
Graphulo Implementation of Server-Side
Sparse Matrix Multiply in the Accumulo Database

Dylan Hutchison,†§∗ Jeremy Kepner,†‡�∗ Vijay Gadepally,†‡∗ Adam Fuchs+

†MIT Lincoln Laboratory, §University of Washington,
‡MIT Computer Science & AI Laboratory, �MIT Mathematics Department, +Sqrrl, Inc.

Abstract—The Apache Accumulo database excels at dis-
tributed storage and indexing and is ideally suited for storing
graph data. Many big data analytics compute on graph data
and persist their results back to the database. These graph
calculations are often best performed inside the database server.
The GraphBLAS standard provides a compact and efficient basis
for a wide range of graph applications through a small number
of sparse matrix operations. In this article, we discuss a server-
side implementation of GraphBLAS sparse matrix multiplication
that leverages Accumulo’s native, high-performance iterators.
We compare the mathematics and performance of inner and
outer product implementations, and show how an outer product
implementation achieves optimal performance near Accumulo’s
peak write rate. We offer our work as a core component to the
Graphulo library that will deliver matrix math primitives for
graph analytics within Accumulo.

I. INTRODUCTION

The Apache Accumulo NoSQL database was designed for
high performance ingest and scans [1]. While fast ingest and
scans solve some big data problems, more complex scenarios
involve performing tasks such as data enrichment, graph algo-
rithms and clustering analytics. These techniques often require
moving data from a database to a compute node. The ability to
compute directly in a database can lead to benefits including
data locality, infrastructure reuse and selective access.

Accumulo administrators commonly create data locality by
running server processes on the physical nodes where data is
stored and cached. Computing within Accumulo takes advan-
tage of this locality by avoiding unnecessary network transfer,
effectively moving “compute to data” like a stored procedure,
in contrast to client-server models that move “data to com-
pute”. Performing computation inside Accumulo also reuses
its distributed infrastructure such as write-ahead logging, fault-
tolerant execution, and parallel load balancing of data. In
particular, Accumulo’s infrastructure enables selective access
to data along its indexed attributes (rows), which enhances the
performance of algorithms written with row access patterns.

There are a variety of ways to store graphs in Accumulo.
One common schema is to store graphs as sparse matrices.
Researchers in the GraphBLAS forum [2] have identified a
small set of kernels that form a basis for matrix algorithms

Dylan Hutchison is the corresponding author, reachable at dhutchis@uw.edu.
*This material is based upon work supported by the National Science Foun-

dation under Grant No. DMS-1312831. Opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

useful for graphs when represented as sparse matrices. This
article presents Graphulo, an effort to realize the GraphBLAS
primitives that enable algorithms using matrix mathematics
directly in Accumulo servers [3].

In this paper we focus on Sparse Generalized Matrix Mul-
tiply (SpGEMM), the core kernel at the heart of GraphBLAS.
Many GraphBLAS primitives can be expressed in terms of
SpGEMM via user-defined multiplication and addition func-
tions. SpGEMM can be used to implement a wide range of
algorithms from graph search [4] to table joins [5] and many
others (see introduction of [6]).

We call our implementation of SpGEMM in Accumulo
TABLEMULT, short for multiplication of Accumulo tables.
Accumulo tables have many similarities to sparse matrices,
though a more precise mathematical definition is Associative
Arrays [7]. For this work, we concentrate on large distributed
tables that may not fit in memory and use a streaming approach
that leverages Accumulo’s built-in distributed infrastructure.

We are particularly interested in Graphulo for queued ana-
lytics [8], that is, analytics on selected table subsets. Queued
analytics maximally leverage databases by quickly accessing
subsets of interest, whereas whole-table analytics may perform
better on parallel file systems such as Lustre or Hadoop. We
therefore prioritize smaller problems that require low latency
to enable analysts to explore graph data interactively.

We review Accumulo and its model for server-side com-
putation, iterator stacks, in Section I-A. We define matrix
multiplication and compare inner and outer product methods in
Section II-A, settling on outer product for implementing Table-
Mult. We show TableMult’s design as Accumulo iterators in
Section II-B and test TableMult’s scalability with experiments
in Section III. We discuss related work, design alternatives and
optimizations in Section IV and conclude in Section V.

