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Abstract—Gene regulatory network reconstruction is a funda-
mental problem in computational biology. We recently developed
an algorithm, called PANDA (Passing Attributes Between Net-
works for Data Assimilation), that integrates multiple sources
of ’omics data and estimates regulatory network models. This
approach was initially implemented in the C++ programming
language and has since been applied to a number of biological
systems. In our current research we are beginning to expand
the algorithm to incorporate larger and most diverse data-
sets, to reconstruct networks that contain increasing numbers of
elements, and to build not only single network models, but sets of
networks. In order to accomplish these “Big Data” applications, it
has become critical that we increase the computational efficiency
of the PANDA implementation. In this paper we show how to
recast PANDA'’s similarity equations as matrix operations. This
allows us to implement a highly readable version of the algorithm
using the MATLAB/Octave programming language. We find that
the resulting M-code much shorter (103 compared to 1128 lines)
and more easily modifiable for potential future applications. The
new implementation also runs significantly faster, with increasing
efficiency as the network models increase in size. Tests comparing
the C-code and M-code versions of PANDA demonstrate that
this speed-up is on the order of 20-80 times faster for networks
of similar dimensions to those we find in current biological
applications.

I. INTRODUCTION

Rapidly evolving genomic technologies are providing bio-
logically informative data of unprecedented volume, velocity,
and variety, with the potential to yield new insights into the
processes driving disease. This data has allowed us to develop
a more unified understanding of how many different types of
interactions at multiple and vastly different scales can influ-
ence biological systems. We now appreciate that changes in
cellular states involve simultaneous alterations to the genome,
epigenome, transcriptome, metabolome, and proteome of the
cell. These are often characterized by complex networks whose
structures are altered as the phenotype changes. The generation
of Big Data in this area now presents an unprecedented
opportunity to develop scalable methods capable of modeling
these networks, informing us about the nature of disease and
ultimately allowing us to hypothesize about the therapeutic
approaches most appropriate for each disease state.

Working in this area, we recently developed and published a
method, called PANDA (Passing Attributes between Networks
for Data Assimilation), that uses a “message passing” approach
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to integrate multiple types of genomic data and construct di-
rected genome-wide regulatory networks [1]. PANDA models
network interactions as communication between “transmitters”
and “receivers”, referred to in the original publication as “ef-
fector” and “affected” nodes. This approach recognizes that for
communication to occur, both the transmitter and the receiver
have an essential role. By constructing a “prior” regulatory
network consisting of potential routes for communication
and integrating with other sources of information, PANDA
estimates the responsibility and availability of each potential
interaction, predicts where communication is succeeding or
failing, and deduces condition-specific network structures.
While many methods exist for inferring relationships in a gene
regulatory network [2], [3], PANDA represents the first method
that incorporates multiple biological data types naturally, by
comparing them in order to emphasize common elements.
Most importantly, this approach provides a unified modeling
framework for integrating multiple and heterogeneous biolog-
ical data types.

We have now applied PANDA to explore the effects of
smoking in knockout mouse models [4], to search for potential
drug candidates in ovarian cancer [5] and to build sex-specific
regulatory networks in chronic obstructive pulmonary disease
(COPD) [6]. In each of these applications we compared pairs
or sets of networks reconstructed using PANDA to uncover
regulatory mechanisms that would not have been identified
using gene-based approaches. The importance of comparing
network states highlights the need for a computationally
efficient implementation of the PANDA algorithm. Indeed,
much of our ongoing and future research now revolves around
computing and comparing multiple versions and various sets
of these already-large network models.

The PANDA algorithm for network reconstruction was
originally implemented in the C++ programming language. In
order to increase code readability (to facilitate future modifi-
cation and data integration) and to enable greater scaling of
the algorithm, which will be necessary in order to incorporate
larger and increasingly diverse data-sets, we have implemented
a version of the algorithm in the MATLAB/Octave program-
ming language. We find that this M-code implementation of
PANDA runs significantly faster than the C++ version across
a range of network sizes. The M-code is also much shorter



Fig. 1. The PANDA network reconstruction algorithm models two types of
nodes: “effectors” (circles) and “affected” (squares). It also considers three
types of networks: “cooperativity” (between pairs of “effector” nodes, brown
lines), “regulatory” (from “effector” to “affected” nodes, red lines), and “co-
regulatory” (between pairs of “affected” nodes).

