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Abstract

Modeling molecular docking is critical to both understanding life processes and designing new 

drugs. In previous work we created the first published GPU-accelerated docking code (PIPER) 

which achieved a roughly 5× speed-up over a contemporaneous 4 core CPU. Advances in GPU 

architecture and in the CPU code, however, have since reduced this relalative performance by a 

factor of 10. In this paper we describe the upgrade of GPU PIPER. This required an entire rewrite, 

including algorithm changes and moving most remaining non-accelerated CPU code onto the 

GPU. The result is a 7× improvement in GPU performance and a 3.3× speedup over the CPU-only 

code. We find that this difference in time is almost entirely due to the difference in run times of 

the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively. The GPU code has 

been integrated into the ClusPro docking server which has over 4000 active users.

1. Introduction

It has now been almost ten years since the beginning of widespread use of GPGPU, 

facilitated through the generalization of GPU architecture and its support with high level 

programming languages such as CUDA. In that time GPUs have been applied to virtually 

every computationally intensive application. There have also been major advances in CPU 

and GPU architecture. At the same time, application “owners” have continued modifying 

their algorithms and otherwise updating their codes to both better serve their user base and 

to improve performance. In this paper we describe the upgrade of the PIPER molecular 

docking program from its original GPU implementation in 2009 (PIPER09, the first of its 

kind [16]) to its latest release in 2014 (PIPER14).

As we described in the initial report [16], a fundamental operation in biochemistry is the 

interaction of molecules through non-covalent bonding or docking (see Figure 1 generated 

using Pymol [12]). Modeling molecular docking is critical both to evaluating the 

effectiveness of pharmaceuticals, and to developing an understanding of life itself. Docking 

applications are computationally demanding. In drug design, millions of candidate 

molecules may need to be evaluated for each molecule of medical importance. As each 

evaluation can take many CPU-hours, huge processing capability must be applied. Docking 

codes have been accelerated with FPGAs [15, 18, 20, 21], Cell [14], and GPUs [13, 17, 19].
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The basic computational task for docking is to find the relative offset and rotation (pose) 

between a pair of molecules that gives the strongest interaction (see Figure 2). Hierarchical 

methods are often used: an initial phase where candidate poses are determined (docking), 

and an evaluation phase where the quality of the highest scoring candidates is rigorously 

evaluated. PIPER minimizes the number of candidates needing detailed scoring with only 

modest added complexity [4].

Many docking applications including PIPER assume, at least initially, a rigid structure (see 

Figure 2). This still allows modeling of various force laws that govern the interaction 

between molecules, including geometric, electrostatic, atomic contact potential, and others. 

A standard technique maps the molecules' characteristics to three dimensional grids. The 

most energetically-favorable relative position is determined by summing the voxel-voxel 

interaction values for each modeled force at all positions to generate a score, and then 

repeating this for all possible translations and rotations. The computational cost is as 

follows: typical grid sizes are N = 1283 and the total number of angles is 10, 000; this yields 

1010 relative positions to be evaluated for a single molecule pair. Complexity is reduced by 

having the outer loop consist of the rotations while the translations are handled with an FFT-

based 3D correlation.

What we describe here is the upgrade of GPU PIPER09 in the face of new GPU processor 

and system architecture, changing application usage, and modifications to the “trunk” CPU-

only code. We begin by finding that a naive mapping from 2009 to 2014 era GPUs actually 

leads to a slowdown in performance. To achieve expected performance it is necessary to 

rewrite the entire code except that which maps to vendor library functions. This includes 

modifying a GPU algorithm for one task and creating an entirely new one for another 

(necessary as that code is shifted from CPU to GPU). The end-product is a code where 

nearly all latency is hidden by cuFFT calls. The result is that GPU PIPER14 is 3.3× times 

faster than the CPU-only code with both running on contemporaneous recent technology. 

We find that this difference in time is almost entirely due to the difference in run times of 

the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively.

On the application side, the significance is as follows. Since the original implementation, 

PIPER has emerged as a high profile docking code, having consistently been the best 

performer in the CAPRI (Critical Assessment of Predicted Interactions) worldwide protein 

docking competition [8]. PIPER14 has been integrated into the ClusPro docking server [5], 

which has over 4000 active users. The upgrade described here has resulted in substantially 

improved turnaround times and overall throughput. On the engineering side, perhaps the 

most interesting result is that an application that maps well to both CPU and GPU, and that 

has highly tuned versions for each processor, should have a speedup substantially less than 

the ratio of peak capabilities (3.3× versus 23×).

