

C. Parallel program
Implementing the above parallel program requires launching

a precise number of ingest processes on each Accumulo server.
In addition, each ingest process must know how many total
processes are running (NP = Nserver Ningest) and the numerical
rank (PID) of its process. These requirements are exactly those
of the SPMD programming model. pMatlab conforms to this
model. Writing the program using pMatlab makes it easy to
implement the above scalable data ingest program. The entire
D4M+pMatlab parallel benchmark program consists of four
files with 135 total lines of code.

IV. BENCHMARK IMPLEMENTATION
The implementation of the benchmark required additional

performance optimizations to achieve the ultimate performance
goal of 100,000,000 database inserts per second. These
optimizations fell into two categories: Accumulo optimizations
and D4M/pMatlab optimizations. Collecting these
optimizations together produced a recipe for running the
benchmark.

A. Accumulo optimization
The Accumulo software used in these performance

measurements was Accumulo 1.5, Hadoop 1.1.2, and
Zookeeper 3.4.5. In some cases, the optimizations were done
to overcome issues that may be fixed in later versions of the
software.

By default, Hadoop will replicate all data in its file systems
three times which provides a level of redundancy that allows
any particular server to fail. In the MIT SuperCloud, the
dominant use case is single node Accumulo instances for
developers. These instances are unable to utilize this
redundancy. In addition, each server uses RAID5 storage that
protects from a single disk failure with a lower storage penalty
(to store parity information). Throughout these performance
measurements, Hadoop was run with no replication to
maximize the ingest performance.

At the recommendation of the Accumulo developers,
Zookeeper was run with 3 standard instances and 10 follower
instances.

Another fault tolerance feature of Accumulo is its write-
ahead log that writes all operations to a log prior to performing
an insert. The log allows Accumulo to redo an insert if it

Figure 3. Sparse adjacency matrix representation of SCALE=17
Graph500 with ~10% of the edges displayed. The vertices are
randomized, so the underlying power-law structure is not visible.
The diagonal line shows self-edges that are kept in some
applications and filtered out in other applications.

Figure 4. Vertex degree distribution of the graph shown in Figure 3
showing is approximate power-law structure. In this graph there are
18884 vertices with one edge (i.e., a vertex degree of 1) and one
vertex with 447 edges. The approximate power law slope of the
distribution is: count(vertex degree) ∝ (vertex degree)-0.62.

 5

aborts prior to writing the insert from memory to disk. The
MIT SuperCloud allows the Accumulo database to be
checkpointed and thus the need for the write-ahead log can be
minimized. Accumulo was run with the write-ahead log turned
off throughout these performance measurements which
increased performance by ~30%.

Accumulo will automatically split and load balance tables
as they grow in size. Pre-splitting spreads the table across all
the servers at creation. Pre-splitting is required to achieve good
ingest performance with an empty table (otherwise it will only
exist on one server). Pre-splitting was used throughout these
performance measurements. One issue that was encountered is
that after creating the pre-splits, they all started out on one
server. Accumulo load balanced the splits across its servers at
rate of ~50 splits/second, which is more than adequate for
normal operation, but can take ~20 minutes for 50,000 pre-
splits.

The process by which Accumulo takes entries from
memory and initially writes them to disk is called minor
compaction. By default, Accumulo will limit the maximum
number of simultaneous minor compactions on a server to 4.
For these performance benchmarks, this value was set to 5,
which provided slightly better results.

B. D4M/pMatlab optimization
To insure that network bandwidth was not limiting

Accumulo ingest performance, the program was run so that
each ingest process was inserting data into tablets that were
local to the Accumulo server it was running on. This was
accomplished by querying Accumulo for the server locations of
each split and saving these locations to disk. Each ingest
process then read in this file and discovered the tablets that
were local to it. Furthermore, if multiple ingest processes were
on a server, they used their PID and their hostname to evenly
divide up the splits on the same server.

D4M can insert an entire associative array into a table with
a simple “put” command. Inside the D4M put command, the
associative array is divided into blocks that are individually
inserted using the Accumulo batch writer API. The block size
was chosen to be 500 kilobytes, which typically provides
optimal ingest performance.