(103 versus 1128 lines). In this paper we outline the approach
we took in re-coding the algorithm. Namely, we begin by
reviewing the mathematical framework used by PANDA. We
then show how PANDA’s similarity equation can be re-written
as products of matrices, enabling us to take advantage of
MATLAB'’s extreme optimization of these operations. Finally,
we systematically compare the computational efficiency of the
previous and new implementations of the algorithm using a
range of input data sizes, including those we often encounter
in real-world biological applications.

II. APPROACH
A. Finding Agreement between Networks using PANDA

Transcriptional regulation depends on a complex relation-
ship between transcription factors (TFs) and their downstream
targets. To model this process, we developed PANDA, a
“message-passing” algorithm for reconstruction of gene reg-
ulatory networks. PANDA considers two types of network
nodes, “effectors” and “affected”, and models three types of
network relationships between these nodes (see Figure [I). In
the context of biological regulatory networks, transcription
factors can be viewed as effector nodes that regulate (affect)
the behavior of their downstream target genes.

An overview of the PANDA algorithm is presented in Figure
To begin, PANDA takes input information pertaining to the
relationships between effector and affected nodes and con-
structs three “seed” networks. A symmetric network between
effector nodes (of dimensions N, x N., where N, is the
number of effector nodes) is referred to as the “cooperativity”
network (P). Similarly, a symmetric network between affected
nodes (of dimensions N, x IN,, where N, is the number of af-
fected nodes) is referred to as the “co-regulatory” network (C').
Finally, a non-symmetric network from effector to affected
nodes (of dimensions N, x N,) is called the “regulatory”
network (WW).

In the context of transcriptional data, PANDA reads in
expression information and estimates an initial co-regulatory
network by calculating the Pearson correlation between pairs

of genes across all the samples in the data. The cooperativity
network is initially defined based on a user-provided set of in-
teractions between pairs of transcription factors. To address the
incompleteness of biological data, in the absence of expression
or protein interaction information PANDA will initialize these
two networks as identity matrices. Finally, to create the initial
regulatory network, PANDA reads in predicted transcription
factor-gene relationships, which are often estimated by us-
ing DNA sequence information to create a edge between a
transcription factor (effector node) and a target gene (affected
node) if a known binding “motif” [7] for that transcription
factor exists in the promoter region of the gene. In order
to effectively combine information from these diverse data
sources, PANDA performs a Z-score normalization on each
of the networks such that the edge-weights contained in their
corresponding matrices all are in the same unit-space and of
similar distribution.

After reading in and normalizing the input data, PANDA
performs a message-passing procedure to slowly integrate
the information contained in the three initial networks. One
important aspect of this approach is its emphasis on agreement
among network neighborhoods rather than direct targeting
information. For example, unlike many other network re-
construction approaches [2], [3], PANDA does not infer a
relationship between a transcription factor and a gene directly
from that pair’s co-expression; instead, an edge is inferred if
the gene is co-expressed with other targets of the transcription
factor. By performing iterative “soft” updates on each of
the networks, the models slowly accumulate evidence for
interactions that is shared across all of the input data sources,
eventually moving to consensus networks that better explain
the full set of observations. This method thus serves to infer
comprehensive new biology that would not be obvious based
on any single data-type alone.

Supporting this idea, at the heart of PANDA is an equation
that evaluates the similarity between sets of interactions in two
networks:
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This equation is used repeatedly throughout the PANDA
message-passing procedure. Below we detail how this equation
has been and can be implemented to best take advantage of
the strengths of different coding languages. We show that
changing how we formulate this and the other mathematics
in PANDA can have a dramatic impact in the implementation
and can drastically speed up algorithm.

B. The PANDA Message-Passing Algorithm

The message-passing framework of PANDA is designed to
slowly merge information from different network structures,
initially derived from an underlying set of biological data.
In order to do this, PANDA iteratively updates each of three
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Fig. 2. Overview of the steps included in the PANDA network reconstruction
algorithm. A significant portion of the algorithm involves a message-passing
procedure in which information from the initial data is slowly merged together.

initial networks. Namely, at each iteration, ¢, PANDA first
updates the regulatory network based on the responsibility (R)
and availability (A) of edges:

) (t—1) (® t)
Wi =(1- )W + — (A +R ) 2)

