
Quantifying the Effect of Matrix Structure on
Multithreaded Performance of the SpMV Kernel

Daniel Kimball, Elizabeth Michel, Paul Keltcher∗, and Michael M. Wolf†
MIT Lincoln Laboratory
Lexington, MA 02420

{daniel.kimball, elizabeth.michel}@ll.mit.edu, paul@keltcher.com, mmwolf@sandia.gov

Abstract—Sparse matrix-vector multiplication (SpMV) is the
core operation in many common network and graph analytics,
but poor performance of the SpMV kernel handicaps these
applications. This work quantifies the effect of matrix structure
on SpMV performance, using Intel’s VTune tool for the Sandy
Bridge architecture. Two types of sparse matrices are considered:
finite difference (FD) matrices, which are structured, and R-MAT
matrices, which are unstructured. Analysis of cache behavior and
prefetcher activity reveals that the SpMV kernel performs far
worse with R-MAT matrices than with FD matrices, due to the
difference in matrix structure. To address the problems caused
by unstructured matrices, novel architecture improvements are
proposed.

I. INTRODUCTION

Unstructured, sparse matrices arise in many common ap-
plications such as network analysis, linear dynamical systems,
Markov chains, and eigendecomposition. Performance of these
applications depends on the efficiency of sparse linear algebra
operations on matrices. Sparse matrix-vector multiplication
(SpMV) is the foundation for many of these operations. For
example, SpMV is an essential kernel in signal processing
for graph applications, where the computation of principal
components (obtained through the use of eigensolvers) is a
key step in finding anomalies in network data [1]. In this
and many other applications, SpMV dominates the runtime,
so performance is limited by SpMV efficiency.

In previous work, it was shown that the SpMV kernel per-
forms one to three orders of magnitude worse in GOPS/Watt
than its dense counterpart [2]. Dense matrix-vector multipli-
cation is highly optimized and makes good use of modern
architectural features [3]. Sparse matrix-vector multiplication
(SpMV) with structured, sparse matrices benefits from many of
the same features. For SpMV on unstructured, sparse matrices,
however, irregularity of data access causes a high amount of
traffic within the memory hierarchy. The architectural features
of processors such as caches and prefetchers do not improve

∗Now with Advanced Micro Devices.
†Now with Sandia National Laboratories.
This work was sponsored by Defense Advanced Research Projects Agency

(DARPA) under Air Force contract FA8721-05-C-0002. The views expressed
are those of the authors and do not reflect the official policy or position of
the Department of Defense or the United States Government. This document
is Approved for Public Release. Distribution Unlimited.

the performance of the SpMV kernel significantly for these
matrices.

This work quantifies the performance of the SpMV kernel
for unstructured sparse matrices, using data on structured
sparse matrices for comparison. In Section II, the structure
of the matrices and the architecture used are detailed, as well
as the relationship between the two. Section III explains how
the data was collected and how it is used to measure the
performance of various components of the architecture, the
caches, and the prefetcher. Results are presented in Section IV.
Finally, Section V discusses the implications of sparse matrix
structure and proposes architectural innovations to improve
SpMV performance.

II. BACKGROUND

A. Matrices

R-MAT matrices are unstructured and model the type of
graphs that arise frequently in network applications [4]. R-
MAT matrices are constructed to approximate realistic network
models using a power law distribution. This construction
skews the distribution of nonzeros in the matrix. To avoid
problems of load balancing across threads, the rows and
columns of the R-MAT matrices are permuted randomly. This
does not change the results of the multiplication and elimi-
nates a confounding element in comparisons to performance
with other matrices. These R-MAT matrices are generated to
represent a network with an average of eight connections per
node, giving an average of eight nonzeros per row.

Finite difference (FD) matrices are also sparse, but have a
more regular structure than R-MAT matrices. The FD matrices
are generated using a two-dimensional, 9-point stencil [5]. The
matrices have three diagonal bands of three nonzero elements
each, giving nine nonzeros per row.

Both types of sparse matrices are stored efficiently in
compressed sparse row (CSR) format [6]. The CSR format
consists of three dense arrays: an array of nonzero values, an
array of column indices for each nonzero, and an array of
indices to the start of each new row in the values array. The
total number of elements in these arrays, for a matrix with n
rows and m nonzeros, is 2m+ n+ 1.