C. Benchmarking recipe
The steps for running each benchmark were as follows and

involves a setup phase and an execution phase.

Setup Phase

(1) Start Accumulo on Nserver servers.

(2) Set max compactions to five via
tserver.compaction.minor.concurrent.max=5.

(3) Create the table.

(4) Disable write ahead log via table.walog.enabled=false.

(5) Create all the table splits and wait for them to load balance
across all the servers.

(6) Retrieve all the splits and their corresponding servers and
write to a file in the central filesystem.

(7) Launch Ningest processes on each Accumulo server using
pMatlab.

Execution Phase (Each ingest process executes the following.)

(1) Read in split file from the central filesystem.

(2) Use PID, NP and hostnmae to find splits that are local to
server and divide these splits evenly among all ingest
processes.

(3) Generate SCALE=17 Graph500 graph and inserts into a
D4M associative array.

(4) Use each split point value to offset the rows of the
associative array.

(5) Insert the associative array into the Accumulo table.

V. PEFORMANCE RESULTS
The benchmark allows high performance ingest with

minimal ramp up time (see Figure 5). After the setup phase, a
typical run time for the program was 300 seconds. The
benchmark program was run over a range of Accumulo
database instantiations across the following number of servers:
1, 2, 4, 8, 16, 32, 64, 128, 216; and different numbers of ingest
processes per server: 1, 2, 3, 4, 5, 6, 7. Figure 6 shows the
ingest performance vs. ingest processes for all the different
Accumulo configurations. Linear performance was achieved

Figure 5. Accmulo ingest performance vs time as recorded by the
Accumulo web monitor page. The benchmark runs for ~300 seconds.
The rise and fall in the curve is mostly due to the Accumulo
averaging window.

Figure 6. Ingest performance vs. number of ingest processors for
different Accumulo databases with different numbers of servers (see
legend) demonstrating linear performance scaling.

 6

across all the dimensions culminating in a peak performance of
115,000,000 entries/second on a 216 node Accumulo database
with 1,296 ingest processes. On average, 100,000
entries/second was achieved per ingest process across the range
of measurements. Likewise, a maximum performance of
500,000 entries/second per server node was also achieved. For
comparison, Figure 7 shows the maximum ingest rate as
function of the total number of nodes used for Accumulo,
Cassandra, and Oracle. Different benchmarks and hardware
platforms were used for these results, so specific comparisons
must be made with care. Overall, it appears that Accumulo
provides the highest ingest performance of all of these
technologies.

VI. SUMMARY
The Apache Accumulo database is an open source relaxed

consistency database that is widely used for government
applications. Accumulo is designed to deliver high
performance on unstructured data such as graphs of network
data. This paper measured the performance of Accumulo using
data from the Graph500 benchmark. D4M and pMatlab
software were used to implement the benchmark on a 216 node
cluster running the MIT SuperCloud software stack. A peak
performance of over 115,000,000 database inserts per second
was achieved, which is 100x larger than the highest previously
published value for any other database. The performance
scales linearly with number of ingest clients, number of
database servers, and data size. This performance was
achieved by adapting several supercomputing techniques to this
application: distributed arrays, domain decomposition, adaptive
load balancing, and single-program-multiple-data
programming.

REFERENCES

[Bader 2006] D. Bader, K. Madduri, J. Gilbert, V. Shah, J.y Kepner, T.
Meuse, and A. Krishnamurthy, “Designing Scalable Synthetic Compact
Applications for Benchmarking High Productivity Computing Systems,”
CT Watch, Vol 2, Number 4A, November, 2006.

[Bliss 2006] N. Bliss and J. Kepner, “pMatlab parallel Matlab library,”
International Journal of High Performance Computing Applications:
Special Issue on High Level Programming Languages and Models, J.
Kepner and H. Zima (editors), Winter 2006 (November).

