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Abstract— Graph algorithms are increasingly used in 

applications that exploit large databases. However, conventional 

processor architectures are inadequate for handling the 

throughput and memory requirements of graph computation. 

Lincoln Laboratory’s graph-processor architecture represents a 

rethinking of parallel architectures for graph problems. Our 

processor utilizes innovations that include a sparse matrix-based 

graph instruction set, a cacheless memory system, accelerator-

based architecture, a systolic sorter, high-bandwidth multi-

dimensional toroidal communication network, and randomized 

communications.  A field-programmable gate array (FPGA) 

prototype of the new graph processor has been developed with 

significant performance enhancement over conventional 

processors in graph computational throughput. 
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I. INTRODUCTION 

Many problems in computation and data analysis can be 
represented by graphs and analyzed using traditional graph 
analysis techniques. A graph, which is defined as a set of 
vertices connected by edges, as shown on the left in Figure 1, 
adapts well to presenting data and relationships. In general, 
graphs can also be represented as sparse matrices as shown in 
Figure 1 [1, 2] where an edge from vertex i to vertex j is 
represented as a matrix element in row i and column j. 

Fig. 1. Sparse matrix representation of graph. 

 

 

 

 

 

 

Increasingly, commercial and government applications are 
making use of these techniques [3] to analyze large databases 
that contain billions of vertices and edges requiring petabytes 
of storage capacity [4, 5, 6, 7, 8].  The datasets span a wide 
variety of application domains and contain (but not limited to) 
information from airborne sensor data, consumer purchasing 
patterns, financial market transactions, or bioinformatics data.  
For example, an analyst might be interested in spotting a cyber 

attack, elucidating a virus genealogy, or identifying a market 
niche. 

For graph database applications, conventional processors 
perform poorly compared to non-graph applications because 
conventional processor architectures are generally not well 
matched to the flow of the graph computation. For example, 
most modern processors utilize cache-based memory in order 
to take advantage of highly localized memory access patterns. 
However, memory access patterns associated with graph 
processing are often random in nature and can result in high 
cache miss rates. In addition, graph algorithms incur significant 
computational overhead for index manipulation tasks required 
by graph traversing queries. 

With the sparse-matrix-based graph representation, 
standard linear algebra matrix operations can be used to 
implement most graph algorithms. Furthermore, for 
benchmarking graph computation, sparse matrix operations can 
be used for estimating graph algorithm performance. Figure 2 
shows an example of single-core computational throughput 
differences between dense-matrix processing, which has 
motivated most recent high-performance computing (HPC) 
processor architecture innovations, and sparse matrix graph 
processing [9, 10]. Shown in blue is a dense matrix-matrix 
multiply kernel running on single core PowerPC and Intel 
Xeon processors. In contrast, shown in red is a sparse matrix-
matrix multiply kernel running on identical processors. As 
illustrated in the plot, the sparse matrix throughput is 
approximately 1000 times lower, which is consistent with 
typical performance seen by graph analysis applications. 

Fig. 2.  Single core computational throughput differences between 

conventional and graph processing. 
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 Parallel processors have often been used to speed up large 
conventional computing tasks. A parallel processor generally 
consists of multicore processors that are connected through a 
communication network, such that different portions of the 
computations can be done on different processors. For many 
scientific computing applications, these processors provide 
significant speedup over a single processor. However, large 
graph processing tasks often run inefficiently on conventional 
parallel processors. The speedup often levels off after only a 
small number of processors are utilized because the computing 
patterns for graph algorithms require much more 
communication between processor nodes than conventional, 
highly localized processing requires. The limited 
communication bandwidth of conventional parallel processors 
generally cannot keep pace with the demands of graph 
algorithms. In the past, numerous attempts have been made to 
speed up graph computations by optimizing processor 
architecture. Parallel processors such as Cray XMT and 
Thinking Machine’s Connection Machine are example 
attempts to speed up large graph processing with specialized 
parallel architectures. However, inherent difficulties associated 
with graph processing, including distributed memory access, 
indices-related computation, and interprocessor 
communication, have limited the performance gains. 

Lincoln Laboratory has been developing a promising new 
processor architecture that will deliver orders of magnitude 
higher computational throughput and power efficiency over the 
best commercial alternatives for large graph problems.  The 
FPGA version of our processor is measured to be 10 times 
faster than conventional computers at the 100 Watt scale, and 
is projected to be over 100 times faster at the 1 Megawatt scale.  
Furthermore, the application-specific integrated circuit (ASIC) 
version of our processor is projected to be over 100 times faster 
at the 100 Watt scale and over 1000 times faster at the 1 
Megawatt scale. 

