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Abstract

In this thesis, I designed and implemented a monitoring framework for the BigDawg
federated database system which maintains performance information on benchmark
queries. As environmental conditions change, the monitoring framework updates ex-
isting performance information to match current conditions. Using this information,
the monitoring system can determine the optimal query execution plan for similar
incoming queries. A series of test queries were run to assess whether the system
correctly determines the optimal plans for such queries.
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Chapter 1

Introduction

BigDawg is a system that utilizes a federated architecture to enable query processing

over multiple databases, where each of the underlying storage engines may have a

distinct data model. One important component of BigDawg is a monitoring system

which keeps track of past queries’ runtime information and utilizes this information

to choose the best query plan for an incoming query. The main way the monitoring

system associates incoming queries with benchmark queries is by utilizing a signature

system.

Chapter two describes the architecture of the the BigDawg system, focusing on

the design decisions of the monitoring system and the signature system in particular.

Chapter three analyzes the signature system, describing what kinds of queries

the system works well for and the potential overhead of the system. Possible future

extensions to the project are also discussed.

1.1 Motivations for BigDawg

It has become abundantly clear that there are a multitude of different features that

people desire in their data storage engine. Currently, there are a variety of different

storage engines that each have their own costs and benefits. For common Javascript

applications that use a web browser paired with a backend database management

system (DBMS), NoSQL engines tend to be well-suited. Similarly, relational col-
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umn stores are the engine of choice for data warehouses while main memory SQL

(NewSQL) systems are best suited for online transaction processing. In general,

there needs to be a variety of different storage engines to satisfy different types of

applications.

While the applications discussed so far are well suited to a single type of storage

engine, there are many other applications that would be best implemented with a

combination of different storage engines. For example, the Intel Science and Technol-

ogy Center (ISTC) has built a medical application that utilizes the MIMIC II dataset

[1]. This dataset contains patient metadata, text data (notes taken by medical pro-

fessionals), semi-structured data (prescriptions and lab results), and waveform data

(measurements such as heart rate from bedside devices). A medical application that

utilizes this dataset would ideally support standard SQL analytics, complex analytics

(such as computing the FFT of a patient’s waveform data and comparing it to what

is considered normal), text search (such as looking at patients that medical profes-

sions have used specific terms for in their notes), and real-time monitoring (such as

detecting abnormal heart rhythms).

Although it is possible to implement such an application using a single storage

engine, it would be much more efficient to utilize several different storage engines.

Thus, to support datasets such as MIMIC II, we created a federated database system

called BigDawg [2]. For the MIMIC II dataset, BigDawg uses SciDB to store the

historical time series data, Accumulo for text, Postgres for patient metadata, and

S-Store to store and process the real-time waveform data. Any queries that depend

on multiple storage engines will query all necessary storage engines. For example, to

compare current waveforms to historical ones, one will query S-Store and SciDB. To

find metadata associated with particular kinds of prescriptions or doctor’s notes, one

will query Accumulo and Postgres. To run analytics on particular cohorts of patients,

one would query Postgres and SciDB.

14



1.2 Overview of BigDawg

BigDawg is designed with three main goals in mind. First, BigDawg must provide lo-

cation transparency. This transparency enables users to pose declarative queries that

span several data management systems without becoming mired in the underlying

data’s present location or how to assign work to each storage engine. The architec-

ture to support such location transparency is to write a 𝑠ℎ𝑖𝑚 for each storage engine

that translates a query/update in the federation query language into the language

supported by the underlying storage engine. We term such a location transparent

federation an island of information. Since it is unlikely that a single island will offer

the full functionality of all of the federation’s database engines, our framework is

designed for multi-island operations. Likewise, a storage engine is not restricted to a

single island.

Secondly, each island will only support the intersection of the functionality of its

composite storage engines. Hence, it is easy for users to express their queries in a

single query language over multiple data stores. On the other hand, users do not want

to lose any of the functionality their databases provided before federation. To provide

the union of the capabilities of the federation’s underlying storage engines, BigDawg

offers degenerate islands. These islands have the full functionality of a single storage

engine.

