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Abstract—The Apache Accumulo database is an open source 
relaxed consistency database that is widely used for government 
applications.  Accumulo is designed to deliver high performance 
on unstructured data such as graphs of network data.  This paper 
tests the performance of Accumulo using data from the 
Graph500 benchmark. The Dynamic Distributed Dimensional 
Data Model (D4M) software is used to implement the benchmark 
on a 216-node cluster running the MIT SuperCloud software 
stack.  A peak performance of over 100,000,000 database inserts 
per second was achieved which is 100x larger than the highest 
previously published value for any other database.  The 
performance scales linearly with the number of ingest clients, 
number of database servers, and data size.  The performance was 
achieved by adapting several supercomputing techniques to this 
application: distributed arrays, domain decomposition, adaptive 
load balancing, and single-program-multiple-data programming. 

Keywords-component; Accumulo; Hadoop; Big Data; 
Graph500; D4M; MIT SuperCloud   

I.  INTRODUCTION  
Non-traditional, relaxed consistency, triple store databases 

provide high performance on commodity computing hardware 
to I/O intensive data mining applications with low data 
modification requirements.  These databases are the backbone 
of many web companies and they include: Google Big Table 
[Chang 2008], Amazon Dynamo [DeCandia 2007], Cassandra 
(cassandra.apache.org), and HBase (hbase.apache.org).  The 
Google Big Table architecture has spawned the development of 
a wide variety of open source “NoSQL” database 
implementations [Stonebraker 2010, 2012].  Many of these 
implementations are built on top of the Hadoop 
(hadoop.apache.org) distributed computing infrastructure that 
provides distributed data storage and replication services to 
these databases.  A key element of these databases is relaxed 
consistency.  Traditional databases provide a high level of 
ACID (atomicity, consistency, isolation, durability).  High 
ACID databases guarantee that separate queries of the same 
data at the same time will give the same answer.  Relaxed 
consistency databases provide BASE (Basic Availability, Soft-
state, Eventual consistency), and guarantee that queries will 
provide the same answers eventually.  In exchange, relaxed 
consistency databases can be built simply and provide high 
performance on commodity computing hardware. 

The Accumulo database (accumulo.apache.org) is the 

highest performance open source relaxed consistency database 
currently available and is widely used for government 
applications [Byun 2012].  Accumulo is based on the Google 
Big Table architecture and formally sits on top of the Hadoop 
distribute file system. Accumulo was developed by the 
National Security Agency and was released to the open source 
community in 2011. 

Accumulo is designed to handle unstructured data of the 
type found in document analysis, health records, 
bioinformatics, social media, computer networks, and computer 
logs.  Often this data is represented as large graphs of nodes 
and edges.  The Graph500 benchmark (Graph500.org)[Bader 
2006] is designed to test a computers’ ability to process graph 
data.  Graph500 contains a high performance, scalable graph 
generator that efficiently generates large “power-law” graphs 
(i.e., graphs with a few nodes with many edges and many 
nodes with a few edges).  

Achieving the full performance of Accumulo requires 
exploiting its ability to run on parallel computers.  This 
includes insuring that there is sufficient parallelism in the 
application, load balancing the application across different 
parts of the system, and minimizing communication between 
processors.  The techniques for achieving high performance on 
Accumulo are similar to achieving high performance on other 
parallel computing applications.   

The Dynamic Distributed Dimensional Data Model 
(D4M.mit.edu) [Kepner 2012] provides a uniform framework 
based on the mathematics of associative arrays [Kepner 2013a] 
that encompasses both traditional (i.e., SQL) and non-
traditional databases.  For non-traditional databases D4M 
naturally leads to a general purpose Accumulo schema that can 
be used to fully index and rapidly query every unique string in 
a dataset. The D4M Schema is used across the Accumulo 
community [Kepner 2013b]. 