A. Primer: Accumulo and its Iterator Stack

Accumulo stores data in Hadoop RFiles as byte arrays
indexed by key using (key, value) pairs called entries. Keys
decompose further into 5-tuples consisting of a row, column
family, column qualifier, visibility and timestamp. For sim-
plicity, we focus on a 2-tuple key consisting of a row and
column qualifier. Entries belong to tables, which Accumulo
divides into tablets and assigns to tablet servers. Client appli-
cations write new entries via BatchWriters and retrieve entries
sequentially via Scanners or in parallel via BatchScanners.

ar
X

iv
:1

50
7.

01
06

6v
2 

 [
cs

.D
B

] 
 3

0 
A

ug
 2

01
5



Accumulo’s server-side programming model runs an itera-
tor stack on tablets in range of a scan. An iterator stack is
a set of data streams originating at Accumulo’s data sources
for a specific tablet (Hadoop RFiles and cached in-memory
maps), converging together in merge-sorts, flowing through
each iterator in the stack and at the end, sending entries to the
client. Iterators themselves are Java classes implementing the
SortedKeyValueIterator (SKVI) interface.

Developers add custom logic for server-side computation by
writing new iterators and plugging them into the iterator stack.
In return for fitting their computation in the SKVI paradigm,
developers gain distributed parallelism for free as Accumulo
runs their iterators on relevant tablets simultaneously.

SKVIs are reminiscent of built-in Java iterators in that they
hold state and emit one entry at a time until finished iterating.
However, they are more powerful than Java iterators in that
they can seek to arbitrary positions in the data stream. They
also have two constraints: the end of the iterator stack should
emit entries in sorted order, and iterators must not maintain
volatile state such as threads, open files or sockets because
Accumulo may destroy, re-create and re-seek an iterator stack
between function calls without allowing time to clean up.

Iterators are most commonly used for “reduction” oper-
ations that transform or eliminate entries passing through.
The Accumulo community generally discourages “generator”
iterators that emit new entries not present in data sources
because they are easy to misuse and violate SKVI constraints
by emitting entries out of order or relying on volatile state.
In this work, we suggest a new pattern for iterator usage as
a conduit for client write operations that achieves the benefits
of generator iterators while avoiding their constraints.

II. TABLEMULT DESIGN

A. Matrix Multiplication

Given matrices A of size N ×M , B of size M ×L, and
operations ⊕ and ⊗ for element-wise addition and multipli-
cation, the matrix product C = A⊕.⊗B, or more shortly
C = AB, defines entries of result matrix C as

C(i, j) =

M⊕
k=1

A(i, k)⊗B(k, j)

We call intermediary results of ⊗ operations partial products.
For the sake of sparse matrices, we only perform ⊕ and ⊗

when both operands are nonzero, an optimization stemming
from requiring that 0 is an additive identity such that a⊕ 0 =
0⊕ a = a, and that 0 is a multiplicative annihilator such that
a ⊗ 0 = 0 ⊗ a = 0. Without these conditions, zero operands
could generate nonzero results that destroy sparsity.

We study two well known patterns for computing matrix
multiplication: inner product and outer product [9]. They differ
in the order in which they perform the ⊗ and ⊕ operations.
The more common inner product approach runs the following:

for i = 1:N
for j = 1:L

C(i, j) ⊕= A(i, :)B(:, j)

performing inner product on vectors. For easier comparison,
we rewrite the above approach with summation deferred as:

for i = 1:N
for j = 1:L

for k = 1:M
C(i, j) ⊕= A(i, k)⊗B(k, j)

Inner product has the advantage of generating entries in
sorted order: the third-level loop generates all partial products
needed to compute a particular element C(i, j) consecutively.
The ⊕ applies immediately after each third-level loop to obtain
an element in C. Inner product is therefore easy to “pre-sum,”
an Accumulo term for applying a Combiner locally before
sending entries to a remote but globally-aware table Combiner.
Emitting sorted entries also facilitates inner product use in
standard iterator stacks and easier operation pipelining.

