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Abstract—Google BigTable’s scale-out design for distributed
key-value storage inspired a generation of NoSQL databases.
Recently the NewSQL paradigm emerged in response to analytic
workloads that demand distributed computation local to data
storage. Many such analytics take the form of graph algorithms,
a trend that motivated the GraphBLAS initiative to standardize a
set of matrix math kernels for building graph algorithms. In this
article we show how it is possible to implement the GraphBLAS
kernels in a BigTable database by presenting the design of Gra-
phulo, a library for executing graph algorithms inside the Apache
Accumulo database. We detail the Graphulo implementation of
two graph algorithms and conduct experiments comparing their
performance to two main-memory matrix math systems. Our
results shed insight into the conditions that determine when
executing a graph algorithm is faster inside a database versus
an external system—in short, that memory requirements and
relative I/O are critical factors.

I. INTRODUCTION

The history of data storage and compute is long intertwined.
SQL databases facilitate a spectrum of streaming computation
inside the database server in the form of relational queries [1].
Server-side selection, join, and aggregation enable statisticians
to compute correlations and run hypothesis tests on larger
datasets [2]. The high I/O cost of geospatial queries, financial
transactions, and other more complicated computation moti-
vated the concept of stored procedures for executing custom
computation in databases as early as Sybase in the 1980s [3].

The NoSQL movement marks a shift away from in-database
computation, relaxing some of the guarantees and services
provided by SQL databases in order to provide a flexible
schema and greater read/write performance as demanded by
new applications such as website indexing [4]. The Google
BigTable NoSQL design in particular forsook relational op-
erators in order to allow arbitrary row and column names,
allow uninterpreted values, and provide a clear model for data
partitioning and layout, all at high performance that scales with
a cluster of commodity machines [5]. Several databases fol-
low BigTable’s design, including Apache Accumulo, Apache
HBase, and Hypertable.

BigTable follows a pull-based model of computation called
the iterator stack: a collection of arbitrary classes through
which key-value entries flow, beginning at a table’s data
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sources (in-memory maps and files in a backing store) and
flowing through the logic of each iterator class before sending
entries to a client (or a file, in the case of a compaction)
after the last iterator. The iterator stack was designed for
relatively lightweight computation such as filtering outdated
values and summing values with the same keys. As such,
many applications use BigTable systems purely for storage and
retrieval, drawing on separate systems to perform computation.

The NewSQL movement marks another shift, this time back
toward SQL guarantees and services that promise efficient
in-database analytics while retaining the flexibility and raw
read/write performance of NoSQL databases [4]. Engineers
have several reasons to consider computing inside databases
rather than in external systems:

1) To increase data locality by co-locating computation and
data storage. The savings in data communication signif-
icantly improves performance for some computations.

2) To promote infrastructure reuse, avoiding the overhead
of configuring an additional system by using one system
for both storage and computation. Organizations may
have administrative reasons for preferring solutions that
use known, already integrated systems rather than solu-
tions that introduce unfamiliar or untested new systems.

3) To take advantage of database features such as fast selec-
tive access to subsets of data along indexed dimensions.
In the case of distributed databases, algorithms running
inside a database obtain distributed execution for free, in
return for cooperating with the database’s access path.

Is it possible to implement NewSQL-style analytics within
a BigTable database? A positive answer could have broad
implications for organizations that use a BigTable database to
store and retrieve data yet use a separate system for analyzing
that data. The extent of such implications depends on the
relative performance of running analytics inside a BigTable
database versus an external system.

In this work we examine analytics that take the form of
graph algorithms. Analysts commonly interpret data as graphs
due to easy conceptualization (entities as nodes, relationships
as edges), visualization, and applicability of graph theory (e.g.
centrality and clusters) for gaining data insight.

One way to represent graphs is by its adjacency or incidence
matrix. Matrices are an excellent choice for a data structure



because they provide properties and guarantees derived from
linear algebra such as identities, commutativity, and annihi-
lators. These properties facilitate reasoning the correctness of
algorithms and optimizations before any code is written, which
can save considerable developer time [6].

The GraphBLAS specification is a set of signatures for
matrix math kernels that are building blocks for composing
graph algorithms [7]. These kernels provide the benefits of
computing with matrices while remaining amenable to opti-
mization. In particular, we show in Section II how a critical
class of optimizations, kernel fusion, remains possible in the
GraphBLAS abstraction.

We focus our work on Graphulo, an effort to realize the
GraphBLAS primitives inside the Apache Accumulo database.
In past Graphulo work we sketched several graph algorithms in
terms of the GraphBLAS kernels [8] and detailed the Graphulo
implementation of Sparse Generalized Matrix Multiply [9].
Our new contributions are:

o An extension of Graphulo’s model for Accumulo server-
side computation to all the GraphBLAS kernels in Sec-
tion II, showing that it is possible to implement general
graph analytics inside a BigTable system.

o The Graphulo implementation of algorithms to compute
the Jaccard coefficients (Section III-A) and the k-truss
decomposition (Section III-B) of an adjacency matrix.