II. GRAPH PROCESSOR 

The new graph processor architecture represents a 
fundamental rethinking of the computer architecture for 
optimizing graph processing [9, 10, 13]. The instruction set is 
based on the emerging GraphBLAS standard [11, 12] that 
provides a common sparse matrix interface for graph analytics. 
The individual processor node— an architecture that is a great 
departure from the conventional von Neumann architecture—
has local cacheless memory. All data computations, indices-
related computations, and memory operations are handled by 
specialized accelerator modules rather than by the central 
processing unit (CPU). The processor nodes utilize new, 
efficient message-routing algorithms that are statistically 
optimized for communicating very small packets of data such 
as sparse matrix elements or partial products. The processor 
hardware design is also optimized for high-bandwidth six-
dimensional (6D) toroidal communication network. Detailed 
analysis and simulations as well as a small-scale prototype 
have demonstrated up to several orders-of-magnitude increase 
in computational throughput and power efficiency for running 
complex graph algorithms on large distributed databases. 

A. Parallel Graph Processor Architecture Based on a 

Sparse Matrix Algebra Instruction Set 

 

There are a number of advantages in implementing the 
graph algorithms as sparse matrix operations. One advantage is 
that the number of lines of code is significantly reduced in 
comparison to the amount of code required by traditional 
software that directly implements graph algorithms using 
conventional instruction sets. However, while this advantage 
can increase software development efficiency, it does not 
necessarily result in higher computational throughput in 
conventional processors. 

Perhaps a more important advantage of implementing 
graph algorithms in sparse matrix operations is that it is much 
easier to design a parallel processor that computes sparse 
matrix operations rather than general graph algorithms. The 
instruction set can be vastly simplified because implementing 
sparse matrix–based graph algorithms requires surprisingly few 
base instructions. Another reason sparse matrix operations 
facilitate the designing of a processor architecture is that it is 
much easier to visualize the parallel computation and data 
movement of sparse matrix operations running on parallel 
processors. This advantage enables developers to come up with 
highly efficient architectures and hardware designs with less 
effort. 

The graph processor is a highly specialized parallel 
processor optimized for distributed sparse matrix operations. 
The processor is targeted for implementing graph algorithms 
(converted to sparse matrix format) for analyzing large 
databases. Because large matrices do not fit into a single 
processor’s memory and require more throughput than the 
single processor can provide, the approach is to distribute the 
large matrices over many processor nodes. Figure 4 shows the 
high-level architecture of the parallel processor. It consists of 
an array of specialized sparse matrix processors called node 
processors. The node processors are attached to the global 
communication network, and they are also attached to the 
global control processor through the global control bus. 

Although the generic high-level architecture in Figure 3 
appears quite similar to that of a conventional multiprocessor 
system, how it is implemented is significantly different from 
conventional parallel architecture implementations. One of the 
main differences is that the processor’s instruction set is based 
on sparse matrix algebra operations [2] rather than on 
conventional instruction sets. Important instruction kernels 
include sparse matrix-matrix multiply, addition, subtraction, 
and division operations shown in Table 1. Individual element-
level operators within these matrix operations, such as multiply 
and accumulate operators in the matrix-multiply operation, 
often need to be replaced with other arithmetic or logical 
operators, such as maximum, minimum, AND, OR, XOR, etc., 
in order to implement general graph algorithms. Numerous 
graph algorithms have already been converted to sparse matrix 
operations [2, 4, 5]. 

 



TABLE I.  SPARSE MATRIX ALGEBRA-BASED PROCESSOR INSTRUCTION 

SET 

 

 

OPERATION 

 

COMMENTS 

 

C = A +.* B 

 

Matrix-matrix multiply operation is the 

throughput driver for many important 

benchmark graph algorithms. Processor 

architecture is highly optimized for this 

operation. 

 

C = A .± B 

C = A .* B 

C = A ./ B 

 
Dot operations are performed 

within local memory. 

 

B = op(k, A) 

 

Operation with matrix and constant. This 

operation can also be used to redistribute 

matrix and sum columns or rows. 

 

 

Fig. 3. High level graph processor architecture. 