D4M also works seamlessly with the pMatlab 
(http://www.ll.mit.edu/pMatlab) [Bliss 2006, Kepner 2009] 
parallel computing environment that allows high performance 
parallel applications to be constructed with just a few lines of 
code.  pMatlab uses a single-program-multiple-data (SPMD) 
parallel programming model and sits on top of a message 
passing interface (MPI) communication layer.  SPMD and MPI 
are the primary tools used in much of the parallel computing 
world to achieve the highest levels of performance on the 
world’s largest systems (see hpcchallenge.org).  These tools 
can also be used for achieving high performance on the 
Accumulo database.  
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The organization of the rest of this paper is as follows. 
Section II introduces Accumulo, D4M, pMatlab, and the MIT 
SuperCloud system used to conduct the performance 
measurements. Section III describes the Graph500 benchmark 
data and the benchmark implementation.  Section IV describes 
the specific experiments conducted and the optimizations 
employed to achieve the measured performance. Section V 
shows the performance results using the Graph500 benchmark 
data.  Section VI summarizes the results. 

II. TECHNOLOGIES 
A variety of technologies were used to conduct the 

performance measurements.  Together, these technologies 
make up the MIT SuperCloud [Reuther 2013] (see Figure 1).  
The MIT SuperCloud allows big data applications such as 
Hadoop and Accumulo to run on a supercomputer system. 

A. Accumulo Database 
Accumulo is a key-value store where each entry consists of 

a seven-tuple.  Most of the concepts of Accumulo can be 
understood by reducing this seven-tuple into a triple consisting 
of a row, column, and value.  Each triple describes a point in a 
table.  Only the non-empty entries are stored in each row, so 
the table can have an unlimited number of rows and columns 
and be extremely sparse, which makes Accumulo well-suited 
for storing graphs. 

Accumulo is designed to run on large clusters of computing 
hardware where each node in the cluster has its own data 
storage. Accumulo uses the Hadoop Distributed File System 
(HDFS) to organize the storage on the nodes into a single, 
large, redundant file system. A table in Accumulo is broken up 
into tablets where each tablet contains a continuous block of 
rows.  The row values marking the boundaries between tablets 
are called splits.  A table can be broken up into many tablets, 
and these tablets are then stored in HDFS across the cluster.  
Good performance is achieved when the data and the 
operations are spread evenly across the cluster.  The selection 
of good splits is key to achieving this goal. 

The various Accumulo processes are managed by 
Zookeeper (zookeeper.apache.org), which is a centralized 
service for maintaining configuration and naming information, 
along with providing distributed synchronization and group 
services. 

B. D4M analytics library 
D4M is open source software that provides a convenient 

mathematical representation of the kinds of data that are 
routinely stored in spreadsheets and large triple store database.  
Associations between multidimensional entities (tuples) using 
string keys and string values can be stored in data structures 
called associative arrays. For example, in two dimensions, a 
D4M associative array entry might be 

A('alice ', 'bob ') = 'cited ' 
or A('alice ', 'bob ') = 47.0 

The above tuples have a 1-to-1 correspondence with their triple 
store representations  

('alice ','bob ','cited ') 
or ('alice ','bob ',47.0) 

Associative arrays can represent complex relationships in 
either a sparse matrix or a graph form (see Figure 2). Thus, 
associative arrays are a natural data structure for performing 
both matrix and graph algorithms. Such algorithms are the 
foundation of many complex database operations across a wide 
range of fields [Kepner 2011]. 

Constructing complex composable query operations can be 
expressed using simple array indexing of the associative array 
keys and values, which themselves return associative arrays: 

A('alice ',:)  alice row 
A('alice bob ',:)  alice and bob rows 
A('al* ',:)  rows beginning with al 
A('alice : bob ',:) rows alice to bob 
A(1:2,:)   first two rows 
A == 47.0    subarray with values 47.0 

The composability of associative arrays stems from the 
ability to define fundamental mathematical operations whose 
results are also associative arrays. Given two associative arrays 
A and B, the results of all the following operations will also be 
associative arrays:  

A + B    A - B    A & B    A|B    A*B 

Measurements using D4M indicate these algorithms can be 
implemented with a tenfold decrease in coding effort when 
compared to standard approaches [Kepner 2012]. 