The CSR format stores sparse matrices compactly, which
allows sequential access to the nonzero entries of the matrix.978-1-4799-6233-4/14/$31.00 c©2014 IEEE

ar
X

iv
:1

40
7.

81
68

v1
 [

cs
.D

C
]

 3
0

Ju
l 2

01
4

Matrix accesses, however, are not the only source of mem-
ory requests. To perform matrix-vector multiplication, each
nonzero element (found in some column j) is multiplied by
the jth element of an input vector ~x. For sparse matrices,
the order of accesses to ~x is determined by the location of
the nonzeros in the matrix. The kernel’s ability to access the
needed elements of ~x determines the performance of matrix-
vector multiplication.

B. Intel Sandy Bridge Architecture

The SpMV performance measurements were conducted on
Intel Sandy Bridge, a multi-core, non-uniform memory access
architecture. The Sandy Bridge memory hierarchy has two
levels of on-core cache (L1D and L2), a shared on-chip L3
cache, and shared off-chip DRAM, as shown in Figure 1.
This architecture has a memory prefetcher, which preemptively
loads data into the L2 cache from the L3 cache (or from
DRAM, if the data is not found in L3) to speed up future
access to this data. If the link to DRAM is too congested with
demand requests from the SpMV kernel, the prefetcher will
not turn on [7].

DRAM 32 GB	
 DRAM 32 GB	

L3 Cache 20 MB	

…	

Core 0	

L1D Cache
32 KB	

L2 Cache	

256 KB	

Core 7	

L1D Cache
32 KB	

L2 Cache	

256 KB	

L3 Cache 20 MB	

…	

Core 8	

L1D Cache
32 KB	

L2 Cache	

256 KB	

Core 15	

L1D Cache
32 KB	

L2 Cache	

256 KB	

Fig. 1: Sandy Bridge Architecture.

This architecture is commonly found in laptop, desktop,
workstation and server computers. Sandy Bridge processors
are also used in Amazon’s Elastic Compute Cloud and
Google’s Compute Engine. The Intel Sandy Bridge architec-
ture was selected because of its widespread use, its multi-
core processor, and the availability of tools to access various
hardware counters in the processor for tracking data such as
cache hits and instruction counts.

For this study, performance data was obtained on a Sandy
Bridge system containing two Intel Xeon E5-2690 processors
running at 2.9 GHz, with 32 GB of shared DRAM for each
processor. Each processor has 20MB of on-chip shared L3
cache and contains 8 cores. Each core has 32KB of on-core
L1D cache and 256 KB of on-core L2 cache [8].

C. Cache Utility

The performance of SpMV depends greatly on the archi-
tecture’s ability to utilize cache efficiently. The multiplication
operation uses three data structures that must be stored in

memory: a matrix, an input vector (~x), and a vector for the
solution. When the problem size is small enough that all
three data structures fit in cache, every memory request is
satisfied on-chip (cache hit). When the problem size is large,
the processors must access DRAM to obtain data that has not
yet been pulled into cache. Accesses to DRAM are far more
costly than accesses to cache and hinder performance.

The matrices tested have sizes ranging from 8 × 211 =
16, 384 nonzeros to 9 × 226 = 603, 979, 776 nonzeros.1 The
smallest problems fit entirely in the L2 cache, while the largest
barely fit in DRAM. Table I shows the maximum number of
nonzeros a matrix may have and still fit within each cache
level.

Level Size FD R-MAT

Serial
L2 256KB 18,432 18,078
L3 20MB 1,474,560 1,446,311

Parallel
L2 4MB 294,912 289,262
L3 40MB 2,949,120 2,892,623

TABLE I: Maximum number of nonzeros a matrix can contain, such
that the problem fits in the given cache level. Data shown for serial
execution (1 thread, 1 L2 cache, 1 L3 cache) and parallel execution
(16 threads, 16 L2 caches, 2 L3 caches).

For both FD and R-MAT matrices, the CSR matrix data
is straightforward for the system architecture to load. The
elements of all three arrays of the CSR format are stored
and accessed sequentially, allowing each memory request to
retrieve an entire cache line of useful data. This spatial locality
enables the L2 prefetcher to anticipate data needs correctly
and retrieve useful data from lower memory in advance. The
challenge arises when accessing the elements of ~x.