The third point we discuss concerns multiple islands of information over the same

storage engines. In BigDawg, we have multiple groups working on islands. One is

using a relational model [3] and the second is using associative arrays [4]. Since both

islands include the same data (MIMIC II) stored in the same engines, we will have

to support multiple islands over the same data. In general, we must expect multiple

islands of information on overlapping subsets of storage engines.

Due to the above points, we define an island of information as:

∙ A data model that will likely exclude features that are difficult to map to un-

derlying systems.

∙ A query language on that data model.
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∙ A collection of storage engines for which shims exist to support the data model

and query language.

In general, we expect to have a substantial number of islands defined on a collection

of storage engines. There may be multiple islands, each with a different data model

and query language. There will also be islands consisting of the full capabilities an

underlying storage engine. Such a multi-island architecture is shown in Figure B-1.

BigDawg utilizes a scope-cast facility for queries that span multiple islands. When

a user command cannot be supported by a single island system, BigDawg allows the

user to break his query into multiple island languages - each of which is a subquery.

To specify which island a subquery is intended for, the user indicates a SCOPE spec-

ification. A cross-island query will have multiple scopes to indicate what subqueries

go where. In addition, when multiple islands support disparate storage engines, we

will have to move datasets or intermediate results from one island system to another

as needed to process a complete query. The full functionality of a multi-island system

requires a CAST operation to perform such data movement. A user may insert a

CAST operation to denote when an object should be accessed with a given set of

semantics.

For example, consider a cross-island operation, such as a join between an object

in an array island and one in a table island. Here, we can CAST the array to the

table island and do a relational join or we can do the converse and perform an array

join. Since the each of these options produces a different output, a user must specify

the semantics he desires using SCOPE and CAST commands.

1.3 Query Optimization

For the purposes of this thesis, we will focus only on intra-island queries since our

monitoring system is mainly utilized for intra-island query optimization. Specifically,

we focus on relatively cheap operations. For such operations, we assume a general

rule that local computation should always be done where possible. This is because it

is expensive to move an object between engines because it will generally have to be
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reformatted and/or converted from one representation to another.

We divide any query that spans multiple islands into stages. In Stage 1, we

perform all possible local computations that do not require any data movement. At

the end of Stage 1, we are left with computations on collections of objects at different

sites. Divide such computations into independent subsets consisting of a collection

of objects 𝑂1, ..., 𝑂𝑘 along with "joining" specifications for how the objects are put

together and computations on the output of such operations. Although the entire rest

of the query can be one such collection, we look for collections of size two initially.

Effectively, we look for a "bushy" tree of such computations, which will often be

unique. There will be 𝐿 such collections, each operating on non-overlapping sets of

objects. In parallel at Stage 2, perform each of these 𝐿 computations.

For each collection, pick a storage engine, 𝐸, and move the 𝑂1, ..., 𝑂𝑘 objects to 𝐸

and perform the computation at 𝐸. Continue with additional stages until the query

is "solved". In this case, the fundamental query optimization decision is the choice

of 𝐸 for each collection.

1.4 Overview of the Monitoring System

The purpose of the monitoring system is to determine the choice of the storage en-

gine, 𝐸, for each collection of objects. This system has two modes, training and

production. In training mode, BigDawg has the liberty to run an operation at each

local engine that contains data for the subquery and record the elapsed time in a

BigDawg database. If a given (sub)query is run at these local engines, then BigDawg

can identify the best location for this operation. Hence, training mode is effectively

a training period where queries are run in multiple places and the best one location

identified.

Since it is likely that many similar queries will be run over time, we construct a

signature for each query and store these signatures in the BigDawg database noted

above. Any similar queries we encounter in the future, which match an existing

signature, do not need to use training mode, since the best location has already been
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identified.

If the federation is in production mode, then the system simply chooses the storage

engine arbitrarily for newly encountered queries. Over time, it will run the query with

each of the other viable engines. Thus, the best location will be identified over a period

of time rather than immediately before running the query.