 
Figure 1. MIT SuperCloud architecture consists of seven 
components. (1) Lustre parallel file system for high performance 
file I/O, (2) D4M & pMatlab ingest processes, (3) Accumulo 
parallel database, (4) D4M & pMatlab analytic processes, (5) 
Accumulo web monitor page, (6) Grid Engine scheduler for 
allocating processes to hardwared, and (7) the TX-Green 
supercomputer. 

 
Figure 2. A graph describing the relationship between alice, bob, 
and carl (left). A sparse associative array A captures the same 
relationships (right). The fundamental operation of graphs is finding 
neighbors from a vertex (breadth first search). The fundamental 
operation of linear algebra is matrix vector multiply. D4M associative 
arrays make these two operations identical.  Thus, algorithm 
developers can simultaneously use both graph theory and linear 
algebra to exploit complex data. 
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C. pMatlab parallel computing library 
pMatlab is open source software that allows a Matlab 

program(mathworks.com) or a GNU Octave program 
(octave.org) to be launched in parallel.  In a pMatlab program 
all NP parallel instances of the program persist for the life of 
the program, have a unique identifier (PID), and can directly 
communicate with all the other instances of the programs.  The 
only differences between the instances are the PIDs.  This 
parallel programming model is called single-program-multiple-
data (SPMD).  The communication between each PID is 
handled by message passing.  In addition, pMatlab provides 
scalable mechanisms for creating distributed arrays so that each 
PID knows exactly which part of the array it owns and where to 
find all the other pieces. 

pMatlab implements the distributed arrays parallel 
programming model used to achieve high performance on the 
largest computers in the world.  This model gives the 
application precise control of its computations and 
communications when running on a parallel computing system.  

D. Lustre parallel file system 
The MIT SuperCloud has two forms of storage: distributed 

and central.  Distributed storage exists on the compute nodes 
that are used for running Hadoop and Accumulo applications.  
Central storage is implemented using the open source Lustre 
parallel file system (lustre.org) on a commercial storage array.  
Lustre provides high performance data access to all the 
compute nodes, while maintaining the appearance of a single 
filesystems to the user.  The Lustre filesystem is used in most 
of the largest supercomputers in the world. 

The MIT SuperCloud leverages both types of storage to 
dynamically start, stop, checkpoint, relocate, and restart (or 
clone) Accumulo databases by storing their data in the Lustre 
filesystem when they are stopped.  This dynamic database 
management system allows many more Accumulo databases to 
be hosted on the system than would otherwise be possible.  
Groups of users can quickly create their own Accumulo 
databases to share data amongst themselves without interfering 
with other groups.  In addition, because all the Accumulo 
instances are running directly on the compute nodes, they can 
run at maximum performance. 

E. Grid Engine scheduler 
Supercomputers require efficient mechanisms for rapidly 

identifying available computing resources, allocating those 
resources to programs, and launching the programs on the 
allocated resources.  The open source Grid Engine software 
(gridscheduler.sourceforge.net) provides these services and is 
independent of programming language (C, Fortran, Java, 
Matlab, …) or parallel  programming model (message passing, 
distributed arrays, threads, map/reduce, …). 

The Grid Engine scheduler coordinates the starting and 
stopping of Accumulo database instances in the MIT 
SuperCloud.  An Accumulo user authenticates using a web 
page that shows them only the databases they are allowed to 
access.  They can then start and stop any of these databases.  
When a database is started Grid Engine determines the 
computing requirements of the database, finds the computing 
resources, allocates them to the database, copies all the 

database files to the appropriate computing nodes, assigns 
dynamic alias domain name entries to the compute nodes, and 
starts the database processes. 

F. TX-Green hardware 
The TX-Green supercomputer consists of 270 HP servers 

connected to a single 10 GigE Voltaire core switch.  The Lustre 
central storage system uses a 1 Petabyte DDN and a 0.5 
Petabyte Seagate storage array that are directly connected to 
the core switch. This architecture provides high bandwidth to 
all the nodes and the central storage.  Each server has 32 cores 
(x86 instruction set), 128 Gigabytes of memory, and 12 
Terabytes of storage.  The storage is hot-swappable RAID5 so 
that each node can tolerate one drive failure. 