« Insight into the conditions that determine when it prof-
itable to execute graph algorithms inside a BigTable sys-
tem, as learned from Section I'V’s performance evaluation
of the Jaccard and k-truss algorithms inside Accumulo
and in two external main-memory matrix math systems.

Our results corroborate an emerging theme: “no one size

fits all” [10]; no single system is best for every algorithm. Our
evidence shows that executing an algorithm inside a BigTable
database achieves better performance when data does not fit in
memory or the I/O cost, in terms of entries read and written,
is within an order of magnitude. Algorithms that are iterative
or otherwise read and write significantly more entries in an in-
database implementation run faster in a main-memory system.
Writing an algorithm in terms of the GraphBLAS frees
developers to execute on any GraphBLAS-enabled system.
We offer the conditions presented here to aid developers in
choosing the best system for execution.

II. GRAPHBLAS IN GRAPHULO

Figure 1 depicts a template of the iterator stack Graphulo
uses for server-side processing. Graphulo users customize the
template by calling a TwoTable function in the Graphulo
library. Because the TwoTable call accepts a large number
of arguments in order to customize the iterator stack to any
desired processing, Graphulo provides a number of simpler,
more specialized functions such as TableMult for comput-
ing an MxM, SpEW1i seSum for computing an EwiseAdd, and
OneTable for computations that take a single input table.

Once a client configures the iterator stack by calling one
of Graphulo’s functions, Accumulo instantiates copies of the
stack across the nodes in its cluster. This behavior follows
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Fig. 1: Graphulo TwoTable template iterator stack. Every tablet
server hosting tablets of A and B run this stack in parallel.
Each GraphBLAS kernel is a special case of TwoTable.

GraphBLAS Kernel
BuildMatrix ()
ExtracTuples

MxM (&, ®)
EwiseMult (®)
EwiseAdd (&)

Graphulo Implementation

Accumulo BatchWriter

Accumulo BatchScanner

TwoTablelterator ROW mode, performing ATB
TwoTablelterator EWISE mode

Similar to EwiseMult, with non-matching entries

Extract Row and column filtering

Apply (f) Extra Iterators

Assign Apply with a key-transforming function
Reduce (@) Reducer module on RemoteWritelterator
Transpose Transpose option on RemoteWritelterator

TABLE I: GraphBLAS implementation overview.

BigTable’s design for horizontal distribution: tables are di-
vided into tablets, each of which is hosted by a tablet server.
Tablet servers execute a copy of the iterator stack that reads
from each tablet of input tables A and B the tablet server
hosts. The same distribution applies to output tables C and
CT; writes to C and CT ingest into each tablet server hosting
their tablets. The whole scheme is embarrassingly parallel.
However, it is important for developers to design the rows of
their table schemas intelligently in order to evenly partition
entries among their tablets and achieve good load balancing.

The boxes of Figure 1 in blue are the core components
of Graphulo’s iterator stack. The RemoteSourcelterator and
RemoteWritelterator extend the Accumulo client Scanner and
BatchWriter, respectively, to read from and write to Accumulo
tables inside an iterator stack. The TwoTablelterator merges
two iterator stacks along a prefix of their keys, depending on
whether it is used for a row-wise operation like matrix multiply
(ROW mode) or an element-wise operation (EWISE mode).

Table I summarizes the GraphBLAS kernels and how parts
of the TwoTable stack realize them. We discuss each kernel
separately to show how they are individually implemented, but
in practice kernel fusion is critical for performance.

To fuse a set of kernels is to execute them in one step, with-
out writing the intermediary matrices between them. BLAS
packages have a long history of fused kernels, stemming from
the original GEMM call which fuses matrix multiplication,
matrix addition, scalar multiplication, and transposition [11].



Kernel fusion is particularly important in the case of
BigTable databases because writing out intermediary tables
implies extra round trips to disk. It is possible to fuse kernels
in Graphulo until a sort is required, since sorting is a blocking
operation. Related research efforts are exploring additional
GraphBLAS optimizations, such as decomposing kernels into
finer-grained tasks that better utilize parallel architecture [12].

The symbols &, ®, and f in Table I indicate user-defined
functions supplied as parameters to the GraphBLAS kernels. In
Graphulo these functions take the form of user-provided Java
classes. Graphulo provides interfaces that make writing these
operations easy provided they abide by a contract following
the structure of a semi-ring: 0 ® a = 0, 0 B a = a,
f(0) = 0, associativity, and idempotence and distributivity
in certain cases. Developers are free to insert general iterators
or break these contracts, so long as they understand their role
in Accumulo’s distributed execution and lazy summing.

The following sections discuss Graphulo’s representation
of matrices, Graphulo’s TwoTable iterators, and how those
iterators implement the GraphBLAS kernels.

A. Matrices in Accumulo

We represent a matrix as a table in Accumulo. The row and
column qualifier portions of an Accumulo key store the row
and column indices of a matrix entry. Values are uninterpreted
bytes that can hold any type, not necessarily numeric.