Caching data from ~x is much easier for matrix-vector
multiplication on structured matrices than on unstructured
matrices. First, consider the ideal case of a dense matrix. In
dense matrix-vector multiplication, elements of ~x are accessed
sequentially (since every element in each row is treated as a
nonzero), so portions of ~x can be fetched into the cache in
advance for efficient access. The pattern of accesses to ~x is
not so simple for SpMV with sparse matrices.

For FD matrices, accesses to elements of ~x have strong
spatial and temporal locality. In a given row, there are three
sets of three adjacent nonzero elements. For each set, the
SpMV kernel requires three adjacent elements of ~x, as shown
in Figure 2 by red letter As. This sequential access pattern
allows the prefetcher to anticipate the needs of the kernel
successfully and load the appropriate elements of ~x into the
L2 cache. Since memory accesses are performed in units of
a cache line, additional elements of ~x are loaded and will be
in cache when needed. Accesses to ~x also exhibit temporal
locality: after an element of ~x is used the first time, it gets
used again during the multiplications of the next two rows
of the matrix, since they have nonzeros in the same column

1The R-MAT matrix sizes range from 211 to 226 rows, times 8 nonzeros
per row. The FD matrices have the same range of rows, times 9 nonzeros per
row.

2

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

0 A A A 0 0 0 0

0 0 1 1 1 0 0 0 · · ·
0 0 0 1 1 B 0 0

0 0 0 0 1 B 1 0

0 0 0 0 0 B 1 1

0 0 0 0 0 0 1 1
...

. . .

×

1

A

A

A

1

B

1

1
...

Finite difference matrix ~x

Fig. 2: Part of an FD matrix is multiplied by an input vector
~x, showing how the pattern of nonzeros in the matrix determines
sequential accesses (red As) and repeated accesses (blue Bs) to
the elements in ~x. FD matrices have three diagonal bands of three
nonzeros each. One of the bands is shown here.

(see Figure 2, blue letter Bs). Even if the kernel were to miss
in cache for the first usage of an element of ~x, it would hit
for the next two uses immediately after. These properties of
FD matrix structure and the resultant accesses to ~x allow the
SpMV kernel to use cache effectively.

For R-MAT matrices, the lack of structure forces the SpMV
kernel to access elements of ~x at random. Without spatial or
temporal locality in accesses to ~x, the prefetcher fails to predict
data needs; therefore, useful data is rarely found in cache.
This forces the SpMV kernel to make many more demand
requests to DRAM, slowing the computation and damaging
performance.

III. METHODOLOGY

A. Intel VTune Amplifier
Performance data is measured precisely with Intel’s VTune

Amplifier XE tool. VTune records activity on various com-
ponents of the processor. This study concentrates on cache-
related metrics. VTune collects hits and misses for each level
of cache, as well as remote versus local DRAM accesses.
It also captures high-level metrics such as the number of
instructions executed and the number of cycles used. The most
powerful functionality of VTune is the ability to collect data on
specific functions, threads, or even line numbers. In this work,
the data is collected exclusively from the SpMV operation. To
ensure the SpMV operation uses enough resources for VTune
to track it accurately, the SpMV kernel is run many times and
the result is averaged over the number of runs. The number
of times SpMV is run per matrix is:

Number of Runs =
233

of non-zeros
This function has the property that the amount of compu-
tational work performed is constant and independent of the
matrix size. This allows for comparison of the counters across
matrix sizes without normalizing. Additionally, the SpMV
program is run without VTune to measure the runtime of the
SpMV kernel, to ensure that gathering the metrics does not
slow the runtime measurement.

B. Metrics

From the VTune counters2, five compound metrics are
computed to capture concisely the relevant performance infor-
mation. These five metrics are L2 Miss Rate, L3 Miss Rate,
Prefetch Miss Rate, L2 Stall Cycles, and GFLOPS.