TX-Green is housed in an HP EcoPOD mobile data center 
that uses ambient air cooling to maximize energy efficiency.  
The EcoPOD is located near a hydroelectric dam that delivers 
clean energy that does not contribute green house gases to the 
environment. 

The MIT SuperCloud software stack, which contains all the 
systems and applications software, resides on every node.  
Hosting the application software on each node accelerates the 
launch of large applications (such as Accumulo) and minimizes 
their dependency on the central storage. 

III. BENCHMARK DESIGN 
Accumulo’s ability to handle sparse tables makes it well 

suited for graph applications.  Our approach to measuring 
Accumulo performance begins with generating large graphs, 
breaking up the graph so it will work well with Accumulo’s 
table structure, and finally creating a parallel program to insert 
the graph as quickly as possible.  High performance insertion 
of graph data is the first step of many graph applications and is 
often a key bottleneck.  Testing the graph insert performance 
over a range of system parameters (e.g., number of server 
processors and number of ingest processes), establishes the 
upper performance bound on this graph processing step.  Other 
important performance metrics include the query performance 
and query latency of large graphs.  These metrics have been 
well explored in other work [Sen 2013, Sawyer 2013] and are 
not explored here. 

A. Graph500 benchmark 
Measuring graph performance begins with generating a 

graph.  The Graph500 benchmark is designed to operate on 
large graphs.  Graph500 has a scalable data generator that can 
efficiently generate power-law graphs. The number of vertices 
and edges in the graph are set using a positive integer called the 
SCALE parameter.  The number of vertices, N, and the number 
of edges, M, are then computed as follows:  

N = 2SCALE                   M = 8 N 

For example, if SCALE = 17, then N = 131072 and M = 
1048576.   The Graph500 generator uses a recursive matrix 
algorithm [Chakrabarti 2004] to generate a set of starting 
vertices and ending vertices corresponding to edges in a graph.  
This graph can then be represented as a large NxN sparse 
matrix A, where A(i,j) = 1 indicates an edge from vertex i to 
vertex j.  Figure 3 shows such a matrix for a SCALE=17 graph.   
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A SCALE=17 Graph500 graph is used as a building block for 
the performance measurements.  Three additional parameters 
determine the overall table that will be ingested. Nserver is the 
number of servers used by the Accumulo database and is set to 
1, 2, 4, 8, 16, 32, 64, 128, or 216.  Ningest is the number of ingest 
processes per server and is set to 1, 2, 3, 4, 5, 6, or 7.  Ntablet is 
the number of tablets per ingest process and is set to a value of 
32.  Using these parameters, the overall table is constructed by 
stacking Nserver Ningest Ntablet base graphs to create a single large 
Nrow x N table, where 

Nrow = Nserver Ningest Ntablet N 

For the above values, this results in a tables ranging from 4M x 
131K with 33M entries to 5.4B x 131K with 43B entries.  This 
approach allows the table to grow with the size of the system 
and number of ingest processes.  In parallel computing, this is 
referred to as scaled problem (i.e., the problem size grows with 
computing resources).  If the system performance scales 
linearly, then the ingest time will be constant for any value of  
Nserver and Ningest. 

B. Domain decomposition 
Achieving high performance on any parallel computing 

problem requires that the data and operations are evenly split 
amongst the resources.  Scaling the table with the number of 
computing resources simplifies the mapping of specific rows to 
specific servers, ingest processes, and tablets.  Each ingest 
process generates a base SCALE=17 Graph500 table, converts 
the triple values to strings, and constructs a D4M associative 
array out of these triples. Next the ingest process computes 
where its Ntablet starting rows should be for this table and 
assigns new row values to the associative array.  Finally, the 
associative array is inserted into the Accumulo table.  This 
graph construction process results in a perfectly balanced table 
that is ideal for determining the upper limit on Accumulo ingest 
performance for graph data. 