We expect any given federation to be in production mode all the time or to start

in training mode and then shift to production mode. In either case, we assemble a

database of subqueries, their signatures, and their timings on various nodes. Over

time, the system builds up a collection of queries, their signature, their elapsed time

and what node ran them.
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Chapter 2

System Architecture

The BigDawg system has four components: the query planning module (Planner), the

performance monitoring module (Monitor), the data migration module (Migrator),

and the query execution module (Executor). When BigDawg receives an incoming

query, the Planner parses the query and creates a set of viable query plan trees with

possible engines for each collection of objects. The Planner then passes these trees to

the Monitor which uses existing performance information to determine the tree with

the best engine for each collection of objects. This tree is given to the Executor which

figures out how to best join the collections of objects and then executes the query,

using the Migrator to move data from engine to engine when the plan calls for it. See

Figure B-2 for a visual overview of the organization and workflow of the system.

In this section, I provide an overview of how each of the components works and

focus on the design decisions of the Monitor.

2.1 Migrator

The Migrator provides efficient data migration between databases incorporated into

BigDawg. The most generic approach to physical data migration is via the CSV

format. Many databases support bulk loading as well as export of data in a CSV

format. However, this process is compute bound, with parsing (finding new line and

field delimiters) and deserialization (transformation from text to binary representa-
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tion) constituting the biggest consumers of CPU cycles. CSV migration is the easiest

approach but not the most efficient one.

Another approach is to migrate data using a binary format. Since there are many

different binary formats used by databases, this approach requires intermediate binary

transformation. Binary transformation also requires conversion of data types. For

example, SciDB’s data types represent a subset of PostgreSQL’s data types and the

mapping between the data types has to be specified explicitly.

Currently, the Migrator supports both variants and more testing needs to be

done before determining the best format for each pair of databases. In addition to

choosing the data format to migrate between databases, the Migrator also utilizes

parallelization to decrease the loading time. It does this by exporting data in chunks

from one database and loading them to another one in parallel.

The data migration process is also adaptive. After each migration, the Migrator

reports fine-grained metrics to the Monitor. Later on, the Migrator retrieves the

existing statistics and uses them to determine the optimal level of parallelism as well

as the current best data format.

2.2 Planner

The Planner produces viable execution plans for a given query. A complete work

cycle of the planner consists of three steps: analyzing the incoming query from the

user, producing an optimized execution plan using the Monitor, and dispatching the

plans to the Executer. For this section, I will discuss how the Planner handles intra-

island queries. This is because the Planner breaks inter-island queries into constituent

intra-island queries.

The Planner enumerates viable execution plans by iteratively constructing them

into a tree structure which we denote as a Query Tree. In a Query Tree, each node

represents either a piece of data or the result of a database-specific action (DSA),

which entails executing a sub-query of the input query on a specific database in-

stance. Examples of such sub-query include transmitting data, filtering according to
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predicates and receiving and joining data. Edges represent the dependencies between

the nodes.

To construct a forest of Query Trees that executes an input query, the Planner

first converts the input query into a nested Abstract Syntax Tree (AST) according

to the island scopes specified by the input query at each nested layer. Then the

Planner breaks down the nested AST into sub-query tasks (such as filtering predicates,

grouping relational tables by columns, or linear algebra functions). For each sub-query

task, the Planner breaks the task into viable sets of DSAs and adds those DSAs as

children nodes. Specifically, at the first iteration where the planner grows the Query

Tree, the planner selects chunks of data from the innermost nested layer of the AST

that relates to a viable DSA and makes partial Query Trees from those viable DSAs.

At each subsequent iteration, the planner either combines two partial Query Trees

from prior iterations to come up with a new partial Query Tree or adds a new DSA

derived from the remaining sub-query tasks to a previously constructed Query Tree.

Branches on the Query Trees that are strictly worse than others are pruned. For

example, a branch is pruned if it ships data to an irrelevant database that does not

provide extra functionality.

After constructing a forest of Query Trees, the Planner queries the monitor for

performance information on each Query Tree. Based on the results from the Monitor,

the Planner chooses the best Query Tree and sends it to the Executor to be executed.