Other portions of the Accumulo key—column family, visi-
bility, and timestamp—are available for applications to use.
Many applications use the visibility portion of a key for
cell-level security, restricting operations to run only on those
entries a user has permission to see. Applications can define
how visibilities propagate through the Graphulo iterators.

The column family provides a flexible grouping capability.
For example, it is possible to store two matrices inside the
same Accumulo table by distinguishing them with separate
column families. This could be useful when the two matrices
are frequently accessed together, since Accumulo would store
them in the same tablets with alignment on rows. Applications
may also leverage Accumulo’s locality groups in order to
store certain column families separately, which is similar to
how Accumulo separately stores distinct tables but on a fine-
grained, columnar level.

Zero-valued entries need not be stored in the Accumulo
table in order to efficiently store sparse matrices. We treat the
concept of “null” the same as the concept of “zero” for both
storage and processing. However, it is not forbidden to store
zero entries; a zero entry may spuriously arise during pro-
cessing when 3, -5, and 2 are summed together, for example,
though Graphulo prunes such entries as an optimization by
default. We encourage developers not to rely on the presence
or absence of zero entries for algorithm correctness.

B. BuildMatrix and ExtracTuples

The BuildMatrix and ExtracTuples GraphBLAS functions
are the constructors and destructors of matrices from or to a
set of “triples”: a list of (row, column, value) entries.

Accumulo already supports these operations by means of its
BatchWriter and BatchScanner client interfaces. Constructing
a matrix is as simple as writing each tuple to an Accumulo
table. Destructing a matrix is as simple as scanning a table.

If the list of triples for BuildMatrix contains multiple values
for the same row and column, users commonly define a
function & to store the sum of colliding values in the matrix.
Accumulo combiner iterators achieve this behavior by lazily
summing duplicate values according to ¢ during compactions
and scans.! Default behavior ignores all but one of them.

C. MxM

Graphulo matrix multiplication was previously explained
in [9]. As a brief summary, Graphulo computes the ma-
trix multiplication AB by placing a RemoteSourcelterator,
TwoTablelterator, and RemoteWritelterator on a BatchScan of
table B. The RemoteSourcelterator scans the transpose table
AT. The TwoTablelterator aligns entries from AT and B along
the row portion of their keys, iterating both inputs in lockstep
until a matching row is found. A user-defined Java class
implementing a ® function multiplies entries from matching
rows according to the outer product algorithm. Partial products
flow into the RemoteWritelterator, which sends entries to the
result table via an Accumulo BatchWriter. A user-defined
iterator class implementing a @ function lazily sums values
on the result table during its next scan or compaction.

We call TwoTablelterator’s workflow during MxM its ROW
mode. More advanced uses of ROW mode may provide a
user-defined strategy for processing two aligned rows of data.
The Jaccard implementation described in Section III-A, for
example, uses custom row processing to fuse the EwiseAdd of
three MxM kernels by performing additional multiplications.

D. EwiseAdd and EwiseMult

The element-wise GraphBLAS kernels are similar to MxM,
except that TwoTablelterator runs in EWISE mode and ta-
ble A is not treated as its transpose. During EWISE mode,
TwoTablelterator aligns entries from A and B along their row,
column family, and column qualifier. The EwiseMult kernel
passes matching entries to a user-defined ® function.

The EwiseAdd kernel acts on both matching and non-
matching entries. Non-matching entries pass directly to the
RemoteWritelterator. Matching entries pass to a “multiplica-
tion function” that implements the & addition logic.

E. Extract

The Extract kernel stores the subset of a matrix into a new
matrix. Ranges of row and column indices specify the subset.

Graphulo implements Extract via row and column filtering
on the ranges of indices. The client passes these ranges to
Accumulo’s tablet servers by transmitting serialized options
attached to iterator configuration data. The RemoteWritelter-
ator handles row filtering by seeking the iterators above it

IBigTable systems do not run iterators on entries immediately as they are
ingested in order to maximize write performance.



to only read entries from the indexed rows. Column filtering
occurs at an iterator right after reading entries from the table.
The difference between row and column filtering is due to
Accumulo’s design as a row-store database. Whereas filtering
rows is efficient since all data is accessed and stored by row,
column filtering requires reading entries from all columns and
discarding those outside the column indices. Future work could
optimize column filtering for locality groups when present.

F. Apply and Assign

The Apply kernel applies a function f to every entry of a
matrix. The kernel assumes that f(0) = 0 so that processing
need only run on nonzero entries. Applying f in Accumulo
takes the form of an extra iterator implementing f that can
be placed at any point in an iterator stack. It is easy to fuse
Apply with other kernels by including the iterator for f at
appropriate locations.

Graphulo supports both stateless and stateful Apply func-
tions f, with the caveat that stateful functions must cope
with distributed execution wherein multiple instances of f run
concurrently, each one seeing a portion of all entries.