C. Parallel program 
Implementing the above parallel program requires launching 

a precise number of ingest processes on each Accumulo server.  
In addition, each ingest process must know how many total 
processes are running (NP = Nserver Ningest) and the numerical 
rank (PID) of its process.  These requirements are exactly those 
of the SPMD programming model.  pMatlab conforms to this 
model.  Writing the program using pMatlab makes it easy to 
implement the above scalable data ingest program.  The entire 
D4M+pMatlab parallel benchmark program consists of four 
files with 135 total lines of code.  

IV. BENCHMARK IMPLEMENTATION 
The implementation of the benchmark required additional 

performance optimizations to achieve the ultimate performance 
goal of 100,000,000 database inserts per second.  These 
optimizations fell into two categories: Accumulo optimizations 
and D4M/pMatlab optimizations.  Collecting these 
optimizations together produced a recipe for running the 
benchmark. 

A. Accumulo optimization 
The Accumulo software used in these performance 

measurements was Accumulo 1.5, Hadoop 1.1.2, and 
Zookeeper 3.4.5.  In some cases, the optimizations were done 
to overcome issues that may be fixed in later versions of the 
software. 

By default, Hadoop will replicate all data in its file systems 
three times which provides a level of redundancy that allows 
any particular server to fail.  In the MIT SuperCloud, the 
dominant use case is single node Accumulo instances for 
developers.  These instances are unable to utilize this 
redundancy.  In addition, each server uses RAID5 storage that 
protects from a single disk failure with a lower storage penalty 
(to store parity information).  Throughout these performance 
measurements, Hadoop was run with no replication to 
maximize the ingest performance. 

At the recommendation of the Accumulo developers, 
Zookeeper was run with 3 standard instances and 10 follower 
instances. 

Another fault tolerance feature of Accumulo is its write-
ahead log that writes all operations to a log prior to performing 
an insert.  The log allows Accumulo to redo an insert if it 

 
Figure 3. Sparse adjacency matrix representation of SCALE=17 
Graph500 with ~10% of the edges displayed.   The vertices are 
randomized, so the underlying power-law structure is not visible.  
The diagonal line shows self-edges that are kept in some 
applications and filtered out in other applications. 

 
Figure 4. Vertex degree distribution of the graph shown in Figure 3 
showing is approximate power-law structure.  In this graph there are 
18884 vertices with one edge (i.e., a vertex degree of 1) and one 
vertex with 447 edges.  The approximate power law slope of the 
distribution is: count(vertex degree) ∝ (vertex degree)-0.62. 
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aborts prior to writing the insert from memory to disk.  The 
MIT SuperCloud allows the Accumulo database to be 
checkpointed and thus the need for the write-ahead log can be 
minimized.  Accumulo was run with the write-ahead log turned 
off throughout these performance measurements which 
increased performance by ~30%. 

Accumulo will automatically split and load balance tables 
as they grow in size.  Pre-splitting spreads the table across all 
the servers at creation.  Pre-splitting is required to achieve good 
ingest performance with an empty table (otherwise it will only 
exist on one server).  Pre-splitting was used throughout these 
performance measurements.  One issue that was encountered is 
that after creating the pre-splits, they all started out on one 
server.  Accumulo load balanced the splits across its servers at 
rate of ~50 splits/second, which is more than adequate for 
normal operation, but can take ~20 minutes for 50,000 pre-
splits.  

The process by which Accumulo takes entries from 
memory and initially writes them to disk is called minor 
compaction.  By default, Accumulo will limit the maximum 
number of simultaneous minor compactions on a server to 4.  
For these performance benchmarks, this value was set to 5, 
which provided slightly better results. 

B. D4M/pMatlab optimization 
To insure that network bandwidth was not limiting 

Accumulo ingest performance, the program was run so that 
each ingest process was inserting data into tablets that were 
local to the Accumulo server it was running on.  This was 
accomplished by querying Accumulo for the server locations of 
each split and saving these locations to disk.  Each ingest 
process then read in this file and discovered the tablets that 
were local to it.  Furthermore, if multiple ingest processes were 
on a server, they used their PID and their hostname to evenly 
divide up the splits on the same server. 