If no similar queries can be found in the Monitor, the Planner adds the query as a

new benchmark for the Monitor. This way, if the query is encountered in the future,

the Planner will have performance information for the query. If in training mode,

the Monitor then tries each Query Tree and gives the Planner the fastest, while in

production mode, the Planner chooses a Query Tree to run arbitrarily.

2.3 Executor

The Executor determines how to perform each cross engine query and executes a

given query plan. This module takes as input a fully-formed Query Tree.
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For a given Query Tree, the Executor begins by executing the leaf nodes of the tree

which represent queries that depend on a single database system. As these actions

complete, the Executor checks if the parents of the leaf nodes have had all of their

dependencies satisfied. For any node that has its dependencies met, the Executor

uses the Migrator to give the node the results of each of its dependencies.

After successfully migrating all necessary dependencies, the Executor determines

how to perform the cross engine predicate on those dependencies. To this end, the

Executor looks up the size of each operand and retrieves histogram information from

the local system catalogs of each system. Using this information, it decides how to do

each cross engine predicate. For joins, the Executor decides among moving the first

operand, moving the second operand, using a bloom-filter semi-join, using a shuffle-

join, etc. When the Executor has successfully run all of the nodes of the query plan

tree, it sends the total running time to the Monitor.

2.4 Monitor

The Monitor maintains performance information on past intra-island queries, matches

new intra-island queries to similar past queries, and stores migration metrics. For

storing migration metrics, the Monitor simply maintains an API for storing and

retrieving the metrics. The majority of the Monitor’s functionality is devoted to

query performance information.

Whenever BigDawg encounters a new intra-island query that is not similar to any

previously seen queries, the Monitor creates an entry for each of the Query Trees

generated by the Planner. Specifically, given an ordered list of Query Trees for a

query, the Monitor stores the following for each Query Tree:

∙ The index of the Query Tree in the ordered list provided by the Planner.

∙ The query used to make the Query Trees.

∙ A signature for the query.

∙ The last time the Query Tree was run.
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∙ The most recent cost, in terms of elapsed time, of running the Query Tree.

Since the Planner constructs Query Trees deterministically from a query together

with a signature, the index of each Query Tree is fixed. Thus, it suffices to store the

query, the signature, and the index to uniquely define each Query Tree.

To determine whether an incoming query is a new query or is similar enough to

previous queries, the system uses signatures composed of the following:

∙ A tree representing the structure of the query (sig-1).

∙ A set of the objects referenced and the predicates involved (sig-2).

∙ A set of the constants in the query (sig-3).

Using these components, the system outputs a number from 0 to 1 representing

how close the two signatures are where 0 means the two are identical and 1 means

they are completely different. Specifically, the system first determines the tree edit

distance, 𝑑, between the two queries’ sig-1s using a robust tree edit distance algorithm

[5]. It divides this distance by the maximum possible tree edit distance for the two

sig-1s. To do this, the system finds the cost of constructing each tree, 𝑑1 and 𝑑2,

from scratch. Using these 3 distances, the system computes 𝑡1 = 𝑑
max(𝑑1,𝑑2)

, which is

the tree edit distance divided by the maximum possible tree edit distance for the two

sig-1s.

Next, the system determines the number of predicates, 𝑠, shared between the two

queries’ sig-2s as well as the maximum 𝑙𝑚𝑎𝑥 of the number of predicates in both sig-

2s. Using these numbers, it computes 𝑡2 =
𝑠

𝑙𝑚𝑎𝑥
which is the proportion of predicates

shared between the two queries.

For sig-3, the Monitor determines the difference in the number of constants for

the two queries’ sig-3s. Since we expect changes in individual constants to not affect

the relative ordering of Query Trees for a given query, we want to examine whether

the number of constants remains unchanged. To do this the Monitor computes 𝑡3 =

1 − min(𝑎1,𝑎2)
max(𝑎1,𝑎2)

where 𝑎1 and 𝑎2 are the number of constants in each respective query.
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In other words, the system finds the query with less constants and divides its number

of constants by that of the other query.