Despite inner product’s order-preserving advantages, outer
product performs better for sparse matrices because it passes
through A and B only once [10] [11]. Inner product’s second-
level loop repeats a scan over all of B for each row of A.
Under our assumption that we cannot fit B entirely in memory,
multiple passes over B translate to multiple Accumulo scans
that each require a disk read. We found in performance tests
that an outer product approach performs an order of magnitude
better than an inner product approach.

The outer product approach runs the following:

for k = 1:M
C ⊕= A(:, k)B(k, :)

performing outer product on vectors that corresponds to many
elements of C. Unfolding outer product reveals them as:

for k = 1:M
for i = 1:N

for j = 1:L
C(i, j) ⊕= A(i, k)⊗B(k, j)

Compared to inner product, outer product moves the k loop
above the i and j loops that determine position in C. The
switch results in generating partial products out of order.

On the other hand, outer product only requires a single pass
over both input matrices. This is because the top-level k loop
fixes a dimension of both A and B. Once we finish processing
a column of A and row of B, we never need read them again.

In terms of memory usage, outer product works best when
either the matching row or column fits in memory. If nei-
ther fits, we could run the algorithm with a “no memory
assumption” streaming approach by re-reading B’s rows while
streaming through A’s columns (or vice versa by symmetry
of i and j), perhaps at the cost of extra disk reads.

Because k runs along A’s second dimension and Accumulo
uses row-oriented data layouts, we implement TableMult to
operate on A’s transpose Aᵀ.

B. TableMult Iterators
TableMult uses three iterators placed on a BatchScan of

table B: RemoteSourceIterator, TwoTableIterator and Re-
moteWriteIterator. A BatchScanner directs Accumulo to run
the iterators on B’s tablets in parallel.



The key idea behind the TableMult iterators is that they
divert normal dataflow by opening a BatchWriter, redirecting
entries out-of-band to C via Accumulo’s unsorted ingest
channel. The scan itself emits no entries except for a small
number of “monitoring entries” that inform the client about
TableMult progress. We permit multi-table iterator dataflow
by opening Scanners that read remote Accumulo tables out-
of-band. Scanners and BatchWriters are standard tools for
Accumulo clients; by creating them inside iterators, we enable
client-side processing patterns within tablet servers.

Underlying our use of iterators, Scanners and BatchWriters
are Accumulo’s standing thread pools. Thread pools fulfill our
low latency requirement by executing upon receiving a request
at no more expense than a context switch. Scaling up may
require tuning thread pool size to balance thread contention.

We illustrate TableMult’s data flow in Figure 1, placing a
Scanner on table Aᵀ and a BatchWriter on result table C.

Fig. 1: Data flow through the TableMult iterator stack

1) RemoteSourceIterator: RemoteSourceIterator scans an
Accumulo table (not necessarily in the same cluster) using
credentials passed from the client through iterator options.

We also use iterator options to specify row and column
subsets, encoding them in a string format similar to that in
D4M [12]. Row subsets are straightforward since Accumulo
uses row-oriented indexing. Column subsets can be imple-
mented with filter iterators but do not improve performance
since Accumulo must read every column from disk. We
encourage users to maintain a transpose table using strategies
similar to the D4M Schema [13] for cases requiring column
indexing.

Multiplying table subsets is crucial for queued analytics on

selected rows. However for simpler performance evaluation,
our experiments in Section III multiply whole tables.

2) TwoTableIterator: TwoTableIterator reads from two it-
erator sources, one for Aᵀ and one for B, and performs the
core operations of the outer product algorithm in three phases:

1) Align Rows. Read entries from Aᵀ and B until they
advance to a matching row or one runs out of entries.
We skip non-matching rows since they would multiply
with an all-zero row that, by Section II-A’s assumptions,
generate all zero partial products.

2) Cartesian product. Read both matching rows into an in-
memory data structure. Initialize an iterator that emits
pairs of entries from the rows’ Cartesian product.

3) Multiply. Pass pairs of entries to ⊗ and emit results.

A client defines ⊗ by specifying a class that implements a
multiply interface. For our experiments we implement ⊗ as
java.math.BigDecimal multiplication, which guarantees cor-
rectness under large or precise real numbers. BigDecimal
decoding did not noticeably impact performance.