D4M can insert an entire associative array into a table with 
a simple “put” command.  Inside the D4M put command, the 
associative array is divided into blocks that are individually 
inserted using the Accumulo batch writer API.  The block size 
was chosen to be 500 kilobytes, which typically provides 
optimal ingest performance. 

C. Benchmarking recipe 
The steps for running each benchmark were as follows and 

involves a setup phase and an execution phase.  

Setup Phase 

(1) Start Accumulo on Nserver servers. 

(2) Set max compactions to five via  
tserver.compaction.minor.concurrent.max=5. 

(3) Create the table. 

(4) Disable write ahead log via  table.walog.enabled=false. 

(5) Create all the table splits and wait for them to load balance 
across all the servers. 

(6) Retrieve all the splits and their corresponding servers and 
write to a file in the central filesystem. 

(7) Launch Ningest processes on each Accumulo server using 
pMatlab. 

Execution Phase (Each ingest process executes the following.) 

(1) Read in split file from the central filesystem. 

(2) Use PID, NP and hostnmae to find splits that are local to 
server and divide these splits evenly among all ingest 
processes. 

(3) Generate SCALE=17 Graph500 graph and inserts into a 
D4M associative array. 

(4) Use each split point value to offset the rows of the 
associative array. 

(5) Insert the associative array into the Accumulo table. 

V. PEFORMANCE RESULTS 
The benchmark allows high performance ingest with 

minimal ramp up time (see Figure 5). After the setup phase, a 
typical run time for the program was 300 seconds.  The 
benchmark program was run over a range of Accumulo 
database instantiations across the following number of servers: 
1, 2, 4, 8, 16, 32, 64, 128, 216; and different numbers of ingest 
processes per server: 1, 2, 3, 4, 5, 6, 7.   Figure 6 shows the 
ingest performance vs. ingest processes for all the different 
Accumulo configurations.  Linear performance was achieved 

 
Figure 5. Accmulo ingest performance vs time as recorded by the 
Accumulo web monitor page.  The benchmark runs for ~300 seconds.  
The rise and fall in the curve is mostly due to the Accumulo 
averaging window. 

 
Figure 6. Ingest performance vs. number of ingest processors for 
different Accumulo databases with different numbers of servers (see 
legend) demonstrating linear performance scaling. 
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across all the dimensions culminating in a peak performance of 
115,000,000 entries/second on a 216 node Accumulo database 
with 1,296 ingest processes.  On average, 100,000 
entries/second was achieved per ingest process across the range 
of measurements.  Likewise, a maximum performance of 
500,000 entries/second per server node was also achieved.  For 
comparison, Figure 7 shows the maximum ingest rate as 
function of the total number of nodes used for Accumulo, 
Cassandra, and Oracle.  Different benchmarks and hardware 
platforms were used for these results, so specific comparisons 
must be made with care.  Overall, it appears that Accumulo 
provides the highest ingest performance of all of these 
technologies. 

VI. SUMMARY 
The Apache Accumulo database is an open source relaxed 

consistency database that is widely used for government 
applications.  Accumulo is designed to deliver high 
performance on unstructured data such as graphs of network 
data.  This paper measured the performance of Accumulo using 
data from the Graph500 benchmark. D4M and pMatlab 
software were used to implement the benchmark on a 216 node 
cluster running the MIT SuperCloud software stack.  A peak 
performance of over 115,000,000 database inserts per second 
was achieved, which is 100x larger than the highest previously 
published value for any other database.  The performance 
scales linearly with number of ingest clients, number of 
database servers, and data size.  This performance was 
achieved by adapting several supercomputing techniques to this 
application: distributed arrays, domain decomposition, adaptive 
load balancing, and single-program-multiple-data 
programming. 
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Figure 7. Maximum ingest performance of various database technologies on 
different benchmarks: (MIT 2014) Graph500 data [this paper], (MIT 2012) 
computer network data [Byun 2012], (BAH 2013) Accumulo continuous test 
suite [Sen 2013], (Google 2014) random data [Filho 2014], and (Oracle 2013) 
TPC-C benchmark [TPC 2013]. 