After computing all of these values, the Monitor returns the resulting value 𝑣 =∑︀
𝑖
𝑡𝑖*𝑐𝑖∑︀
𝑖
𝑐𝑖

where 𝑐𝑖 is a constant weight that can be set. Let two queries be similar if 𝑣

is less than some constant and different otherwise.

Upon receiving a query from the Planner, the Monitor compares the new query’s

signature to that of each existing query. If the minimum 𝑣 is such that the two queries

are similar, the Monitor gives the Planner the performance information for the closest

existing query. In the case that no existing queries are similar, the Monitor stores the

query as a new benchmark.

If the Monitor is in training mode when a new query is added, the Monitor calls

the Executor on each of the Query Trees for that query and stores those runtimes. In

the case that the Monitor is in production mode, the Monitor stores each of the Query

Trees without determining their runtimes and just initializes all of the runtimes to a

null value. After adding the new query, the Monitor gives the Planner the runtimes

for that query. In the case that all of the runtimes are null, the Planner should pick

an arbitrary Query Tree to execute.

It is likely that as BigDawg continues to function, the performance of individual

queries will change. This could happen for a variety of factors. Perhaps some of the

storage engines scale with number of entries better than other storage engines, so as

entries are added, the initial timings would no longer be valid. Another possibility is

that many queries utilize a specific storage engine rather than other storage engines,

making those engines overburdened. In order to address this problem, the Monitor

periodically reruns existing queries to update their timings based on the current state

of the system. To ensure that these timing updates do not interfere with normal

BigDawg functions, the Monitor only reruns queries when it is not busy. Specifically,

for each island, the Monitor checks periodically whether the load average of that

island is under some threshold. If so, the Monitor finds a query in that island and

reruns that query.

Currently, BigDawg is only running on a single physical system, so this feature of
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the Monitor is very primitive. Ideally, the Monitor should maintain a task on each

physical system that periodically reports the load average to the Monitor keyed by

the island of that system. The Monitor should take all of these load averages to

compute the load average for each island. Instead, the current Monitor simply checks

the load average of the single physical system periodically and utilizes that as the

load average of each island.
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Chapter 3

Analysis

The Monitor should ideally speed up queries by determining the correct engine for

each collection of objects. In this section, we evaluate whether the Monitor actually

helps with query performance.

For this section, I use the following setup. I have two PostgreSQL instances on

the same physical machine containing the MIMIC II dataset. One of the instances

contains roughly half of the tables and the other instance contains the remaining

tables. Table A.1 shows the size of each table as well as the PostgreSQL instance for

each table. The focus of the analysis is determining if the Monitor matches signatures

effectively. To this end, we want to determine if the Monitor should match queries

where a table is replaced with a similar sized table as well as queries where a constant

is replaced. Thus, the size of each of the tables is more important than their content.

Similarly, for each of the queries tested, the choice of tables being joined is more

important than the meaning of the queries. As a result, we will describe each of the

test queries by the tables they join:

1. A query joining icustayevents, labevents, and poe_order. icustayevents is re-

placed with icustay_detail in some queries.

2. A query joining additives, deliveries, and totalbalevents. additives is replaced

with a_iodurations in some queries.
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3. A query joining a_iodurations, ioevents, and deliveries. a_iodurations is re-

placed with a_meddurations in some queries.

4. A query joining comorbidity_scores, demographicevents, and procedureevents.

comorbidity_scores is replaced with icd9 in some queries.

5. A query joining icustay_detail, demographicevents, drgevents, and procedureevents.

demographicevents is replaced with microbiologyevents in some queries.

6. A query joining icustay_days,medevents, a_iodurations, and deliveries. a_iodurations

is replaced with a_meddurations in some queries.

7. A query joining d_patients, demographicevents, chartevents, and deliveries. de-

mographicevents is replaced with microbiologyevents in some queries.

8. A query joining a_meddurations, d_chartitems, icustayevents, and totalbalevents.

totalbalevents is replaced with medevents in some queries.

9. A query joining admissions, noteevents, a_chartdurations, and medevents. ad-

missions is replaced with comorbidity_scores in some queries.