3) RemoteWriteIterator: RemoteWriteIterator writes en-
tries to a remote Accumulo table using a BatchWriter. Entries
do not have to be in sorted order because Accumulo sorts
incoming entries as part of its ingest process.

Barring extreme events such as exceptions in the iterator
stack or thread death, we designed RemoteWriteIterator to
maintain correctness, such that entries generated from its
source write to the remote table once. We accomplish this by
performing all BatchWriter operations within a single function
call before ceding thread control back to the tablet server.

A performance concern remains when multiplying a subset
of the input tables’ rows that consists of many disjoint ranges,
such as one million “singleton” ranges spanning one row each.
It is inefficient to flush the BatchWriter before returning from
each seek call, which happens once per disjoint scan range.
We accommodate this case by “transferring seek control” from
the tablet server to RemoteWriteIterator via the same strategy
used in RemoteSourceIterator for seeking within an iterator.

We include an option to BatchWrite C’s transpose Cᵀ

in place of or alongside C. Writing Cᵀ facilitates chaining
TableMults together and maintenance of transpose indexing.

4) Lazy ⊕: We lazily sum partial products by placing
a Combiner subclass implementing BigDecimal addition on
table C at scan, minor and major compaction scopes. Thus,
⊕ occurs sometime after RemoteWriteIterator writes partial
products to C yet necessarily before entries from C may
be seen such that we always achieve correctness. Summation
could happen when Accumulo flushes C’s entries cached in
memory to a new RFile, when Accumulo compacts RFiles
together, or when a client scans C.

The key algebraic requirement for implementing ⊕ inside
a Combiner is that ⊕ must be associative and commutative.
These properties allow us to apply ⊕ to subsets of a result
element’s partial products and to any ordering of them, which
is chaotic by outer product’s nature. If we truly had an ⊕
operation that required seeing all partial products at once, we



would have to either gather partial products at the client or
initiate a full major compaction.

5) Monitoring: RemoteWriteIterator never emits entries to
the client by default. One downside of this approach is that
clients cannot precisely track progress of a TableMult opera-
tion, which may frustrate users expecting a more interactive
computing experience. Clients could query the Accumulo
monitor for read/write rates or prematurely scan partial prod-
ucts written to C, but both approaches are too coarse.

We therefore implement a monitoring option that emits
a value containing the number of entries TwoTableIterator
processed at a client-set frequency. RemoteWriteIterator emits
monitoring entries at “safe” points, that is, points at which we
can recover the iterator stack’s state if Accumulo destroys, re-
creates and re-seeks it. Stopping after emitting the last value
in the outer product of two rows is safe because we place
the last value’s row key in the monitoring key and know, in
the event of an iterator stack rebuild, to proceed to the next
matching row. We may succeed in stopping during an outer
product by encoding more information in the monitoring key.

III. PERFORMANCE

We evaluate TableMult with two variants of an experiment.
First we measure the rate of computation as problem size
increases. We define problem size as number of rows in
random input graphs represented as adjacency tables and
rate of computation as number of partial products processed
per second. Second we repeat the experiment for a fixed
size problem with all tables split into two tablets, allowing
Accumulo to scan and write to them in parallel.

We compare Graphulo TableMult performance to D4M [12]
as a baseline because a user with one client machine’s best al-
ternative is reading input graphs from Accumulo, multiplying
them at the client, and inserting the result back into Accumulo.

D4M stores tables as Associative Array objects in MATLAB.
Because Assoc Array multiplication runs fast by calling MAT-
LAB’s in-memory sparse matrix functions, D4M bottlenecks
on reading data from Accumulo and especially on writing
back results, despite its capacity for high speed Accumulo
reads and writes [14]. We consequently expect TableMult to
outperform D4M because TableMult avoids transferring data
out of Accumulo for processing.

We also expect TableMult to succeed on larger graph sizes
than D4M because TableMult uses a streaming outer product
algorithm that does not store input tables in memory. An
alternative D4M implementation would mirror TableMult’s
streaming outer product algorithm, enabling D4M to run on
larger problem sizes at potentially worse performance. We
therefore imagine the whole-table D4M algorithm as an upper
bound on the best performance achievable when multiplying
Accumulo tables outside Accumulo’s infrastructure.