The Assign kernel assigns a matrix to a subset of another
matrix according to a set of row and column indices. An Apply
iterator implements Assign by transforming the keys of entries
to their corresponding keys in the new matrix.

G. Reduce

The Reduce kernel gathers information of reduced dimen-
sionality about a matrix via a process similar to user-defined
aggregation [13]. Often this information is a scalar, such as the
set of unique values that occur in a matrix or the number of
entries whose value exceeds a threshold. These scalars may be
used inside control structures, such as how kTruss in Section
III-B multiplies matrices until the number of partial products at
each multiplication does not change, indicating convergence.

Many Reduce use cases transmit data to the client for
control purposes rather than write data to a new table. In
order to accommodate these cases and also facilitate fusing
Reduce into other kernels, we integrated Reduce into the
RemoteWritelterator by coupling it with a “Reducer object”
that processes every entry the RemoteWritelterator sees.

The Reducer object implements the signature of a com-
mutative monoid. It has a “zero” state that is the state of
the Reducer before processing any entries. The reducer “sums
in” entries one at a time via user-defined @ logic. Once the
RemoteWritelterator finishes processing entries for the tablet it
is running on, it asks the Reducer for the result of reducing all
the entries the Reducer has seen, and it forwards that result to
the client through the standard BatchScanner channel on which
the client instantiated the whole TwoTable stack. The client
combines local results from reducing each tablet to obtain the
global result of Reduce.

The above scheme works because a Reduce call’s result is
typically small. It is feasible to fit the result into tablet server
memory and transmit it to the client. If the result is not small,
it may be wiser to store results at the server in a new table.

Reduce calls that store results at the server, such as summing
the columns of a matrix into a vector, can be implemented via
Apply and a @ iterator on the result table, or sometimes as
an MxM with a constant matrix.

H. Transpose

The Transpose kernel switches the row and column of
entries from a matrix. While Transpose could be implemented
as an Apply, we found that it is used so frequently that it is
worth making it a built-in option of the RemoteWritelterator.

ITII. ALGORITHMS
A. Vertex Similarity: Jaccard Coefficients

Vertex similarity is an important metric for applications such
as link prediction [14]. One measure for similarity between
two vertices is their Jaccard coefficient. This quantity measures
the overlap of two vertices’ neighborhoods in an unweighted,
undirected graph. For vertices v; and v; where N (v) denotes
the neighbors of vertex v, the Jaccard coefficient is defined as

S IN@I NN, |
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Gadepally et al formulated an algorithm in terms of the
GraphBLAS to compute the Jaccard coefficients between all
vertices for a graph represented as an unweighted, undirected
adjacency matrix [8]. Algorithm 1 summarizes their formula-
tion. They employ an optimization that restricts computation to
the upper triangle of the adjacency matrix, taking advantage of
the symmetry in the Jaccard coefficient definition. The notation
triu(-, 1) borrows MATLAB syntax for taking the strict upper
triangle of a matrix.

Line 1 stores the degrees of each vertex in a vector d.
For the Graphulo implementation, we assume these degrees
are pre-computed inside a separate degree table in Accumulo.
Computing degree tables is often performed during data ingest,
since fast access to degree information is useful for query
planning, load balancing, filtering, and other analytics [15].

Graphulo computes the Jaccard coefficient matrix J in one
fused MxM call that Figure 2 highlights. The inputs to the
MxM are the lower and upper triangles L and U of A, which
we obtain by applying strict lower and upper triangle filters.

Given inputs L and U, the TwoTablelterator computes?
LU = UU. We could compute the other required products
UUT and UTU in a similar fashion with two separate
multiplication calls. However, all the information we need to
compute UUT and UTU is available during the computation
of UU, which suggests an opportunity to fuse the three matrix
multiplications together.

We implement the fusion of UUT4+UTU+UU by provid-
ing a custom row multiplication function to TwoTablelterator
that computes all three products at once. In addition to mul-
tiplying pairs of entries in the Cartesian product of matching
rows between L and U to compute LTU = UU, the custom
function multiplies pairs of entries in the Cartesian product of

2Recall that Graphulo transposes the left input to MxM calls. The transpose
of lower triangular matrix L is the upper triangular matrix U.



Input: Unweighted, undirected adjacency matrix A
Output: Upper triangle of Jaccard coefficients J
d =sum(A) // pre-computed in degree table
U = triu(A, 1) // strict upper triangle filter
J =triu(UU + UUT +UTU, 1) // fused MxM
foreach nonzero entry J;; € J do
| Jiy = Jii/(di +d; — Jy)
end

// stateful Apply on J

A U1 AR W N -

Algorithm 1: Jaccard
Comments describe the Graphulo implementation.
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Fig. 2: Visualization of the Jaccard algorithm. The three ‘®’
symbols highlight the fused MxM kernel below them.

its left input L with itself to compute LTL = UUT, as well as
its right input U with itself to compute UTU. The additional
multiplications also run on rows of L and U that do not match,
as in the pattern of an EwiseAdd kernel. After passing the
entries from all three matrix multiplications through a further
strict upper triangle filter (line 3), the RemoteWritelterator
sends them to the result table J with an iterator that sums
colliding values.