10. A query joining additives, deliveries, comorbidity_scores, andmicrobiologyevents.

comorbidity_scores is replaced with admissions in some queries.

3.1 Training Mode Gains

From Table A.2, we can see that running a query in training mode requires more

than 3 times as long as running a query in production mode. This is because in

training mode, the Monitor tries every Query Tree for a query before allowing the

Executor to run the fastest Query Tree. Each of the queries generate 2 Query Trees,

so intuitively, training mode should take at least 3 times as long as production mode

for such queries.

Clearly, running a query once the Monitor already has training data for the query

is faster than constructing the training data and then running the query. However, the
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high cost of running a query in training mode begs the question of whether training

mode is necessary in the first place. The "Avg Time Without Monitor" column of

Table A.2 shows the time required to the run the query in production mode without

any training data. In this case, since BigDawg does not have any information on

which Query Tree performs better, it randomly selects a Query Tree. While the cost

of running the query in production mode varies a lot compared to that of without

the Monitor, we can see that in the best case, we can run a query in about 2/3 as

much time and in the worst case, we can run a query in about the same amount of

time. Thus, assuming queries are often rerun or we see similar queries often, running

a query in training mode initially can save a lot of time later on.

3.2 Matching Signatures

One of the main components of the Monitor module is how it matches previous queries

to new queries and uses the performance information of those previous queries to

determine the optimal query plan for the new queries. To test this, for each of our

10 queries, we constructed the following 4 types of similar queries:

∙ A query where the order of the predicates of the original query are changed.

∙ A query where one of the constants of the query is replaced with a similar

constant. We measure similarity by looking at the number of entries in each

table that has that constant. Two constants are similar if the number of entries

is approximately the same for both constants.

∙ A query where one of the constants of the query is replaced with a dissimilar

constant.

∙ A query where one of the tables involved in the query is replaced with a similar

sized table.

Tables A.3-A.12 shows the time to run each Query Tree for the 10 test queries

as well as any similar queries. I also applied load to the testing environment while
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running queries to see how the runtime of the queries changed. Specifically, I ran

multiple queries in the background on PostgreSQL instance 1 for one of the loads,

and ran queries on PostgreSQL instance 2 for the other load. This is represented by

the load 1 and load 2 columns respectively.

If the Monitor matches queries correctly, it should recognize that changing the

order of the predicates does not actually change the query. During my testing, I

found that queries where the order of the predicates are changed are always matched

correctly. Specifically, the Monitor believes that 𝑣 = 0 for such queries as expected.

Furthermore, examining Tables A.3-A.12, we can see that changing the order of pred-

icates does not impact the runtime of the query as expected. Thus, for queries where

the structure of the query changed but all else is identical, the Monitor is able to

match them correctly with existing queries.

In general, the Monitor should not expect queries where a table has been swapped

to perform similarly to the original queries. This is because the Monitor does not

have any context on which tables are actually similar other than through the size of

the tables and the names of the tables. While it is possible that similar sized tables

have similar data, the Monitor has no way of ensuring this. Furthermore, it is difficult

to identify whether two tables are similar through their names.

Examining Tables A.3-A.12, we can see that while swapping a table sometimes

results in similar runtimes, it can also result in completely disparate runtimes. Table

A.7 shows an example of how changing the table can result in completely different

outcomes. While initially Query Tree 2 performs better than Query Tree 1, after

swapping tables, we can see the opposite is true. A.10-A.12 also provide examples of

where swapping a table can change which Query Tree is best. Currently, the Monitor

does not match queries where a table was changed for any of the 10 queries examined.

Currently, the Monitor matches all queries where the constants in the query are

changed. It seems obvious that replacing constants with similar constants should

result in nearly unchanged runtimes, and my results in Tables A.3-A.12 confirms

this. In general, replacing a constant with a similar constant resulted in very similar

runtimes for all of the test queries.
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While replacing constants with similar constants will not affect the runtime sig-

nificantly, it is unclear whether this would also be the case with skewed constants.