The responsibility of an edge between TF ¢ and gene j in the
regulatory network is calculated based the previous level of
agreement between the set of transcription factors that target
gene j (W (¢=1) ) and those that cooperate with transcription

factor (Pé 1))
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Similarly, the availability of each edge is based on the level
of agreement between the regulatory targets of transcription
factor ¢ (Wi(_t)) and the set of genes with which gene j is
co-regulated (C_(j)):

AR =W, c§Y) (4)

Next PANDA updates the protein cooperativity and gene co-
regulatory networks by comparing the sets of genes regulated
by a pair of TFs, and the sets of TFs targeting a pair of genes,
respectively. Namely:
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To satisfy convergence criteria, the diagonal elements of P
and C are updated based on the off-diagonal elements of P
and C, respectively. More specifically:
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where o; is the standard deviation across the non-diagonal
elements in row ¢ of P (P(t)) and o is the standard deviation

across the non-diagonal elements in row j of C' (C(t))

Finally, at each iteration, when computing W(t), PANDA
also calculates the hamming distance between the previous
and predicted regulatory network:
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The updates (of W, then P and C) are iteratively repeated
until convergence, which is defined as h < 103, Depending
on the update parameter, «, this can involve anywhere from
ten to several hundred iterations of the message-passing pro-
cedure; the current suggested default value for o is 0.1 and
involves approximately 40 iterations. The result of the PANDA
message-passing approach is a value associated with each of
the edges in all three networks that reflects shared structure
across the original set of input data.

C. Implementing PANDA using Matrix Algebra

T (Equation [I) is used to calculate the values for each
edge in A, R, C and P (see Equations B}f5). As it is written,
Equation |l| returns a single number, namely, a score for
an edge from node ¢ to node j in one network, based on
vectors containing values from the i** row and j'* column
of matrix representations for two other networks. In the
C++ implementation, this is calculated via summations within
nested for-loops. Below we show an example of the general
framework for performing this operation, based on predicting
the availability (A, equation [) for all the edges. Note that
this is not exactly replicated from the C++ code (available at
http://sourceforge.net/projects/panda-net/), but does accurately
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represent the way the similarity calculation is implemented:

for(i=0;i < Ne;i+ +){
for(j =057 < Na;j++){

Avar = 0; Bvar = 0; Cvar = 0;

for(k=0;k < Ne;k+ +){
Avar+ = Clj|.tar[k] * Wi].tar[k];
Bvar+ = C[j].tar[k] x C[j].tar[k];
Cvar+ = W{i].tar[k] « Wi].tar[k];

}

Ali].tar(j] = Avar/sqrt(Bvar + Cvar — fabs(Avar));

®)

Here we point out that instead of solving for each element
of the 7' matrix individually, as it done in the code-snippet
shown above, one can alternately solve for the entire matrix of
T-values. Using the MATLAB/Octave programming language,
this can be written as a series of matrix operations contained
in the following 5 lines of code:

function Amat = T function(X,Y);

Amat = (X *Y);

Bmat = repmat(sum(Y."2,1), size(X, 1),1); 9)
Cmat = repmat(sum(X."2,2),1, size(Y,2));

Amat = Amat./sqrt(Bmat + Cmat — abs(Amat));

This matrix-oriented implementation requires the simultaneous
storage of three potentially very large matrices (Amat, Bmat
and C'mat) in addition to the original given networks (X and
Y). On the other hand, the C++ implementation shown above,
by estimating each element of T separately, only requires
storing one of these matrices (A). Thus by solving for all the
elements of the matrix at once we have increased the memory
requirements for this process.

We have evaluated how to represent all of PANDA’s mathe-
matics, including the calculation of 7', as matrix operations
and re-implemented the algorithm in the MATLAB/Octave
programming language (hereafter referred to as the M-code).
This PANDA implementation includes five files:

1) RunPANDA.m: The master M-file that reads in the input
data, constructs the initial networks, runs the message-
passing algorithm and prints the final network estimates
to a file. This code calls two functions contained in other
files: NormalizeNetwork() and PANDA().

2) NormalizeNetwork.m: Performs a Z-score transforma-
tion on a given input network.

3) PANDA.m: Given set of three networks: W, C and P,
performs the core message-passing procedure. This code
calls two functions contained in other files: Tfunction()
and UpdateDiagonal().

4) Tfunction.m: Computes the similarity between two net-
works (Equation [T).