L2 Miss Rate is a measure of how often the process misses
the L2 cache for demand requests. A high cache miss rate
indicates poor utilization of the cache. The L2 Miss Rate is
computed as:

L2 Miss Rate = 103 × L2 Demand Misses
Number of Instructions

(1)

L3 Miss Rate is the equivalent metric for the L3 cache.
A high cache miss rate (in the L2 or L3 caches) causes the
system to waste time waiting for the request to complete.3 The
L3 Miss Rate is computed as:

L3 Miss Rate = 103 × L3 Demand Misses
Number of Instructions

(2)

Prefetch Miss Rate measures how often the prefetcher loads
data into the L2 cache. A high Prefetch Miss Rate indicates
prefetcher success in speeding up the SpMV operation. It
is important to note that this is contrary to the L2 and L3
Miss Rates in that a higher Prefetch Miss Rate implies better
performance. Prefetch Miss Rate is computed as:

Prefetch Miss Rate = 103 × Prefetcher L2 Misses
Number of Instructions

(3)

L2 Stall Cycles is the percent of total cycles spent waiting
for data in the L2 cache. L2 Stall Cycles includes not only
L2 misses but also subsequent L3 accesses and fetches from
DRAM. These are the cycles that would have been saved, had
the data been present in L2. L2 Stall Cycles is computed as:

L2 Stall Cycles =
L2 Cycles Stalled

Total Number of Cycles
(4)

GFLOPS shows performance in billion floating-point opera-
tions per second. In SpMV, each non-zero element is involved
in one multiplication and one addition, so the number of
floating point operations is twice the number of nonzeros.
GFLOPS is inversely proportional to the runtime, so faster
runtimes correspond to higher GFLOPS. GFLOPS is computed
as:

GFLOPS =
1

109
× 2× Number of Nonzeros

SpMV runtime
(5)

2 The VTune counters are renamed above for readability. Here is the
correspondence between the names above and the identifiers used in VTune:

L2 Demand Misses MEM LOAD UOPS RETIRED.L2 MISS
L3 Demand Misses MEM LOAD UOPS RETIRED.LLC MISS
Prefetcher L2 Misses L2 RQSTS.PF MISS
L2 Cycles Stalled CYCLE ACTIVITY.STALL CYCLES L2 PENDING
Number of Instructions INST RETIRED.ANY
Total Number of Cycles CPU CLK UNHALTED.THREAD

3Data on the L1D cache was not included because L1D miss rate would
not affect L2 Stall Cycles, one of the primary metrics used to measure
performance

3

214 216 218 220 222 224 226 228 230

Number of Nonzeros

0

5

10

15

20

25

30
L2

 C
a
ch

e
 D

e
m

a
n
d
 M

is
se

s
p
e
r

1
0

0
0
 I
n
st

.

FD serial

FD parallel

R-MAT serial

R-MAT parallel

(a) L2 Miss Rate.

214 216 218 220 222 224 226 228 230

Number of Nonzeros

0

5

10

15

20

25

L3
 C

a
ch

e
 D

e
m

a
n
d
 M

is
se

s
p
e
r

1
0

0
0
 I
n
st

.

FD serial

FD parallel

R-MAT serial

R-MAT parallel

(b) L3 Miss Rate.

Fig. 3: Cache miss rates of the SpMV kernel on FD matrices (blue) and R-MAT matrices (red) in serial and in parallel. Cache miss rates
for FD matrices are around zero, but miss rates for R-MAT matrices grow with increasing matrix size

IV. RESULTS

Performance data on the SpMV kernel is presented for 1, 2,
4, 8, and 16 threads. Data is not shown for 32 threads, as the
results are confounded by hyperthreading. 4 For cache metrics,
two representative cases are presented for simplicity. The serial
case (1 thread) is presented to show performance without the
congestion of additional threads. Data for 16 threads is used as
the parallel case, to show maximal utilization of all processor
resources by the kernel. Performance is quantified in terms of
L2 Miss Rate, L3 Miss Rate, Prefetcher Miss Rate, L2 Stall
Cycles, and GFLOPS.

A. L2 Miss Rate

Figure 3a shows the L2 Miss Rate (Eq. 1) of the SpMV
kernel for FD and R-MAT matrices. For the FD matrices,
the SpMV kernel maintains a low L2 Miss Rate of about 0.1
misses per thousand instructions across all matrix sizes. For the
R-MAT matrices, as the problem size exceeds the capacity of
the L2 cache, L2 Miss Rate increases dramatically, reaching
a plateau around 26 misses per thousand instructions. This
discrepancy is caused by the difference in structure between
the two matrix types.