 

 

 

 

 

 

 

 

 

The other main differentiating feature of the new 
architecture is the high-bandwidth, low-power communication 
network that is tailored for communicating small messages. A 
typical message contains one matrix element or one partial 
product, which consists of the data value, row index, and 
column index. In contrast, a conventional communication 
network tries to maximize the message sizes in order to 
minimize the overhead associated with moving the data. A 
newly developed statistical routing algorithm with small 
message sizes greatly improves the communication throughput 
for graph processing. In addition, the bandwidth of the network 
hardware itself is significantly larger compared to the 

bandwidth of conventional parallel processors; this large 
bandwidth is needed to handle the demands of graph 
processing. 

B. Accelerator-Based Node Processor Architecture 

The architecture of the Laboratory’s individual node 
processor is also a great departure from conventional cache-
based von Neumann machines, which perform all 
computations in the CPU. This new architecture consists of a 
number of specialized modules, including matrix reader, matrix 
writer, sorter, arithmetic logic unit (ALU), and communication 
modules, as shown in Figure 4 [9, 10, 13]. The CPU is mainly 
used to provide the control and timing for the sparse matrix 
instructions. Most of the computation, communication, and 
memory operations are performed by the specialized modules 
that are designed to optimally perform the given tasks. There is 
no cache because the high cache miss rates slow down graph 
processing. In general, multiple modules are utilized 
simultaneously in performing sparse matrix computations. 

The architecture based on the specialized accelerator 
module provides much higher computational throughput than 
the conventional von Neumann processor architecture by 
enabling highly parallel pipelined computations. In a 
conventional processor, the microprocessor is used to compute 
all the processing tasks, such as memory access, 
communication-related processing, arithmetic and logical 
operations, and control. These processing tasks are often done 
serially and take many clock cycles to perform, lowering the 
overall computational throughput. In the new architecture, 
these tasks are performed in parallel by separate specialized 
accelerator modules. These accelerator modules are designed 
for fast throughput using highly customized architectures. 
Ideally, they would be designed to keep up with the fastest data 
rate possible, which is processing one matrix element or one 
partial product within a single clock cycle in effective 
throughput. Further speedup may be gained by having multiple 
parallel versions of these modules to process multiple matrix 
elements or partial products per clock cycle. 

The matrix reader and writer modules are designed to 
efficiently read and write the matrix data from the memory. 
The example formats include compressed sparse row (CSR), 
compressed sparse column (CSC), and coordinate (also called 
tuple) format (Figure 5). In the coordinate format, the data, row 
index, and column index are stored as triple pairs.  In order to 
conserve storage space and improve lookup performance, in 
the CSR format, the element data and column index are stored 
as pairs in an array format. An additional array stores the row 
start address for each column so that these pointers can be used 
to look up the memory locations in which the rows are stored. 
The CSC format is similar except the columns are compressed 
instead of the rows.  

Fig. 4. Node processor architecture utilizing accelator modules. 

 

 

 

 

 



  

Fig. 5. Three formats for sparse matrix storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The matrix reader and writer modules are designed so that 
all the overhead operations—such as formatting matrix element 
data and indices for writing, generating pointer arrays for CSC 
and CSR for writing, and generating matrix element indices for 
reading—are performed automatically without requiring 
additional instructions. In this way, complexity associated with 
sparse matrix read and write operations is minimized, and 
memory interface operations are accelerated significantly. 

The ALU module is designed to operate on the stream of 
sparse matrix elements or partial products instead of operating 
with a register file as in conventional processor architectures. 
The streaming method eliminates register load operations and 
increases the computational throughput. It generally performs 
designated arithmetic or logical operations on the data stream, 
depending on the indices. For example, the ALU module may 
accumulate successive matrix elements only if the element 
indices match exactly. Because these matrix operations 
perform computations only when the indices match, this 
feature is useful for sparse-matrix add and multiply operations. 

The communications module handles the communication 
between processor nodes. It takes the matrix element or partial 
product and makes a communication message that includes the 
matrix element in coordinate format and a header that contains 
the destination processor address. The header may also contain 
error detection and correction bits and other relevant 
information, such as the priority of the message. The 
communication messages are then sent to the global 
communication network and are forwarded to the destination 
nodes. The communications module also decodes the received 
messages, performs error correction, and outputs the matrix 
element or partial product into the node in coordinate format. 

The memory for the node processor can be implemented 
with various types of memory including static random-access 

memory (SRAM), dynamic RAM, and synchronous DRAM. 
Nonvolatile memory, such as Flash memory, may be used for 
long-term storage and for instances when the storage 
requirement is high. 