2. PIPER CPU and GPU Baseline

2.1 PIPER Overview

PIPER's primary advance is the use of desolvation energies in the evaluation function, in 

addition to the previously used shape and electrostatics terms. The desolvation terms are 
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generated as pairwise potential terms. The PIPER algorithm proposed that by using 

eigenvalue-eigenvector decomposition, the number of terms needed could be limited to the 

P largest eigenvalues, where 2 ≤ P ≤ 4, limiting the added number of Fourier transforms to 2 

to 4 forward transforms and one reverse. When GPU PIPER09 was designed, it was under 

the assumption that up to 18 of these desolvation terms may still be used [16]. Since then, 

however, it has been found that in practice only 4 terms are typically ever used; this is a key 

to one of the optimizations in the current work.

In PIPER, there are typically 4 non-pairwise terms used for evaluation pertaining to shape 

and electrostatic behaviors, along with the pairwise desolvation terms [4]. For each rotation, 

the exhaustive search of 6D space is done using Fourier transforms for each of the pairwise 

and non-pairwise terms. The PIPER energy-like scoring function is computed to evaluate the 

goodness of fit between the molecules. This goodness of fit is expressed as the sum of P 

correlation functions for all possible translations α, β, γ of the rotated ligand relative to the 

receptor,

(1)

where Rp(i, j, k) and Lp(i + α, j + β, k + γ) are the components of the correlation function 

defined on the receptor and the ligand grids, respectively.

Thus for each rotation the ligand energy function is evaluated on the grid, and repeated FFT 

correlations are performed for each of the different energy functions. Filtering is performed 

by scoring each pose within a rotation and subsequently selecting the top scoring poses. A 

top scoring pose is a pose which minimizes total energy based on both the pairwise and non-

pairwise energy terms. The total energy function is expressed as a weighted sum:

(2)

The weights are provided at runtime; multiple sets of coefficients can be provided so that 

PIPER returns the top scores for each set of coefficients. PIPER is capable of returning the 

top N scores for each pose and coefficient set.

2.2 PIPER Program Flow

PIPER has initial stages that read in molecule information, compute the FFT size, create the 

receptor grids, compute the receptor FFT for all energy terms, and create the ligand grids. 

After this setup, PIPER performs the various rotations, and within each rotation, the 

following steps occur.

1. Rotation of the ligand grid

2. Assignment of the 3D energy grids for all terms

3. FFT correlation of the receptor and the ligand grids

4. Accumulation of the desolvation terms to obtain pairwise potential score
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5. Weighted score computation of different energy functions

6. Scoring and filtering for the current rotation

The work distribution for a single rotation in the CPU based version of PIPER, as is seen in 

the left panel of Figure 3, is dominated by correlation time.

2.3 GPU PIPER09

GPU PIPER09 follows an identical program flow as the CPU version. In Table 1 we show 

the timing results of the original CPU and GPU implementations of PIPER. One the CPU 

side we see that the correlations, mostly 3D FFTs, dominate. The primary optimization was 

therefore the migration of these computations to the GPU via the CUFFT library [10]. 

Following Amdahl's Law, the balance of the computation went from 11% of the cost to 

42%. We therefore moved the accumulation, filter, and scoring steps to the GPU as well. 

This required substantial restructuring of that part of the code, which is described in [16]. 

We found that grid assignment was not worth moving to the GPU. There were several 

reasons: the marginal benefit was insufficient, the code is highly complex, and there was 

insufficient device memory.

Figure 4 displays the program flow for the GPU version of PIPER with a few modifications 

relevant to the current work. All light green boxes are program segments which remain on 

the CPU, all dark green boxes are code segments that were moved to the GPU, and the light 

blue box is a code segment that was on the CPU in GPU PIPER09, but which is on the GPU 

in PIPER14.

2.4 PIPER14 Baseline

In the last five years the CPU version of PIPER has advanced with many small algorithmic 

changes. Particularly significant for performance is moving the FFT computation from 

FFTW [1] to the Intel Math Kernel Library (MKL) [3]. We evaluated the latest PIPER (CPU 

PIPER14) and GPU PIPER09, both on contemporary computing platforms; the new work 

distributions are shown in Figure 3. Detailed results are presented in Section 4. We note:

• The performance of GPU PIPER09, even running on a new GPU, is actually slower 

than CPU PIPER14 (see below).

• Most significant is the difference in proportion of time spend on the correlation 

step. On the GPU, the proportion is actually even smaller than shown: the 

correlation time is completely hidden by the data transfer time.