Examining Tables A.3-A.12, we can see that in general the relative order of Query

Trees is preserved with skewed constants. Queries where both Query Trees run in

approximately the same amount of time, as shown in tables Tables A.5 and A.6, con-

tinue to do so after swapping constants. Similarly, when Query Tree 1 runs faster

than Query Tree 2, such as in Tables A.4 and A.7-A.9, this continues to be the case

with a skewed constant. Furthermore, the ratio between the runtimes of the 2 Query

Trees tends to be similar after replacement with a skewed constant. For example, the

ratio between Query Trees in Table A.10 is 0.45 initially and 0.4 after using a skewed

constant. The ratio noticeably differs in Tables A.3, A.4, and A.9. However, for

these 3 queries, either the initial query or the query after replacement ran in a trivial

period of time. Thus it is possible, that when the query is too simple, the differences

in the runtimes between Query Trees are dominated by constant factors. To account

for this, as long as users initially train the Monitor on queries that take a non-trivial

amount of time, replacing constants with skewed constants should result in queries

that exhibit either similar behavior or run in a trivial amount of time regardless of

which Query Tree is chosen.

Overall, the Monitor matches queries where constants have been replaced or when

the order of predicates of the queries are changed. Based on my results, for all of

these matched queries, the Monitor provides useful metrics as long as the initial

benchmark queries run in non-trivial amounts of time. For queries where a table has

been replaced, the Monitor cannot reliable provide useful metrics and thus does not

match such queries.

3.3 Response to Environmental Changes

Table A.3 shows an example of how the relative order of Query Trees can change

depending on load. While Query Tree 1 initially runs faster than Query Tree 2 (265

ms compared to 296 ms), after applying load to PostgreSQL instance 1, the opposite
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is true (378 ms compared to 293 ms). Since the performance of individual queries

will change as BigDawg continues to function, it is necessary to evaluate whether the

Monitor adapts to changes in the environment.

In general, the Monitor is able to update its performance metrics for its queries

over time. After applying load, I observed that the Monitor adapted within a few

seconds. However, the rate at which the Monitor adapts linearly increases with the

number of queries in the system. That is, the more queries stored by the Monitor,

the longer it takes for a given query to stay up to date. This is because the way the

Monitor updates its performance metrics is by re-running the least recently updated

query whenever the load average is under some threshold. Thus, if the environment

changes faster than the rate that the Monitor can run all of its queries, the Monitor

will always provide outdated metrics. This would be problematic for queries where

several Query Trees perform similarly. For such queries, it is possible that the Monitor

will always rank the Query Trees incorrectly if it is always outdated. For queries where

some Query Trees perform vastly better than others, it is unlikely that changes in the

environment can cause the better performing queries to become significantly worse

than the previously underperforming queries.

3.4 Future Work

While the Monitor is effective for the existing environment, there is still room for

improvement. The main avenues of improvement are reducing overhead and extending

the Monitor’s ability to respond to environmental changes.

Currently, the Monitor finds matching queries fairly inefficiently. Specifically, the

Monitor finds the distance, 𝑣, between every unique query in the system and the

incoming query. It is clear that the overhead necessary to match an incoming query

will increase linearly with the number of benchmark queries supported by the Monitor.

While this is not a large problem at the moment since we have very few queries, this

can become a much bigger problem in the future. One possible way to address this

is by keying queries by one of the signatures, such as sig-1, and only determining
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𝑣 for queries that match that signature. The downside of this is method is that it

is possible that the Monitor can provide useful metrics even for queries that differ

on that signature. More testing will need to be done to determine if there are any

signatures that need to be identical between queries for the queries to be considered

similar.