After the MxM operation completes, indicating that all
partial products from the three matrix multiplications have
written to table J, we add a stateful Apply iterator to the scan
scope of J that computes lines 4-6. The iterator performs
a kind of broadcast join, scanning the degree table d into
the memory of tablet servers hosting J’s tablets in order to
efficiently compute line 5. Holding d in memory is feasible
because it is significantly smaller than the original table A.

As a final optimization to MxM that applies when multi-
plying a matrix with itself, we used the “deep copy” feature
of Accumulo iterators to duplicate the iterator stack on A and
use it for both inputs to TwoTablelterator. This optimization
eliminates the need for a RemoteSourcelterator, which saves
entry serialization and coordination with Accumulo’s master.
While it did not significantly increase performance during

Input: Unweighted, undirected adjacency matrix Ay,

integer k
Output: Adjacency matrix of k-truss subgraph A
72 =00,A=A // table clone

1
2 repeat

3 z=12

4 B=A // table clone
5 B=B+2AA /MxMwitha®b=2ifa,b#0
6 BB%2==0)=0 // filter on B
7 B(B-1)/2<k—-2)=0 // filter on B
8

9

A =Bj, // Apply on B; switch A <+ B
z' = nnz(A) // Reduce, gathering nnz at client
10 until z == 2’ // client controls iteration

Algorithm 2: kTruss
Comments describe the Graphulo implementation.

Section IV’s single-node evaluation, we anticipate the deep
copy technique will have larger impact in a multi-node setting.

B. Truss Decomposition

The k-truss of an unweighted, undirected simple graph is
the largest subgraph in which every edge is part of at least k—2
triangles. Computing the k-truss is useful for focusing large
graph analysis onto a cohesive subgraph that has a hierarchical
structure one can vary with k [16].

Gadepally et al formulated a GraphBLAS algorithm to
compute the k-Truss of a graph represented by an unweighted,
undirected incidence matrix [8]. The algorithm iteratively
deletes edges that are part of fewer than k — 2 triangles until
all edges are part of at least k — 2 triangles. Iteration is a par-
ticularly challenging feature for an Accumulo implementation
since Accumulo stores intermediary tables on disk.

We adapted the algorithm to run on a graph’s adjacency
matrix in Algorithm 2. The nnz call in line 9 computes the
number of nonzero entries in a matrix. The product AA in
line 5 computes the number of triangles each edge is part of.

The ‘%’ symbol in line 6 indicates remainder after integer
division, and so line 6 deletes even values. Because A’s
nonzero values are odd (specifically, the value 1) and because
partial products from 2A A are even (specifically, the value
2), line 6 effectively filters out entries from B that are not
present in A. Line 7 deletes edges that are part of fewer than
k — 2 triangles after “undoing” the +1 from A and the x2
from 2A A. The |B|; in line 8 indicates the zero norm of B,
which sets nonzero values to 1.

We specifically designed Algorithm 2 to minimize the
number of intermediary tables in order to minimize round-
trips to disk. The insight that allows us to reduce the number
of intermediary table writes, from two in a naive formulation to
one as presented here, is finding a way to distinguish edges that
are part of at least k—2 triangles but not present in the original
graph from edges present in the original graph. A naive method
to distinguish edges is by computing the EwiseMult A ® B
where ® is “logical and”. We eliminate the EwiseMult by
playing tricks with parity in lines 5-7 as described above.



The Graphulo kTruss implementation uses two temporary
tables A and B. We initialize A by cloning input table Ag.3

Each iteration begins with cloning A into B as in line 4.
Implementing line 4 with a table clone is an optimization
that avoids rewriting the entries in A. Graphulo constructs
an MxM iterator stack to multiply A with itself* and sum
the result into B as in line 5. The MxM stack includes a
® function that evaluates to 2 on nonzero inputs, as well as
an extra iterator following ® that filters out entries along the
diagonal as another optimization, which is correct since the
k-truss is defined on simple graphs. A standard & iterator on
B sums partial products.

After the MxM stack completes, indicating that B contains
every partial product, Graphulo places an additional iterator
on B after the & iterator to filter out entries that are even
(line 6) or fail the k-Truss condition (line 7). A final iterator
on B sets nonzero values to 1 as in line 8.

A Reduce call computes nnz(A) in line 9 by counting
entries. The algorithm has converged and may terminate per
line 10 once nnz(A) does not change between iterations.

The temporary tables switch roles between iterations, delet-
ing the old A before switching A with B and again cloning
A into B. After the last iteration, we rename the new A to
the designated output table via a clone and delete.

IV. PERFORMANCE

In this section we conduct an experiment to (1) provide a
single-node evaluation of Graphulo on the Jaccard and 3Truss
(fixing k£ = 3 in kTruss) algorithms and (2) gain insight into
when it is profitable to execute the algorithms inside Accumulo
versus an external system.