• Algorithmic and usage changes in PIPER have changed the proportion of the time 

spent on filtering. It has been reduced in the CPU version but increased in the GPU 

version.

These observations lead to the obvious conclusion that a successful GPU PIPER14 must 

address all non-correlation steps: filtering, grid assignment, and data transfer.
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3. Optimizations

3.1 Filtering and Scoring Stage Optimizations

GPU PIPER09 uses a scoring and filtering kernel that finds the top scores for a rotation for 

all provided scoring coefficients at the same time. This method works the best when the 

maximum number of coefficient sets are provided at the same time, typically up to 8. In this 

case, the top score for each set of coefficients is calculated by a single SM. With 8 

coefficient sets, 8 SMs are simultaneously occupied. Although this is only a fraction of the 

30 SMs available on the Tesla c1060, the performance is substantially better that running 

this task on the CPU. As seen in Table 1, spending substantial effort improving this task was 

not warranted at the time.

Figure 3 shows, however, this is no longer the case. Besides changes in hardware and 

software libraries, PIPER use has also changed. Most docking runs now use only a single 

coefficient set, meaning only a single SM is used. Thus the goal of optimizing the GPU 

filtering kernel has changed from attempting to find the top score for all coefficient sets 

simultaneously, to quickly finding the top score for a single coefficient set and then 

repeating the process.

Filtering and scoring on the GPU now uses two kernels which are then repeated for every set 

of coefficients, as well as being repeated for the number of top scores desired by the user for 

each coefficient set. The two kernels partition the work into two stages so that the shared 

memory on the GPU is used for fast memory access, and so that work is distributed across 

all SMs.

In the first kernel the output data, which is the size of the molecular grid volume, or 

equivalently the FFT size, is partitioned among all available SMs. This is done by launching 

the kernel with a sufficiently large number of blocks such that every SM has a suitable 

quantity of work. For reasons that will be explained later, the number of blocks must be a 

power of two. We found that a suitable number of blocks for the K20c was 32. For each 

block, each thread in the block accesses a subset of the output molecular grid data, calculates 

the score using the energy equations described in Section 2.1, finds the best score within the 

subset, and finally places this result in shared memory for the block. The subset accessed by 

the thread is not contiguous, but rather strided by the total number of threads launched on 

the GPU; this is done to properly coalesce the GPU memory transfers [9]. Once all threads 

in the block have found their partial best scores and written them to memory, they are 

synchronized. Then a single thread from each block finds the top score from the partial 

scores in shared memory, and writes this block partial score to global memory, letting the 

kernel finish. This first kernel uses shared memory optimally and so minimizes the time 

needed to find the best score out of the scores made available to this block. Figure 5 is a 

visualization of this work distribution across the SMs on a GPU.

The second kernel uses only a single block. The number of threads in this block is equal to 

the number of blocks used in stage 1. The reason for the power of two requirement from the 

prior stage lies in that, in this stage, a classic log step reduction of the partial scores in 

memory is used. At each step, the number of active threads is equal to half the number of 
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partial scores remaining. Each thread compares two scores and writes the best to the lower 

half of memory. After every comparison, a synchronization is performed to ensure all 

threads are always operating on the same step and thus operating on the consistently updated 

memory. Eventually this results in a single top score. This best score is then marked in a 

separate array in global memory, indicating that it is a top score. The necessity for this arises 

in that PIPER may require multiple top scores per coefficient set, so previously chosen top 

scores must be marked so as to not be chosen again in later calls to the function. Along with 

marking the top score, positions in the molecular grid around this best score are also marked 

as being “top scores.” This ensures that when computing multiple top scores, the results are 

not all trapped in the same local minima for the molecular grid, a key feature in filtering and 

scoring for PIPER [4]. Figure 6 displays this second stage process.

While this filtering stage no longer optimizes for all coefficient sets, we find that the GPU 

can be kept fully utilized regardless of how many coefficient sets are provided at runtime. 

This new version performs dramatically better than the original filtering and scoring kernel, 

and will be discussed in more detail in the following section.

3.2 GPU Idle Time Optimizations

The second major optimization is the elimination of the idle GPU time when the rotation and 

grid assignment steps are performed on the CPU. In the original version, CUDA streams 

were used in an attempt to overlap GPU work with grid assignment [16]. However, due to 

the result from filtering and scoring immediately being assigned to memory and moved 

around on the CPU, the GPU kernels were forced to execute filtering and synchronize before 

the CPU could prepare for the next rotation.