We use the Graph500 unpermuted power law graph gener-
ator [15] to create random input tables, such that both tables’
first row have high degree (number of columns) and subse-
quent rows exponentially decrease in degree. The common
power law structure correlates the input tables, which leads

to denser result tables than if we were to permute the input
tables but does not otherwise affect multiplication behavior.
The generator takes SCALE and EdgesPerVertex parameters,
creating graphs with 2SCALE rows and EdgesPerVertex ×
2SCALE entries. We fix EdgesPerVertex to 16 and use SCALE
to vary problem size.

The following procedure outlines our performance experi-
ment for a given SCALE and either one or two tablets.

1) Generate two graphs with different random seeds and
insert them into Accumulo as adjacency tables via D4M.

2) In the case of two tablets, identify an optimal split point
for each input graph and set the input graphs’ table splits
equal to that point. “Optimal” here means a split point
that evenly divides an input graph into two tablets.

3) Create an empty output table. For two tablets, pre-split
it with an optimal input split position recorded from a
previous multiplication run.

4) Compact the input and output tables so that Accumulo
redistributes the tables’ entries into the assigned tablets.

5) Run and time Graphulo TableMult multiplying the trans-
pose of the first input table with the second.

6) Create, pre-split and compact a new result table for the
D4M comparison as in step 3 and 4.

7) Run and time the D4M equivalent of TableMult:
a) Scan both input tables into D4M Associative Array

objects in MATLAB memory.
b) Convert the string values from Accumulo into

numeric values for each Associative Array.
c) Multiply the transpose of the first Associative

Array with the second.
d) Convert the result Associative Array back to String

values and insert them into Accumulo.
We conducted the experiments on a Ubuntu Linux laptop

with 16GB RAM and two dual-core Intel i7 processors. Using
single-instance Accumulo 1.6.1, Hadoop 2.6.0 and ZooKeeper
3.4.6, we allocated 2GB of memory to an Accumulo tablet
server initially (allowing growth in 500MB steps), 1GB for
native in-memory maps and 256MB for data and index cache.

We chose not to use more than two tablets per table because
more threads would run than the laptop could handle. Each
additional tablet can potentially add the following threads:

1) Table Aᵀ server-side scan thread;
2) Table Aᵀ client-side scan thread,

running from RemoteSourceIterator;
3) Table B server-side scan/multiply thread,

running a TableMult iterator stack;
4) Table B client-side scan thread,

running from the initiating client, mostly idle;
5) Table C server-side write thread;
6) Table C client-side write thread,

running from RemoteWriteIterator; and
7) Table C server-side minor compaction threads,

running with a Combiner implementing ⊕.
We show table C sizes and experiment timings in Table I

and plot them in Figure 2. We could not run the D4M



SCALE

10 11 12 13 14 15 16 17 18

R
a

te
 (

p
a

rt
ia

l 
p

ro
d

u
c
ts

/s
)

×10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
TableMult Rate Scaling

Graphulo 1 Tablet

Graphulo 2 Tablets

D4M 1 Tablet

D4M 2 Tablets

Fig. 2: TableMult Processing Rate vs. Input Table Size

comparison past SCALE 15 because C does not fit in memory.
For the scaled problem, the best results we could achieve

are flat horizontal lines, indicating that we maintain the same
level of operations per second as problem size increases.

One reason we see a downward rate trend at larger problem
sizes is that Accumulo needs to minor compact table C in the
middle of a TableMult. The compactions trigger flushes to disk
along with the ⊕ Combiner that sums partial products written
to C so far, neither of which we include in rate measurements.

For the fixed size problem, the best results we could achieve
are two-tablet rates at double the one-tablet rates at every
problem size. Our experiment shows that Graphulo two-tablet
rates perform up to 1.5x better than one-tablet rates at lower
SCALEs. We attribute TableMult’s shortfall to high processor
contention for the laptop’s four cores as a result of the 14
threads that may run concurrently when each table has two
tablets; in fact, processor usage hovered near 100% for all four
cores throughout the two-tablet experiments. We expect better
scaling when running our experiment in larger Accumulo
clusters that can handle more degrees of parallelism.