We compare Graphulo to main-memory external systems
because they are among the best options for computing on
a subgraph (e.g. cued analytics [17]), a use case databases
accelerate by creating table indexes. Such subgraphs lie on
the threshold of fitting into memory wherein main-memory
computation is feasible; we therefore choose problem sizes
that also lie on the threshold of fitting in memory. We consider
both sparse and dense matrix systems because dense systems
generally perform orders of magnitude faster but have severe
memory constraints, whereas sparse systems offer intermediate
performance in exchange for handling larger matrices.

Specifically, we choose two open-source main-memory ma-
trix math systems for comparison: the dynamic distributed
dimensional data model (D4M) MATLAB library for sparse
matrices [18] and the Matrix Toolkits Java (MTJ) library for
dense matrices [19]. D4M provides an associative array API
that maps to databases like Accumulo and calls MATLAB’S
sparse matrix functions [20]; D4M has frequently been used
to analyze subsets of database tables that fit in memory. We
choose D4M for the role of sparse matrix math because it

3Cloning Accumulo tables is a cheap operation because no data is copied;
Accumulo simply marks the cloned table’s Hadoop RFiles as shared with the
clonee after flushing entries in memory to disk.

4Recall that AT = A because A is the adjacency matrix for an undirected
graph. The product ATA is the same as AA.

is one of the best GraphBLAS alternatives to Accumulo for
single-node computation; GraphMat [21] (single-node) as well
as CombBLAS [22] and GraphPad [23] (distributed) are also
candidates. MTJ is one of many Java libraries that provide
high-performance matrix math [24]. We choose MTJ for the
role of dense matrix math for its off-the-shelf ease of use.

Following our past experimental setup [9], we evaluate the
performance of Jaccard and 3Truss by measuring runtime
while varying two parameters: problem size and computational
resources. Varying these parameters allows us to gauge both
weak scaling (varying problem size while holding computa-
tional resources constant) and strong scaling (varying compu-
tational resources while holding problem size constant).

We control problem size via the size of input matrices, and
we control computational resources via the number of tablets
on input and output tables. The number of tablets controls
how many threads Accumulo uses for reading, writing, and
iterator processing. In our single-node setup, this relates to
how well Accumulo uses the 8 cores it has available. We limit
the number of tablets to 1 or 2, since Accumulo runs enough
threads to fully use all 8 cores at 2 tablets.

We set the number of tables on input tables by compacting
them prior to each experiment. For 2 tablet experiments, we
choose a split point that evenly divides each input table and
pre-split output tables on the same splits.’ In order to prevent
Accumulo from creating additional splits during larger SCALE
experiments (17 for Jaccard, 16 for 3Truss), we increased the
table.split.threshold parameter to 5 GB.

Most users deploy Accumulo on a sizable cluster. Graphs
as large as 70 trillion edges (1.1 PB) have been analyzed by
clusters as large as 1200 machines and 57.6 TB collective
memory [25]. This work evaluates single-node performance
as a proof of concept and an indicator for how multi-node
performance might scale.

We conduct the experiments on a Linux Mint 17.2 laptop
with 16 GB RAM, two dual-core Intel i7 processors, and a 512
GB SSD. Atop single-instance Hadoop 2.4.1 and ZooKeeper
3.4.6, we allocated 2 GB of memory to an Accumulo tablet
server with room to grow to 3 GB, 1 GB for native in-memory
maps and 256 MB for data and index cache. We ran a snapshot
build of Accumulo 1.8.0 at commit 9aac9cO in order to
incorporate a bugfix that affects Graphulo’s stability [26].

We use the Graph500 unpermuted power law graph genera-
tor [27] to create random input adjacency matrices whose first
rows are high-degree “super-nodes” and whose subsequent
rows exponentially decrease in degree. Power law distributions
are widely used to model real world graphs [28].

The generator takes SCALE and EdgesPerVertex parame-
ters, creating matrices with 25CAYE rows and EdgesPerVertex
x 28CALE entries. We fix EdgesPerVertex to 16 and use
SCALE to vary problem size. In order to create undirected
and unweighted adjacency matrices without self-loops, we
merge the generated matrix with its transpose, ignore duplicate

5In the case of Graphulo kTruss, all intermediary tables use the same splits
as the input table since cloning a table preserves its splits.
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Fig. 3: Jaccard experiment processing time.