It follows that the grid data, since it was assigned on the CPU, must be copied to the GPU on 

each rotation. For the C2075 card, this data transfer is overlapped with the CUFFT calls for 

each grid and the data transfer latency are hidden. On the K20c, however, the data transfer is 

longer than the CUFFT execution time. This is due to a shortened FFT and modulation 

execution time as well as reduced bandwidth for the desired transfer size. In either case, the 

GPU core computations is now memory bound rather than compute bound. This is visible in 

the sample Nvidia Visual Profiler output shown in Figure 7: the top bar is the memory 

latency while the smaller boxes below are the kernels for the FFT and modulation stages of 

correlation.

To solve both of these issues, we move all of the grid assignment arrays permanently to the 

GPU and perform grid assignment and ligand rotation directly on the GPU. There is then no 

need for transfers between the host system memory and GPU memory. For this to be 

feasible, the GPU must contain enough global memory for all of the input and output data. 

As discussed earlier, the number of energy grids used is P + 4, where P is the number of 

pairwise potential terms. In the original work it was assumed that up to 18 of these terms 

were used [16]. Since then, however, it has become known that for typical ClusPro Server 

operation, accurate results are obtained using only 4 pairwise terms. Thus it is only required 

that enough memory for 8 grid arrays is available across the entire docking analysis for the 

vast majority of docking cases.
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With all ligand grids of suitable size fitting in GPU memory, the ligand grids are allocated 

on the GPU before any rotation steps. The functions for grid assignment for all energy 

terms, as well as the data for rotation and angle data, were also moved to the GPU.

For grid assignment, the functions are mapped as follows. Each grid assignment function 

iterates over all of the atoms in the protein and assigns values to the appropriate grid 

location based on a predetermined position and on state information for every type of energy 

and desolvation term. Thus, on the GPU, each atom is assigned to a single thread, and 

multiple blocks of threads are launched. However multiple atoms may affect the same 

element in the grid, and a race condition can occur if multiple threads attempt to update the 

same memory location. In order to alleviate this issue, we took advantage of a new feature 

introduced in the Fermi architecture: global memory floating point atomic operations [11]. 

Typically when using atomic operations on the GPU, it is with the understanding that 

serializing the operations will result in significant performance degradation. In the case of 

grid assignment, however, the number of threads which may interact with each other for 

each memory location is small.

4. Results

4.1 Target Hardware

For all PIPER GPU14 experiments, code was compiled using CUDA version 5.5 and g++ 

4.4.7 and run on server nodes with Intel Xeon E5530 processors; each contained either a 

single Nvidia C2075 Fermi class card or a single Nvida K20c Kepler class card. For CPU 

runs, PIPER was compiled using gcc 4.4.7, OpenMPI version 1.6.4 and the Intel MKL FFT 

library version 11.1. CPU-only tests were run on server nodes with Intel Xeon E5-2680 

Sandy Bridge CPUs. Details of the processors are in Table 2.

4.2 Test Cases, Validation

Protein complexes used during benchmarking were taken from the ZLab Protein Docking 

Benchmark [2]. Raw performance is related closely to complex size, but proportions and 

speedups change little. PIPER was configured to run with a single coefficient set and a 

single top score per run in order to isolate the improvements per program segment. PIPER 

molecular docking runs iterate over 70,000 rotations, and the results are an average over all 

of the rotations. We fully validated the results using methods standard in the molecular 

docking community, see [6] for details.

4.3 Optimization Results

Raw performance is shown in Table 3. The first thing to note is the change in performance 

of CPU PIPER between 2014 and 2009 (as shown in Table 1): the recent version is 9× 

faster. This is inspite of operating on larger complexes. Besides the difference in CPU, there 

are several reasons for this, among them: the new MKL FFT has nearly 3× the efficiency of 

the 2009 FFTW; also, scoring has been simplified. For the GPU, the Kepler version of 

PIPER09 is actually slower than that on the Tesla. This is largely due to three factors: the 

complexes are larger, we are running grid assignment on the CPU on only a single core, and 

the usage change makes the old filtering algorithm particularly inefficient. We also note that 
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the Kepler version of PIPER09 is substantially slower than the updated CPU version. We 

believe this is an excellent example of how some optimizations are not scalable through 

generations of technology.

Figure 8 shows graphically the results from two stages of optimization: filter only and all. 