IV. DISCUSSION

A. Related Work

Buluç and Gilbert studied message passing algorithms for
SpGEMM such as Sparse SUMMA, most of which use 2D
block decompositions [16]. Unfortunately, 2D decompositions
are difficult in Accumulo and message passing even more so.
In this work, we use Accumulo’s native 1D decomposition
along rows and do not rely on tablet server communication
apart from shuffling partial products of C via BatchWriters.

Our outer product method could have been implemented
on Hadoop MapReduce or its successor YARN [17]. There is
a natural analogy from TableMult to MapReduce: the map
phase scans rows from Aᵀ and B and generates a list of
partial products from TwoTableIterator; the shuffle phase sends

partial products to correct tablets of C via BatchWriters;
and the reduce phase sums partial products using Combiners.
Examining the conditions on which MapReduce reading from
and writing to Accumulo’s RFiles directly can outperform
Accumulo-only solutions is worthy future work.

A common Accumulo pattern is to scan and write from mul-
tiple clients in parallel; in fact, researchers obtained consider-
ably high insert rates using parallel client strategies [14]. We
chose to build Graphulo as a service within Accumulo instead
of assuming a multiple client capability, such that Graphulo is
as accessible as possible to diverse client environments.

The strategy in [14] also used tablet location information to
determine where clients could write locally. Knowing tablet-
to-tablet-server assignment could likewise aid Graphulo, not
only to minimize network traffic but also to partly eliminate
Apache Thrift RPC serialization, which prior work has shown
is a bottleneck for scans when iterator processing is light [18].
Such an enhancement would access a local tablet server by
method call in place of Scanners and BatchWriters.

The Knowledge Discovery Toolkit (KDT) distributed-
memory Python graph library offers sparse matrix multipli-
cation in a similar design as Graphulo’s [19]. Both support
custom addition, multiplication and filter operators written in
a high level language. They differ in that Graphulo targets the
Accumulo infrastructure which is IO-bound, in contrast to the
KDT which is compute-bound. Graphulo therefore gains less
from code generation techniques on its Java iterator kernels,
whereas the KDT uses the SEJITS technique [20] to translate
Python kernels into C++ for callback by KDT’s underlying
Combinatorial BLAS library [21], thereby raising performance
from compute- to memory bandwidth-bound at the expense of
restricting operator expressiveness to a DSL.

B. Design Alternative: Inner-Outer Product Hybrid

It is worth reconsidering the inner product method from our
initial design because it has an opposite performance profile as
Figure 3’s left and right depict: inner product bottlenecks on
scanning whereas outer product bottlenecks on writing. At the
expense of multiple passes over input matrices, inner product
emits partial products in order and immediately pre-summable,
reducing the number of entries written to Accumulo to the
minimum possible. Outer product reads inputs in a single pass
but emits entries out of order and has little chance to pre-
sum, instead writing individual partial products to C. Table I
quantifies that outer product writes 2.5 to 3 times more entries
than inner product for power law inputs. In the worst case,
multiplying a fully dense N × M with an M × L matrix,
outer product emits M times more entries than inner product.

Is it possible to blend inner and outer product SpGEMM
methods, choosing a middle point in Figure 3 with equal read
and write bottlenecks for overall greater performance? In the
following generalization, partition parameter P varies behavior



TABLE I: Output Table C Sizes and Experiment Timings

SCALE Entries in Table C Graphulo 1 Tablet D4M 1 Tablet Graphulo 2 Tablets D4M 2 Tablets
PartialProducts AfterSum Time (s) Rate (pp/s) Time (s) Rate (pp/s) Time (s) Rate (pp/s) Time (s) Rate (pp/s)

10 8.05× 105 2.69× 105 2.87 2.81× 105 3.02 2.67× 105 2.02 3.98× 105 2.80 2.87× 105

11 2.36× 106 8.15× 105 7.76 3.04× 105 8.80 2.68× 105 5.19 4.55× 105 8.72 2.71× 105

12 6.82× 106 2.43× 106 2.20× 101 3.10× 105 2.66× 101 2.56× 105 1.63× 101 4.18× 105 2.62× 101 2.60× 105