3-Truss Time Scaling
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2 A nnz( Partial Graphulo Graphulo Graphulo D4M D4M MTJ MTJ
P m2(A) | jccard(A))| Products | Overhead | 1 Tablet 2 Tablets | Tablet 2 Tablets 1 Tablet 2 Tablets
10 | 2.10x10% | 2.15x 105 | 1.01 x 10° 4.7x 2.97 2.14 3.36 2.99 1.76 1.72
11 4.52x10% | 7.07x10° | 3.10 x 10° 4.4x 8.46 5.29 1.01 x 10T 9.96 3.99 4.01
12 | 9.67x10% | 218 x10° | 9.29 x 108 43x | 2.52x 100 1.83x 10! | 3.22x 10T 3.16 x 107 | 1.29x 10T 1.32 x 10T
13 | 2.04x10° | 6.75x 105 | 2.71 x 107 40x | 7.42x107 5.30x 10T | 1.02x10Z 1.02x 102 | 5.68 x 10T  4.96 x 10!
14 | 4.26 x 10° | 2.02x 107 | 7.77 x 107 3.8x | 2.01 x10%7 1.51x10% | 3.34x10%2 3.33x 107 | 1.79 x 102 1.73 x 102

15 | 883 x10° | 6.07x 107 | 2.22x10°% 37x | 5.77x10% 4.46x10°% | 1.07 x 103 1.05 x 103
16 1.82x 105 | 1.77 x 108 | 6.20 x 108 35x | 1.68x10% 1.41 x 103
17 | 3.73x10% | 5.16 x 108 | 1.72 x 109 33x | 4.99 x 105  4.34 x 103
TABLE II: Jaccard experiment statistics. Graphulo is competitive and better scales due to low overhead.

2 A nnz( Partial Graphulo Graphulo Graphulo D4M D4M MTJ MTJ
oCP m02(A) | 3Tyuss(A)) | Products | Overhead | 1 Tablet 2 Tablets 1 Tablet 2 Tablets 1 Tablet 2 Tablets
10 | 2.10x 10% | 2.03 x 10* | 5.94 x 10° 2933x | 2.57x 107 1.63 x 10T 0.74 0.49 0.49 0.28
11 452 x10% | 4.35 x10% | 1.22x 107 280.7x | 6.78 x 10T  3.93 x 10T 1.42 0.98 0.72 0.60
12 | 9.67x10% | 9.20 x 107 | 5.45 x 107 5927x | 1.84 x 102 1.21 x 102 2.58 2.18 2.02 1.76
13 2.04x10° | 1.93x10° | 1.59 x 108 825.5x | 5.22x 102 3.72 x 102 6.16 6.09 5.74 5.44
14 | 426 x10° | 3.99x10° | 4.55 x 10® 1140.6x | 1.47x10° 1.10x10% | 1.52x 10T 1.38x 10T | 1.79 x 10T 1.75 x 10T

15 | 8.83x10° | 8.20x10° | 1.30 x 107 1582.5x | 3.97 x 103  3.29 x 10° | 5.65 x 10T 3.82 x 10T
16 | 1.82x10% | 1.67 x 10° | 3.62 x 10° 2167.0x | 1.22x10% 8.77 x 103

TABLE III: 3Truss experiment statistics. D4M and MTJ execute faster, assuming sufficient memory, due to high overhead.
Graphulo overhead is defined as how many times more entries Graphulo writes into Accumulo than D4M or MTJ. Runtimes are listed in seconds.

entries, and filter out the diagonal. These modifications slightly
change the input graphs’ edge count; see the nnz(A) column
in Tables II and III for exact counts.

Figures 3 and 4 plot the runtime for Graphulo, D4M,
and MTJ on 1 and 2 tablets and various problem sizes.
D4M’s sparse matrices and MTJ’s dense matrices exceed our
machine’s memory at SCALE 16 and 15, respectively.

Figure 3 indicates competitive Graphulo performance on the
Jaccard algorithm. Graphulo always outperforms D4M and
runs on par with MTJ for problem sizes that DAM and MTJ
can hold in memory. Figure 4 shows an order of magnitude
faster DAM and MTJ performance on the 3Truss algorithm.

In order to analyze the disparity in performance between
Jaccard and 3Truss, we present additional experimental in-
formation in Tables II and III. The “nnz(Jaccard(A))” and
“nnz(3Truss(A))” columns list the number of nonzero entries

in the result from their algorithms. D4M and MTJ write exactly
this many entries into Accumulo because they compute the
complete result in memory and insert it as is.

Recall that a partial product is a multiplied value a*b com-
puted during a matrix multiplication. The “Partial Products”
column in Tables IT and III lists the total number of partial
products computed during each algorithm (not including en-
tries filtered out by Jaccard’s strict upper triangle filter and
kTruss’s no-diagonal filter). Graphulo writes exactly this many
entries into Accumulo because it implements the outer product
matrix multiply algorithm; Graphulo writes individual partial
products to Accumulo and defers summing them to a & iterator
that runs during compactions and scans. In contrast, D4M and
MT]J pre-sum partial products before writing to Accumulo in a
manner similar to the inner product algorithm. Unfortunately
an inner product formulation that pre-sums partial products
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is infeasible for Graphulo because, unlike a main-memory
system, Graphulo does not assume it can hold a whole table
in memory and would therefore need to re-read an input table
many times, including many re-reads from disk.