The regular structure of the FD matrices results in some
sequential accesses to ~x by the SpMV kernel and allows reuse
of some data in the L2 cache. The consequence of this regular
access pattern is that the needed data is regularly present in
the L2 cache, producing a low (good) L2 Miss Rate.

For R-MAT matrices, their unstructured composition gener-
ates random accesses to ~x. These erratic accesses to ~x hinder
the architecture’s ability to keep relevant data in the L2 cache,
causing a high (bad) L2 Miss Rate.

4The system has 16 physical cores and uses hyperthreading to simulate
an additional 16 cores [8]. Hyperthreading does not duplicate the resources
essential to the SpMV kernel, so there is no performance gain from attempting
to use more threads than physical cores. In fact, simulating additional cores
only fragments resources and increases congestion.

The L2 Miss Rate differs little between the SpMV kernel
running in serial and in parallel. Although running in parallel
provides multiple L2 caches, the increased net capacity does
not increase L2 cache capacity for any individual core. The
performance of each core depends only on the data present
within its own L2 cache, not on the data within the L2 caches
of other cores. The performance of each core for a given matrix
size, therefore, remains the same as in the serial case.

The L2 Miss Rates level out when only a trivial portion of
the problem fits in the L2 cache. For these large problem sizes,
data accesses to elements of ~x by the SpMV kernel settle into
a pattern of where the data is found. For FD matrices, the
pattern is that the hardware prefetcher successfully anticipates
data requirements and loads the correct data into the L2
cache. For R-MAT matrices, the prefetcher fails to predict
data requirements (due do the random R-MAT structure), so
the data access pattern is as follows: look for the data in the
L2 cache, miss, and then retrieve the data from a more remote
location in memory.

B. L3 Miss Rate

The L3 Miss Rate (Eq. 2) of the SpMV kernel behaves
analogously to the L2 Miss Rate, only shifted by the increased
cache size, as shown in Figure 3b. Just as with the L2 Miss
Rate, L3 Miss Rate for FD matrices is consistently low,
at about 0.1 misses per thousand instructions. For R-MAT
matrices, the L3 Miss Rate increases dramatically, to about
25 misses per thousand instructions, at the point where the
problem size exceeds the capacity of the L3 cache.

The L3 Miss Rate data parallels the observation made in
the previous section of the pattern of fetching data from the
L2 cache. For the FD matrices, the prefetcher successfully
loads data into the L2 cache. Because the SpMV kernel nearly
always finds the data it needs in the L2 cache, it rarely needs to
access the L3 cache. Consequently, the L3 Miss Rate (which
is normalized by the number of instructions, not the number
of L3 accesses) is low (good) for FD matrices. For the R-MAT

4

214 216 218 220 222 224 226 228 230

Number of Nonzeros

0%

20%

40%

60%

80%

100%
P
e
rc

e
n
t

o
f

C
y
cl

e
s

S
ta

lle
d
 i
n
 t

h
e
 L

2
 C

a
ch

e

FD serial

FD parallel

R-MAT serial

R-MAT parallel

Fig. 4: L2 Stall Cycles of the SpMV kernel on FD (blue) and R-
MAT (red) matrices in serial and in parallel.

214 216 218 220 222 224 226 228 230

Number of Nonzeros

0

2

4

6

8

10

P
re

fe
tc

h
e
r

L2
 M

is
se

s
p
e
r

1
0

0
0

 I
n
st

.

FD serial

FD parallel

R-MAT serial

R-MAT parallel

Fig. 5: Prefetch Miss Rate of the SpMV kernel on FD matrices
(blue) and R-MAT matrices (red) in serial and in parallel.

matrices, the L3 Miss Rate follows the same pattern as the L2
Miss Rate: once the problem size no longer fits in cache, the
miss rate increases sharply.

For both types of matrices, the L3 Miss Rate approaches the
L2 Miss Rate. In the case of the largest matrices (for which
only a trivial portion of the problem fits in the L3 cache)
nearly every L2 miss is followed by an L3 miss. This implies
that when the SpMV kernel looks for data in the L2 cache
and misses, it consistently misses in the L3 cache as well and
must access DRAM to retrieve the data. This shows that the L3
cache rarely contains relevant data and that L3 cache accesses
merely waste compute cycles.