The node controller module is responsible for setting up 
and coordinating the sparse matrix operations. Before a sparse 
matrix operation, the controller module loads the control 
variables into the control registers and control memory of the 
accelerator modules by using the local control bus. The control 
variables include types of sparse matrix operations to be 
performed, matrix memory storage locations, matrix 
distribution mapping, and other relevant information. The 
controller module also performs timing and control. The node 
controller module can be implemented with a conventional 
general-purpose microprocessor. This particular 
microprocessor may also have a cache since the processing is 
mostly conventional processing. The node controller can also 
perform other processing tasks that are not well supported by 
the accelerator modules, such as creating an identity matrix and 
checking to see if a matrix is empty across all processor nodes. 
The controller module is tied to the global control bus, which is 
used to load the data and programs to and from the nodes, and 
to perform the global computation process control. 

The sorter module is used for sorting the matrix element 
indices for storage and for finding matching element indices 
during matrix operations. It is one of the most critical modules 
in graph processing because more than 95% of computational 
throughput can be associated with the sorting of indices. The 
sparse matrix and graph operations consist mainly of figuring 
out which element or partial product should be operated on. In 
contrast, relatively few actual element-level operations get 
performed. In order to meet the computational throughput 
requirement, the systolic k-way systolic merge sorter 

 



architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 

Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 

communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 

MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 8. Graph processor prototype performance measurements and projections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The performance of the FPGA prototype processor was 
measured using sparse matrix-matrix multiply operations on 
power law matrices. Figure 8 shows the measured (1, 2, 4, and 
8 nodes) and projected (>8 nodes) performance in terms of 
traversed edges per second vs. power consumption of the 
prototype processors with various number of nodes.  For 
projected performance, a detailed simulation of the architecture 
was performed and bit-level accurate simulation models were 
used to simulate up to 1024-node processor running sparse 
matrix-matrix multiply kernels.  The projected and measured 
performances were identical for the prototype processors with 
8 or less nodes.  Also plotted are performances of Cray XK7 
and XT4 supercomputer systems for comparison.  [16, 17] 

The FPGA prototype processor has an order of magnitude 
higher measured power efficiency compared to conventional 
processors at small number of nodes.  At higher number of 
nodes, projected power efficiency difference increases to 
several orders of magnitude due to the linear speedup of 
computational throughput. There are multiple features of the 
architecture enabling this linear speedup.  One is the sufficient 
communication bandwidth between processor nodes enabled 
by the high-bandwidth network and the advanced randomized 
packet routing algorithm.  Another factor is the highly-efficient 
load balancing algorithm.  For the graph processor to run 
efficiently, it needs to balance the memory usage and 
processing among all the nodes.  That means the number of 
sparse matrix elements stored, partial products generated, and 
partial products accumulated in the processor nodes have to be 
well balanced with other nodes.  Numerous advanced 

algorithms were developed to ensure optimal memory and 
processing load balancing. [9, 10, 13] 

In the future, even higher throughput performance and 
power efficiency can be gained by using ASICs instead of 
FPGAs, as shown with the green performance line in Figure 8.  
Much higher processor circuit density and power efficiency 
can be enabled by ASIC.  Memory performance and power 
efficiency can be increased by going from DDR3 SDRAMs to 
DDR4 SDRAMs.  For optical communications, utilizing 
wavelength division multiplexing (WDM) low-power silicon 
optic technology can significantly increase communication bit 
rate per fiber and reduce communications power consumption 
[18, 19]. 

IV. CONCLUSION 

MIT Lincoln Laboratory’s graph-processor architecture 
represents a fundamental rethinking of architectures for graphs.  
It utilizes multiple innovations to overcome shortcomings of 
conventional architectures, including: a sparse matrix-based 
graph instruction set, an accelerator-based architecture, a high-
performance systolic sorter, randomized communications, a 
cache-less memory system, and a high-bandwidth multi-
dimensional communication network.   

MIT Lincoln Laboratory has developed a graph-processor 
prototype based on commercial FPGA technology.  The sparse 
matrix-matrix multiply, which is one of the most important 
kernels in graph analytics, has been demonstrated on an 8-node 
prototype processor and the work is under way to develop 
much larger prototype systems.  The current small-scale 
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prototype is designed to demonstrate both the scalability of the 
architecture as well as unprecedented graph algorithm 
throughput and power efficiency.  The measured power 
efficiency at small number of nodes is an order of magnitude 
higher than commercial processors, and up to several orders of 
magnitude higher performance is projected at higher node 
counts. In the future, this implementation can be further 
optimized using a custom ASIC implementation, further 
enhancing computational throughput and power efficiency. 
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