We define the Graphulo overhead as how many times
more entries Graphulo writes into Accumulo than D4M or
MT]J. For reference, the Graphulo overhead of multiplying
two power law matrices is 2.5-3x, decreasing with matrix
size [9]. Table II shows that Jaccard has a similar Graphulo
overhead of 3-5x, also decreasing with matrix size. At this low
an overhead, it makes sense that Graphulo outperforms D4M
and MT]J because the performance gain from computing inside
Accumulo outweighs the cost of writing additional entries.

Table III shows a drastically different Graphulo overhead
for 3Truss of 280-2200x, increasing with matrix size. The
source of the additional overhead is that Graphulo writes out
an intermediary table at each iteration, including all partial
products of A A before applying the filter in lines 6 and 7 of
Algorithm 2. D4M and MTJ do not need to write intermediary
values since they hold them in memory. At this high an
overhead, D4M and MTJ are better places to execute 3Truss.

In terms of weak and strong scaling, Graphulo actually
performs quite well if we account for its overhead. Figure 5
plots Graphulo’s processing rate during Jaccard and 3Truss.
We express processing rate as the number of partial products
written to Accumulo divided by algorithm runtime so that we
can compare processing rate to Accumulo insert rates.

For reference, the largest cited peak single-node write rates
into Accumulo are on the order of 400k per second [29]. We
believe the reason why the Jaccard 2-tablet rate exceeds the
single-node record is due to its fused MxM call: writing partial
products from 3 multiplications while reading a single table.

Both algorithms show relatively horizontal lines, indicating
constant processing rate as problem size varies. Two-tablet
rates are about 1.5 times greater than one-tablet rates, indicat-
ing a potential for strong scaling that a multi-node experiment
could further evaluate in future work.

V. RELATED WORK

One way to characterize the difference between Jaccard and
kTruss’s performance inside Accumulo is as the difference
between data- and state-parallel algorithms. A data-parallel
operation easily runs on data partitioned among several threads
or machines. A state-parallel operation runs more efficiently
on data gathered in one location, either because of data
correlation, the need for global calculation, or the presence of
iteration which induces communication between every round.

Many distributed databases, Accumulo included, efficiently
run data-parallel workloads but are poorly suited to state-
parallel workloads. The solution proposed in Section 4.3 of
the UDA-GIST framework [30]—to gather the entire state into
a single node during the iterative portion of the workflow—is
essentially the solution that D4M and MTJ implement.

The Graphulo Reduce implementation is similar in design to
the GLADE aggregation framework for implementing gener-
alized linear aggregates (GLAs) inside parallel databases [31].
Both follow a pattern of accumulating information inside a
thread-local “reducer object” and coalescing the objects from
multiple threads and nodes by serializing and merging them,
in order to gather a fully reduced result at one location.

Multi-platform query optimizers such as Rheem [32] and
Musketeer [33] evaluate equivalent implementations of an
algorithm on different data processing environments, in order
to select the best one relative to a cost model for execution.
It seems clear that a multi-platform optimizer could evaluate
and compare two plans for executing a graph algorithm, one
using Graphulo and one using a main-memory system. Less
clear is whether the overhead conditions described in Section
IV, under which execution on one system outperforms the
other, could be encoded into a cost model. Should such a cost
model exist, we could spare developers the burden of analyzing
algorithms in order to determine the system that executes them
best. The BigDAWG polystore framework takes a different ap-
proach, introducing ‘scope’ clauses for developers to manually
specify the system for executing portions of an algorithm and
‘cast’ clauses for moving data between system [34].

Cheung et al applied a program synthesis technique called
verified lifting in order to recognize recognize fragments of
legacy code which operate on data obtained from a database
query and could be pushed into the database in order to
achieve better performance [35]. Similar to multi-platform
query optimizers, verified lifting facilitates automatic rewriting
of algorithm fragments to execute on the best-suited system,
assuming an accurate cost model. Their difference is that opti-
mizers take higher-level queries as input, usually in a form that
can be parsed into a logical algebra, whereas verified lifting
abstracts a high-level specification from general-purpose code.

PipeGen is an initiative to reduce the cost of data trans-
fer between systems by generating efficient binary transfer
protocols and injecting them into systems’ import and export
facilities [36]. Should efforts like PipeGen gain momentum,
computing in specialized external systems may gain feasibility
for algorithms with otherwise prohibitive data transfer cost.



VI. CONCLUSION
In this work we detail how Graphulo’s design enables exe-

cuting the GraphBLAS kernels inside the Accumulo database.
We cover the implementation of two graph algorithms and
show how to optimize them for in-database execution via
kernel fusion. Experiments comparing their performance to
two main-memory matrix math systems show that I/O, in terms
of database reads and writes, is a critical factor for determining
whether an algorithm executes best inside a database or in an
external system, assuming enough available memory.

In future work we aim to extend our analysis to a multi-
node setting and include additional systems such as Spark and
CombBLAS. Characterizing the traits of algorithms that deter-
mine their performance on different data processing systems
is an exciting first step toward robust cross-system algorithm

optimization, using each system where it performs best.
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