5) UpdateDiagonal.m: Updates the diagonal elements of a
given symmetric network (Equation [6).

The M-code can be downloaded at: https://sites.google.com/a/
channing.harvard.edu/kimberlyglass/tools/panda.

D. Comparing the M-code and C-code PANDA Implementa-
tions

We have used cloc to evaluate the number of lines of code
in this new M-code implementation and compared that to the
number of lines of code in the original C-code implementation
of PANDA. We find that the M-code version of PANDA is
approximately ten-times shorter (103 lines) than the the C-
code (1128 lines). A small portion of this reduction in line-
count can be attributed to additional features found in the C-
code that we did not fully implement in the M-code. However,
it is unlikely that adding these to the M-code would increase
the line-count significantly. For example, the C-code includes
a parameter that allows the user to randomize node-labels upon
input; such an addition to the M-code would require only a
few lines. In addition to being shorter, it is also important to
emphasize that the new M-code implementation of PANDA
is also highly human-readable, especially in comparison to
the C-code. Thus integrating any “missing” features into the
M-code, such as this randomization procedure, will be less
cumbersome than the future introduction of other new features
into the C-code.

In addition to code-length, we have also tested the speed
of the C-code and M-code implementations of PANDA. In
order to do this, in the C-code we added a call to the
clock() function immediately prior to and immediately after
the message-passing procedure. Time in seconds was then
determined by multiplying the difference in these calls by
CLOCKS_PER_SEC. For the M-code, the run-time of
the message-passing procedure was determined by the fic/foc
function, again placed immediately prior to and past the
message-passing procedure. By placing clock() and tic/toc
around the message-passing procedure, we are not addressing
any single time-costs that are associated with reading in or
parsing the original data, or in outputting the results.

For this speed-test we constructed one hundred random
initial regulatory networks (W) at each of several various sizes
(N. = N, = {125,250, 500, 1000, 2000}). For the other two
networks (P and C) we took advantage of PANDA’s default
behavior wherein those are initialized as identity matrices in
the lack of external information (see Figure [2). We compiled
the C-code using g++ with an optimization flag (—O3). We
ran the M-code using both GNU Octave (version 3.8.2) and
MATLAB R2014a (8.3.0.532) with the —singleCompThread
flag (see below for more information). All analyses were run
on the MIT SuperCloud which uses the x86_64 GNU/Linux
operating system [8]].

The average and standard deviation in run-time across the
one-hundred tests for each primary network size is shown in
Table Il We find the MATLAB and Octave runs of PANDA
have comparable run-times and both are significantly faster
than the C-code implementation. Even more importantly, the
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fold-improvement in speed in the MATLAB and Octave runs
increases as the network sizes increase.

E. Taking Advantage MATLAB’s Built-in Multi-Threading Ca-
pabilities

In order to more fairly compare results between the com-
piled C-code and the M-code runs of PANDA in both MAT-
LAB and Octave, the results presented in Table [I] ran the
M-code implementation of PANDA after opening MATLAB
using the —singleCompThread option. However, by default,
MATLAB has the ability to take advantage of the multi-
threading capabilities of the computer on which it is installed.
Therefore, next we determined if an even greater speed-up
might be obtained by taking advantage of this multi-threading
capability. To test this, we used the approach described above
and constructed one single random input network for each of
a range of sizes. We then evaluated the time it took to perform
the message-passing procedure using the compiled C-code and
the M-code when running MATLAB using either the single-
thread or multi-threading (default) option.

The results of this test are plotted in Figure [3] We find
that by taking advantage of MATLAB’s multi-threading ca-
pabilities we are able to decrease the run-time of the M-
code significantly, and that this improvement continues to
increase as the size of the network grows. In fact, for net-
works with several thousand nodes, the single-thread M-code
improvement compared to the C-code is about 30-fold, but the
multi-thread M-code run-time improvement compared to the
C-code is over 100-fold. Although the magnitude of this speed-
up will be dependent on hardware of the computer system
on which MATLAB is installed, the real-life implications
are profound. A network that would previously have taken
several days to reconstruct using the C-code implementation
of PANDA could be run in a matter of hours on a computer
system with multi-threading capabilities. So far our tests of
the message-passing procedure have not considered networks
that take more than a few hours to reconstruct, even using the
C-code. As we explain below, large networks necessitating a
very long computation time are often encountered in the field
of computational biology.