13 1.91× 107 7.04× 106 6.40× 101 2.99× 105 1.50× 102 1.27× 105 4.86× 101 3.93× 105 1.44× 102 1.33× 105

14 5.27× 107 2.00× 107 1.82× 102 2.90× 105 5.79× 102 9.09× 104 1.36× 102 3.87× 105 5.59× 102 9.42× 104

15 1.47× 108 5.83× 107 5.03× 102 2.93× 105 2.51× 103 5.86× 104 3.94× 102 3.74× 105 2.56× 103 5.75× 104

16 4.00× 108 1.63× 108 1.39× 103 2.88× 105 1.18× 103 3.40× 105

17 1.09× 109 4.59× 108 4.06× 103 2.67× 105 3.70× 103 2.94× 105

18 2.94× 109 1.28× 109 1.21× 104 2.42× 105 1.14× 104 2.58× 105

between inner product at P = N and outer product at P = 1:

for p = 1:P
for k = 1:M

for i =

(⌊
(p− 1)N

P

⌋
+ 1

)
:

⌊
pN

P

⌋
for j = 1:L

C(i, j) ⊕= A(i, k)⊗B(k, j)

The hybrid algorithm runs P passes through B, each of
which has write locality to a vertical partition of C of size
N/P ×L. Pre-summing ability likewise varies inversely with
P , though actual pre-summing depends on A and B’s sparsity
distribution as well as how many positions of C the TableMult
iterators cache. Figure 3’s center depicts the P = 2 case.

A challenge for any hybrid algorithm is mapping it to
Accumulo infrastructure. We chose outer product because it
more naturally fits Accumulo, using iterators for one-pass
streaming computation, BatchWriters to handle unsorted entry
emission and Combiners to defer summation. The above
hybrid algorithm resembles 2D block decompositions, and so
maximizing its performance may be challenging given limited
data layout control and unknown data distribution.

Nevertheless, possible design criteria are to select a small
P to minimize passes through B, while also choosing P large
enough so that dNL/P e entries fit in memory (dense matrix
worst case), which guarantees complete pre-summing. The
latter criterion may be relaxed with decreasing matrix density.

C. TableMult in Algorithms

Several optimization opportunities exist for TableMult as a
primitive in larger algorithms. Given row A of starting vertices
and graph adjacency matrix B, suppose we wish to union the
vertices reached in two steps from those in A into A via
the program C = AB;D = CB;A ⊕= D, as one way of
calculating A ⊕= AB2 via TableMult calls. Such calculations

Fig. 3: Tradeoffs between Inner and Outer Product

are useful for finding vertices reachable in an even number of
steps. We would save two round trips to disk if we could mark
C and D as “temporary tables,” i.e. tables intermediate to an
algorithm that should be held in memory and not written to
Hadoop if possible. Combiners in TableMult do enable one
optimization: summing CB into A directly by rewriting the
program as C = AB;A ⊕= CB.

A pipelining optimization streams entries from a TableMult
to computations taking its result as input. Outer product
pipelining is difficult because it cannot guarantee writing every
partial product for a particular element to C until it finishes,
whereas inner product’s complete pre-summing emits elements
ready for use downstream. More ambitiously, loop fusion
merges iterator stacks for successive computations into one.

Optimizing computation on NoSQL databases is challeng-
ing in the general case because NoSQL databases typically
avoid query planner features customary of SQL databases in
exchange for raw performance. NewSQL databases aim in part
to achieve the best of both worlds—performance and query
planning [22]. We aspire to make a small step for Accumulo
in the direction of NewSQL with current Graphulo research.

V. CONCLUSIONS

In this work we showcase the design of TableMult, a
Graphulo server-side implementation of the SpGEMM Graph-
BLAS matrix math kernel in the Accumulo database. We
compare inner and outer product approaches and show how
outer product better fits Accumulo’s iterator model. The imple-
mentation shows excellent single node performance, achieving
write rates near 400,000 per second, which is consistent with
the single node peak write rate for Accumulo [14]. Perfor-
mance experiments show good scaling for scaled problem sizes
and suggest good scaling for fixed size problems, but these
require additional experiments on a larger cluster to confirm.

In addition to topics from Section IV’s discussion, future
research efforts include implementing the remaining Graph-
BLAS kernels, developing graph algorithms that use the Gra-
phulo library and delivering to the Accumulo community.