C. L2 Stall Cycles & Prefetch Miss Rate

L2 Stall Cycles (Eq. 4) in Figure 4 shows the percentage of
total cycles that are wasted due to L2 cache misses. High L2
Stall Cycles indicates congestion in the memory hierarchy and
shows that the SpMV kernel is performing poorly. High L2
and L3 Miss Rates both contribute to L2 Stall Cycles. An L2
miss leads to an L3 access, causing the processor to stall for
several cycles. An L3 miss leads to a DRAM access, causing
the processor to stall for many more cycles. In the case where
most L2 misses are followed by L3 misses (which happens
for both types of matrices), an L2 miss is extremely costly.

For FD matrices, L2 Stall Cycles is less than one percent
for problem sizes that fit in the L3 cache. On larger matrices,
L2 Stall Cycles increases, especially in the parallel case.
Although the L3 Miss Rate is still low for these large matrices,
high Prefetch Miss Rate (as shown in Figure 5, from Eq. 3)
congests memory and causes stalls. A high Prefetch Miss
Rate shows that the prefetcher is successfully anticipating data
needs and making the SpMV kernel more efficient. However,
the tradeoff is additional traffic to DRAM, which increases the
L2 Stall Cycles resulting from an L3 miss.5 In the serial case,
prefetcher activity does not stall the processor significantly,

5For small problems that fit entirely in the L2 cache, the SpMV kernel
does not miss in L2, so the Prefetch Miss Rate does not factor into L2 Stall
Cycles.

but in the threaded case, each core has its own prefetcher, so
prefetcher activity causes congestion and stall cycles.

For R-MAT matrices, L2 Stall Cycles begins to increase
at the point when the problem size exceeds the capacity
of the L2 cache (where the L2 Miss Rate increases). The
effect of the L2 Miss Rate on L2 Stall Cycles is exacerbated
by the L3 Miss Rate, particularly once the problem size
exceeds the capacity of the L3 cache (where the L3 Miss Rate
jumps). As more requests go to DRAM, the DRAM quickly
reaches a bottleneck in the rate at which it can fulfill requests.
The Prefetch Rate indicates that the congestion in DRAM
overwhelms the prefetcher, causing the prefetcher to be shut
off. Once the DRAM bottleneck is reached, the L2 Stall Cycles
plateaus around 70%. This means that, for the largest R-MAT
matrices, at most 30% of cycles are used for computation of
the SpMV kernel, and the rest are wasted stalling.

D. GFLOPS

Figure 6a shows the performance in GFLOPS (Eq. 5) of the
SpMV kernel on FD matrices. The data indicates that doubling
the number of threads approximately doubles the GFLOPS.
This shows that the SpMV kernel is able take advantage of
the resources provided by additional threads. The performance
in GFLOPS remains constant across the number of nonzeros,
indicating that the SpMV kernel generally scales well with
matrix size, with the exception of 16 threads. The behavior on
16 threads differs due to a bottleneck in DRAM accesses. The
prefetcher causes a large amount of DRAM activity, which,
although beneficial overall, slows demand requests and causes
the SpMV kernel to stall.

Similar to the FD matrices, the SpMV kernel with R-MAT
matrices is able to utilize the resources provided by additional
threads, as shown in Figure 6b. Unlike for FD matrices,
increasing R-MAT matrix size causes GFLOPS to decline.
In particular, when the problem size exceeds the capacity of
the L3 cache, the SpMV kernel begins to be limited by a
bottleneck in DRAM accesses, causing a performance drop.

5

214 216 218 220 222 224 226 228 230

Number of Nonzeros

0

1

2

3

4

5
G

FL
O

P
S

16 threads

8 threads

4 threads

2 threads

1 thread

(a) Performance in GFLOPS for FD matrices.

214 216 218 220 222 224 226 228 230

Number of Nonzeros

0

1

2

3

4

5

G
FL

O
P
S

16 threads

8 threads

4 threads

2 threads

1 thread

(b) Performance in GFLOPS for R-MAT matrices.

Fig. 6: Performance in GFLOPS for the SpMV kernel across matrix size for 1, 2, 4, 8, and 16 threads.