Ne = Ng C-code Octave MATLAB
125 1.05 +0.01 0.50 £ 0.03 0.13 £0.04
250 4.65 +0.03 0.62 £0.01 0.54 +£0.03
500 32.73 £ 0.07 2.82 +0.03 2.61 £ 0.002
1000 241.51 £0.12 15.82 £0.09 | 15.06 £+ 0.04
2000 1954.5 +33.12 | 98.59 +0.89 | 95.04 £0.25

TABLE I

A COMPARISON OF THE AVERAGE RUN-TIME, IN SECONDS, OF THE
C-CODE AND M-CODE IMPLEMENTATIONS OF THE PANDA ALGORITHM
ACROSS 100 RANDOM INPUT REGULATORY NETWORK MODELS. THE
M-CODE WAS RUN USING BOTH OCTAVE AND MATLAB.
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Fig. 3. Comparison of times when running the M-code implementation
of PANDA from within MATLAB using either the default multi-threading
capabilities, or using only a single computational thread.

F. Real-world Implications for Faster Network Reconstruction

In biological systems, networks are often on the order of
thousands, rather than hundreds of nodes. Even the genomes of
“smaller” organisms contain thousands of genes (approximate
six thousand for yeast and thirteen thousand for fruit fly).
Current research on the human genome puts the number
of protein-coding genes at approximately twenty to twenty-
five thousand. Fortunately, the gene regulatory networks for
biological systems are often highly a-symmetric with respect
to their “effector” and “affected” nodes, with the number of
transcription factor regulators (“effector” nodes) typically only
5-10% that of genes. With these real-world values in mind, we
tested the speed of our C-code and M-code implementations
of PANDA across a set of “realistic” network sizes. Here we
again ran MATLAB with the —singleCompThread option for a
more fair comparison with the C-code. The results are shown
in Figure

Using the initial C-code implementation of PANDA, a
“human-sized” network reconstruction took over a day. How-
ever, using the new M-code implementation of PANDA this
same analysis was accomplished in approximately one hour.
It is also important to emphasize that if we were to take
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Fig. 4. An evaluate of the time PANDA needs to reconstruct networks that are of similar size to those found in real biological systems. Results from the

tests in seconds are included in the table.

advantage of MATLAB’s default multi-threading capabilities
this time would be reduced even further. A “real-world”
network that might take approximately twenty-four hours to
compute using the C-code could possibly be computed in
the matter of minutes using the M-code. Overall this has
significant implications both for biomedical research as well as
for our ability to provide real-time results as we are beginning
to integrate network analysis into clinical applications.

III. CONCLUSION

The original implementation of the PANDA algorithm was
coded in C++ and determined shared information between
networks based on a similarity equation implemented through
a series of nested for-loops. Here we showed how to re-cast
that equation as a series of matrix operations in order to re-
code PANDA in the MATLAB/Octave programming language.
We find that this “M-code” implementation not only greatly
increases code readability compared to the “C-code”, it also
drastically decreases the time needed to compute the networks.
Importantly, the M-code implementation also has the potential
for even further speed-up by taking advantage of MATLAB’s
built-in multi-threading capabilities, as explored here, or by
using parallel MATLAB [9] or MATLAB’s GPU support,
future directions for our group.

It is important to point out that a similar or even greater
speed-up of the PANDA algorithm should be be obtainable
using a lower-level language, including C/C++. The reason
the M-code is faster than the current C++ implementation

is because we wrote the M-code in terms of matrix op-
erations in order to take advantage of MATLAB’s built in
support for the BLAS routines which call the underlying
SIMD units in the processor. We could have similarity re-
implemented PANDA in terms of matrix operations in C++,
but that would have required redoing all the data structures;
it was far easier to code the algorithm in MATLAB to take
advantage of these hardware features. In addition, we suggest
that the readability we obtained using the MATLAB/Octave
programming language will have a profoundly positive effect
on our research abilities. In biological applications we often
encounter a wide diversity of data-sets that require thoughtful
custom integration in order to leverage them effectively and
extract biologically-meaningful results. Future additions and
modifications of PANDA considering this information will be
far easier using the MATLAB/Octave programming language
compared to C++.

In summary, we suggest that the enhanced readability
coupled with the significant decrease in time-costs associated
with the M-code implementation of PANDA demonstrates a
powerful use of the MATLAB/Octave programming language
in enabling biomedical research.
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