Prior to optimization, GPU filtering took a large bulk of the computation. Once the new 

filtering kernels were introduced, their latency improved from 108 ms to only 1 ms, a 

multiple order of magnitude improvement. After applying the second optimization, leftover 

CPU code that is not hidden by the GPU-CPU overlap requires only 0.8 ms. Also, grid 

assignment and rotation, when done on the GPU, only require 1.2 ms. This is a 21× 

impovement over the original 42 ms required for grid assignment and rotation in the 

unoptimized version. An important observation is that when all the computations have been 

moved to the GPU, there is no longer a need for data transfer to overlap with CUFFT. Prior 

to the idle time optimizations, the GPU correlation time is actually the max of the memory 

transfer latency and the correlation time.

Figure 9 shows graphically the results in Table 3. It highlights the need to move the entire 

computation onto the GPU for the GPU version of PIPER14 to yield significant 

improvement.

Figure 10 shows the profile of Kepler GPU PIPER14. We compare this with Figure 3 and 

note that the new proportions more closely resemble those of CPU rather than GPU 

PIPER09.

In particular, after all of the optimizations have been applied, the time complexity of the 

PIPER14 code for both CPU and GPU versions has been reduced to that of computing 3D 

FFTs. Since these are available through highly optimized vendor specific library functions, 

future performance improvements appear to be tied to improvements in the Nvidia CUFFT 

and Intel MKL libraries, respectively. Figure 11 illustrates this observation by comparing 

normalized CUFFT, MKL FFT, and PIPER14 run times on the same hardware. For both of 

the FFT sizes shown, the improvements demonstrated by the GPUs are 2× and 3.3× 

respectively, the same as for GPU PIPER14.

5. Conclusion

In this paper we describe steps taken to maintain a high profile application through 

generations of processor and application changes. The starting point was finding that in five 

years “entropy” had reduced the original 5× speedup to a 2× slowdown. The updated version 

required changes in algorithm, and most significantly, that the entire computation be moved 

onto the GPU. Since this residual CPU code was complex (the reason we had not ported it 

originally) this required significantly more effort to implement than the original GPU code. 

The end result is a code that runs, chip versus chip, 3.3× faster on a GPU-accelerated node 

than on a CPU-only node. Since this is a throughput application, these results scale easily. 

GPU PIPER14 has been integrated into the ClusPro server where its performance makes it 

the version of choice for the user base.
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We note that both CPU and GPU versions of PIPER14 are highly optimized with nearly all 

the visible (non-hidden) run time due to 3D FFTs. Since these are computed with highly 

tuned vendor libraries for both CPU and GPU we have reached the limit on performance 

improvement given the current application structure.

An interesting observation is the differences in computational efficiency (fraction achieved 

of peak single precision floating point capacity) of the 3D FFT between generations of 

CPUs and GPUs and between CPUs and GPUs of the current generation (see Table 4). 

These numbers were generated using the same testbeds as described earlier. We note that the 

range of differences in utilization, 2× to 7×, roughly match results published elsewhere [7].

We are currently updating energy minimization, another modeling tool for predicting 

molecular interaction that is also part of the ClusPro server.

References

1. FFTW. [accessed 1/18/2014] FFT Benchmark Results. 2014. http://www.fftw.org/benchfft

2. Hwang H, Vreven T, Janin J, Weng Z. Protein-protein docking benchmark version 4.0. Proteins. 
Nov; 2010 78(15):3111–3114. [PubMed: 20806234] 

3. Intel. [Accessed: 2014-4-4] Intel Math Kernel Library. http://software.intel.com/en-us/intel-mkl

4. Kozakov D, Brenke R, Comeau S, Vajda S. PIPER: an FFT-based protein docking program with 
pairwise potentials. Proteins: Structure, Function, and Genetics. 2006; 65:392–406.

5. Kozakov D, Hall D, Beglov D, Brenke R, Comeau S, Shen Y, Li K, Zheng J, Vakili P, Paschalidis I, 
Vajda S. Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, 
SDU, and stability analysis in CAPRI rounds 13-19. Proteins: Structure, Function, and Genetics. 
2010

6. Landaverde, R. Master's thesis. Department of Electrical and Computer Engineering; Boston 
University: 2014. GPU Optimizations for a Production Molecular Docking Code. 

7. Lee VW, et al. Dubunking the 100× GPU vs. CPU myth: An evaluation of throughput computing on 
CPU and GPU. Proc Int Symp on Computer Architecture. 2010

8. Lensink M, Wodak S. Docking, scoring, and affinity prediction in CAPRI. Proteins: Structure, 
Function, and Bioinformatics. 2013; 81(12):2082–2095.