REFERENCES

[1] R. Sen, A. Farris, and P. Guerra, “Benchmarking apache accumulo
bigdata distributed table store using its continuous test suite,” in In-
ternational Congress on Big Data. IEEE, 2013, pp. 334–341.

[2] T. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C. Faloutsos,
J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson et al., “Standards for



graph algorithm primitives,” in High Performance Extreme Computing
Conference (HPEC). IEEE, 2013.

[3] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and J. Kep-
ner, “Graphulo: Linear algebra graph kernels for NoSQL databases,” in
International Parallel & Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2015.

[4] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[5] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton, “Mad
skills: new analysis practices for big data,” Proceedings of the VLDB
Endowment, vol. 2, no. 2, pp. 1481–1492, 2009.

[6] A. Buluç and J. R. Gilbert, “Highly parallel sparse matrix-matrix
multiplication,” 2010.

[7] J. Kepner and V. Gadepally, “Adjacency matrices, incidence matrices,
database schemas, and associative arrays,” in International Parallel &
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2014.

[8] A. Reuther, J. Kepner, P. Michaleas, and W. Smith, “Cloud computing
where ISR data will go for exploitation,” in High Performance Extreme
Computing Conference (HPEC). IEEE, 2009.

[9] C. P. Kruskal, L. Rudolph, and M. Snir, “Techniques for parallel
manipulation of sparse matrices,” Theoretical Computer Science, vol. 64,
no. 2, pp. 135–157, 1989.

[10] P. Burkhardt and C. Waring, “An NSA big graph experiment,” US
National Security Agency Technical report NSA-RD-2013-056001v1,
2013.

[11] P. Burkhardt, “Asking hard graph questions,” US National Security
Agency Technical report NSA-RD-2014-050001v1, 2014.

[12] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz et al., “Dynamic distributed
dimensional data model (D4M) database and computation system,” in
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012, pp. 5349–5352.

[13] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
M. Hubbell, P. Michaleas, J. Mullen, D. O’Gwynn et al., “D4M 2.0
schema: A general purpose high performance schema for the accu-

mulo database,” in High Performance Extreme Computing Conference
(HPEC). IEEE, 2013.

[14] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout et al., “Achieving
100,000,000 database inserts per second using accumulo and D4M,”
High Performance Extreme Computing Conference (HPEC), 2014.

[15] D. Bader, K. Madduri, J. Gilbert, V. Shah, J. Kepner, T. Meuse, and
A. Krishnamurthy, “Designing scalable synthetic compact applications
for benchmarking high productivity computing systems,” Cyberinfras-
tructure Technology Watch, vol. 2, pp. 1–10, 2006.

[16] A. Buluc and J. R. Gilbert, “Parallel sparse matrix-matrix multiplica-
tion and indexing: Implementation and experiments,” SIAM Journal on
Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[17] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
YARN: Yet another resource negotiator,” in Proceedings of the 4th
annual Symposium on Cloud Computing. ACM, 2013.

[18] S. M. Sawyer, B. D. O’Gwynn, A. Tran, and T. Yu, “Understanding query
performance in accumulo,” in High Performance Extreme Computing
Conference (HPEC). IEEE, 2013.

[19] A. Buluç, E. Duriakova, A. Fox, J. R. Gilbert, S. Kamil, A. Lugowski,
L. Oliker, and S. Williams, “High-productivity and high-performance
analysis of filtered semantic graphs,” in International Symposium on
Parallel & Distributed Processing (IPDPS). IEEE, 2013, pp. 237–248.

[20] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “SEJITS: Getting productivity and
performance with selective embedded jit specialization,” Programming
Models for Emerging Architectures, vol. 1, no. 1, pp. 1–9, 2009.

[21] A. Buluç and J. R. Gilbert, “The combinatorial BLAS: Design, imple-
mentation, and applications,” International Journal of High Performance
Computing Applications, pp. 496–509, 2011.

[22] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz, “Data
management in cloud environments: NoSQL and NewSQL data stores,”
Journal of Cloud Computing: Advances, Systems and Applications,
vol. 2, no. 1, p. 22, 2013.