V. CONCLUSIONS

Matrix structure plays a strong role in the performance of
the SpMV kernel. Structured matrices allow the SpMV kernel
to take advantage of prefetching and caches to achieve good
performance. Unstructured matrices, however, inhibit the uti-
lization of these architectural features and cause performance
to suffer.

For FD matrices, the regular matrix structure leads to a
regular data access pattern that is easy for the architecture to
handle. This leads to low L2 and L3 cache miss rates, high
prefetcher effectiveness, and low L2 Stall Cycles. The result is
high GFLOPS, which shows high performance of the SpMV
kernel with FD matrices.

For R-MAT matrices, the random matrix structure creates
an irregular data access pattern, which is difficult for the
architecture to anticipate. Even though the matrix itself is
stored in a structured format (like the FD matrices), the
erratic accesses to ~x cause high L2 and L3 cache miss rates,
prefetcher failure, and high L2 Stall Cycles. The result is low
GFLOPS, which shows low performance of the SpMV kernel.
More specifically, the performance in GFLOPS of the SpMV
kernel with large R-MAT matrices is only 20% of the GFLOPS
SpMV achieves with large FD matrices.

There are several potential solutions to mitigate the problem
of poor SpMV performance on unstructured, sparse matrices.
One possibility is to bypass the L3 cache for larger problems.
As the L2 and L3 miss rates show, the L3 cache rarely contains
data useful to the SpMV kernel, even in the case of FD
matrices, so performance would be improved by not accessing
the L3 cache at all. This would save power and time on stan-
dard hardware, and potentially save chip space on specialized
hardware. The prefetcher would also perform better if it were
exclusively fetching matrix data, since it is stored in a dense
format, rather than also fetching portions of ~x. In conjunction

with this more refined prefetcher activity, most of the cache
could be used to store the values from ~x (rather than extra
matrix data, which the prefetcher could retrieve easily). A
more sophisticated improvement to the prefetcher would be to
give it a more intelligent strategy to predict data requirements.
The prefetcher is able to anticipate memory accesses that are
sequential, but is currently unable to predict non-sequential
data needs. If the prefetcher were able to predict the non-
sequential data, the structure of the matrix would not matter.
In general, these improvements would require allowing the
kernel more control over the architecture and tailoring the
architecture usage for the particular problem of performing
SpMV on unstructured, sparse matrices.

ACKNOWLEDGMENTS

The authors want to thank the DARPA MTO for support of
the PAKCK study. We thank Albert Reuther his contributions.

REFERENCES

[1] B. A. Miller, N. T. Bliss, P. J. Wolfe, and M. S. Beard, “Detection theory
for graphs,” Lincoln Laboratory Journal, vol. 20, no. 1, pp. 10–30, 2013.

[2] J. S. Mullen, M. M. Wolf, and A. Klein, “Pakck: Performance and power
analysis of key computational kernels on cpus and gpus,” in Proc. of
HPEC 2013, 2013.

[3] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance
matrix multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, pp.
12:1–12:25, May 2008. [Online]. Available: http://doi.acm.org/10.1145/
1356052.1356053

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recursive Model
for Graph Mining,” in Proc. of the 4th SIAM Conference on Data Mining,
2004, pp. 442–446.

[5] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2003.

[6] R. P. Tewarson, Sparse matrices, ser. Mathematics in Science and
Engineering. Academic Press, 1973.

[7] Intel R© 64 and IA-32 Architectures Optimization Reference Manual, Intel
Corporation, March 2014, order number 248966-029.

[8] Intel R© Xeon R© Processor E5-1600/E5-2600/E5-4600 Product Families,
2nd ed., Intel Corporation, May 2012, reference number 326508.

6

http://doi.acm.org/10.1145/1356052.1356053
http://doi.acm.org/10.1145/1356052.1356053

	I Introduction
	II Background
	II-A Matrices
	II-B Intel Sandy Bridge Architecture
	II-C Cache Utility

	III Methodology
	III-A Intel VTune Amplifier
	III-B Metrics

	IV Results
	IV-A L2 Miss Rate
	IV-B L3 Miss Rate
	IV-C L2 Stall Cycles & Prefetch Miss Rate
	IV-D GFLOPS

	V Conclusions
	References