9. Nvidia. [Accessed: 2014-3-31] Cuda c programming guide. docs.nvidia.com/cuda/cuda-c-
programming-guide/

10. Nvidia. [Accessed: 2014-3-31] Cufft user guide. http://docs.nvidia.com/cuda/cufft/index.html

11. Nvidia. [Accessed: 2014-3-31] Nvidia fermi compute architecture whitepaper. 2009. 
www.nvidia.com/content/PDF/fermi$\_$white$\_$papers/

12. Pymol. 2008. http://pymol.sourceforge.net

13. Ritchie D, V V. Ultra-fast FFT protein docking on graphics processors. Bioinformatics. 2010; 
26(19):2398–2405. [PubMed: 20685958] 

14. Servat H, Gonzalez-Alvarez C, Aguilar X, Cabrera-Benitez D, Jimenez-Gonzalez D. Drug design 
issues on the Cell BE. Proc 3rd Int Conf on High Performance and Embedded Architectures and 
Compilers. 2008:176–190.

15. Sukhwani B, Herbordt M. Acceleration of a Production Rigid Molecule Docking Code. Proc IEEE 
Conf on Field Programmable Logic and Applications. 2008:341–346.

16. Sukhwani B, Herbordt M. GPU acceleration of a production molecular docking code. Proc General 
Purpose Computation Using GPUs. 2009

17. Sukhwani B, Herbordt M. Fast Binding Site Mapping using GPUs and CUDA. Proc High 
Performance Computational Biology. 2010

18. Sukhwani B, Herbordt M. FPGA Acceleration of Rigid Molecule Docking Codes. IET Computers 
and Digital Techniques. 2010; 4(3):184–195. [PubMed: 21857870] 

Landaverde and Herbordt Page 9

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fftw.org/benchfft
http://software.intel.com/en-us/intel-mkl
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cufft/index.html
http://www.nvidia.com/content/PDF/fermi$\_$white$\_$papers/
http://pymol.sourceforge.net


19. Sukhwani, B.; Herbordt, M. Increasing Parallelism and Reducing Thread Contentions in Mapping 
Localized N-body Simulations to GPUs. In: Kindratenko, V., editor. Numerical Computations 
with GPUs. Springer Verlag; 2014. 

20. VanCourt T, Gu Y, Herbordt M. FPGA acceleration of rigid molecule interactions (preliminary 
version). Proc IEEE Symp on Field Programmable Custom Computing Machines. 2004

21. VanCourt T, Herbordt M. Rigid molecule docking: FPGA reconfiguration for alternative force 
laws. Journal on Applied Signal Processing v2006. 2006:1–10.

Landaverde and Herbordt Page 10

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Visualization of two proteins docking
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Figure 2. Examples of protein poses
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Figure 3. CPU PIPER14 and GPU PIPER09 work distributions during a single rotation using 
contemporary computing platforms: an 8 core Intel Sandy Bridge CPU and an Nvidia K20c 
GPU
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Figure 4. The flow of the PIPER program. Light green boxes are on the CPU, dark green boxes 
are on the GPU, and light blue boxes are being moved to the GPU in the current work
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Figure 5. Filtering Stage 1 kernel. Each SM may write multiple partial scores to global memory 
based on how many blocks were assigned to that SM
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Figure 6. Filtering Stage 2 kernel. A single SM performs the work of reducing the partial scores 
in global memory
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Figure 7. NVProf output memory latency relative to correlation compute time on the K20c GPU. 
A longer bar indicates a longer execution time

Landaverde and Herbordt Page 17

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. GPU runtime improvement with bar segments separating the different computations. 
Prior to the CPU idle time optimizations, the correlation time was actually hidden by the 
memory transfer time, as it was larger
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Figure 9. Relative improvement for various configurations. The red bar is CPU PIPER, blue 
bars on Kepler HW, and the green bar is Fermi HW
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Figure 10. Portion of rotation step spent on various parts of the computation after optimizations
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Figure 11. Comparison of the runtime for 3D FFTs with varying dimensions to that of PIPER 
docking for Intel, Fermi, and Kepler configurations
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Table 4
Fraction of peak single precision FLOPS achieved for 3D FFTs. Technology details same 
as in Table 2

Processor Model Year Library Utilization

CPU Nehalem 2009 FFTW 5.1%

GPU Tesla 2009 cuFFT 2.6%

CPU Sandy Bridge 2014 MKL 53.9%

GPU Fermi 2014 cuFFT 17.0%

GPU Kepler 2014 cuFFT 7.6%

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.