[Byun 2012] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J.
Kepner, A. McCabe, P. Michaleas, J. Mullen, D. O'Gwynn, A. Prout, A.
Reuther, A. Rosa & C. Yee, “Driving Big Data With Big Compute,”
IEEE HPEC, Sep 10-12, 2012.

[Chakrabarti 2004] Deepayan Chakrabarti, Yiping Zhan & Christos Faloutsos,
“R-MAT: A Recursive Model for Graph Mining,” SIAM Data Mining
2004.

[Chang 2008] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M.
Burrows, T. Chandra, A. Fikes, & R. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” ACM Transactions on Computer
Systems, Volume 26 Issue 2, June 2008.

[DeCandia 2007] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, Alex Pilchin, S. Sivasubramanian, P. Vosshall, & W Vogels,
“Dynamo: amazon’s highly available key-value store,” Symposium on
Operation Systems Principals (SOSP), 2007.

[Kepner 2009] J. Kepner, “Parallel Matlab for Multicore and Multinode
Computers,” SIAM Press, Philadelphia, 2009.

[Kepner 2011] J. Kepner and J. Gilbert (editors), “Graph Algorithms in the
Language of Linear Algebra,” SIAM Press, Philadelphia, 2011.

[Kepner 2012] J. Kepner et al., “Dynamic distributed dimensional data model
(D4M) database and computation system,” 37th IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Kyoto, Japan, Mar 2012.

[Kepner 2013a] J. Kepner & J. Chaidez, “The Abstract Algebra of Big Data,”
Union College Mathematics Conference, Oct , 2013.

[Kepner 2013b] Jeremy Kepner, Christian Anderson, William Arcand, David
Bestor, Bill Bergeron, Chansup Byun, Matthew Hubbell, Peter
Michaleas, Julie Mullen, David O’Gwynn, Andrew Prout, Albert
Reuther, Antonio Rosa & Charles Yee, “D4M 2.0 Schema: A General
Purpose High Performance Schema for the Accumulo Database,” IEEE
HPEC, Sep 10-12, 2013, Waltham, MA.

[Reuther 2013] Albert Reuther, Jeremy Kepner, William Arcand, David
Bestor, Bill Bergeron, Chansup Byun, Matthew Hubbell, Peter
Michaleas, Julie Mullen, Andrew Prout, & Antonio Rosa,
“LLSuperCloud: Sharing HPC Systems for Diverse Rapid Prototyping,”,
IEEE HPEC, Sep 10-12, 2013, Waltham, MA.

[Sawyer 2013] Scott M. Sawyer, B. David O’Gwynn, An Tran & Tamara Yu,
“Understanding Query Performance in Accmulo,” IEEE HPEC, Sep 10-
12, 2013, Waltham, MA.

[Sen 2013] Ranjan Sen, Andrew Farris & Peter Guerra, “Benchmarking
Apache Accumulo BigData Distributed Table Store Using Its
Continuous Test Suite,” 2013 IEEE International Congress on Big Data.

[Stonebraker 2010] M. Stonebraker, “SQL databases v. NoSQL databases,”
Communications of the ACM, Volume 53 Issue 4, April 2010.

[Stonebraker 2012] M. Stonebraker & J. Kepner, “Possible Hadoop
Trajectories,” Communications of the ACM, Blog, May 2, 2012.

[Filho 2014] Ivan Santa Maria Filho, “Cassandra Hits One Million Writes Per
Second on Google Compute Engine,”
http://googlecloudplatform.blogspot.com/2014/03/cassandra-hits-one-
million-writes-per-second-on-google-compute-engine.html.

[TPC 2013] Transaction Processing Performance Council
http://www.tpc.org/tpcc/results/tpcc_perf_results.asp.

Figure 7. Maximum ingest performance of various database technologies on
different benchmarks: (MIT 2014) Graph500 data [this paper], (MIT 2012)
computer network data [Byun 2012], (BAH 2013) Accumulo continuous test
suite [Sen 2013], (Google 2014) random data [Filho 2014], and (Oracle 2013)
TPC-C benchmark [TPC 2013].