Another problem with the Monitor is that it is possible for the Monitor to always

provide outdated metrics. In order to deal with this problem, it might be a good idea

to select old queries to run in a different order than least recently updated. Instead,

one could try choosing old queries to run in a randomized manner, weighted by time

since last updated. More testing needs to be done to determine the best order to

select queries to re-run. Furthermore, in line with re-running old queries, the way

the Monitor determines the load average of the system needs to be extended as the

number of physical systems increases. This is described in more detail at the end of

the Monitor section of Chapter 2.
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Tables
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Table A.1: MIMIC II Tables

PostgreSQL Instance Table Name Table Size
1 censusevents 284
1 d_careunits 22
1 d_chartitems 4832
1 d_codeditems 3339
1 d_demographicitems 88
1 deliveries 874
1 demographicevents 1069
1 microbiologyevents 3157
1 noteevents 6566
1 procedureevents 989
1 ioevents 106491
1 labevents 153025
1 medevents 51157
1 poe_med 16161
1 poe_order 13286
1 totalbalevents 14826
2 a_chartdurations 43713
2 a_iodurations 4703
2 a_meddurations 2611
2 additives 1170
2 admissions 181
2 chartevents 1385468
2 comorbidity_scores 181
2 d_patients 143
2 demographic_detail 181
2 drgevents 181
2 icd9 1966
2 icustay_days 1442
2 icustay_detail 219
2 icustayevents 219
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Table A.2: Training vs Production Mode

Query No. Training Mode Time Production Mode Time Time Without Monitor
1 826 ms 265 ms 281 ms
2 882 ms 190 ms 346 ms
3 62539 ms 20559 ms 20990 ms
4 491 ms 160 ms 166 ms
5 6592 ms 1977 ms 2308 ms
6 24294 ms 6146 ms 9074 ms
7 28165 ms 7648 ms 10259 ms
8 19073 ms 4496 ms 7289 ms
9 15806 ms 4652 ms 5577 ms
10 78487 ms 23496 ms 27496 ms

Table A.3: Query 1 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 265 ms 296 ms 378 ms 293 ms 359 ms 414 ms
Predicate order 254 ms 296 ms 387 ms 309 ms 335 ms 406 ms
Similar constant 278 ms 290 ms 369 ms 312 ms 355 ms 431 ms
Skewed constant 346 ms 906 ms 448 ms 1055 ms 514 ms 1170 ms
Table swap 542 ms 619 ms 723 ms 727 ms 620 ms 751 ms

Table A.4: Query 2 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 502 ms 190 ms 669 ms 260 ms 707 ms 225 ms
Predicate order 475 ms 169 ms 685 ms 277 ms 718 ms 213 ms
Similar constant 479 ms 206 ms 738 ms 334 ms 610 ms 212 ms
Skewed constant 93023 ms 92321 ms 96560 ms 95412 ms 96903 ms 96430 ms
Table swap 1156 ms 180 ms 1548 ms 219 ms 1620 ms 301 ms
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Table A.5: Query 3 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 20599 ms 21421 ms 21443 ms 22267 ms 27003 ms 27201 ms
Predicate order 20047 ms 21309 ms 21985 ms 23099 ms 27003 ms 27321 ms
Similar constant 20402 ms 21965 ms 21151 ms 22098 ms 26327 ms 26921 ms
Skewed constant 411 ms 413 ms 578 ms 576 ms 641 ms 656 ms
Table swap 4049 ms 3902 ms 4922 ms 4643 ms 4723 ms 4759 ms

Table A.6: Query 4 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 171 ms 160 ms 367 ms 368 ms 330 ms 318 ms
Predicate order 165 ms 156 ms 356 ms 356 ms 331 ms 322 ms
Similar constant 180 ms 180 ms 268 ms 249 ms 268 ms 264 ms
Skewed constant 226 ms 210 ms 547 ms 523 ms 547 ms 543 ms
Table swap 620 ms 621 ms 898 ms 889 ms 919 ms 939 ms

Table A.7: Query 5 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 2638 ms 1977 ms 4551 ms 2901 ms 3736 ms 3109 ms
Predicate order 2563 ms 2054 ms 4342 ms 2869 ms 3834 ms 3134 ms
Similar constant 2625 ms 2015 ms 4043 ms 2916 ms 3801 ms 2815 ms
Skewed constant 4486 ms 3851 ms 5098 ms 4512 ms 5374 ms 4828 ms
Table swap 29781 ms 32474 ms 32132 ms 36428 ms 32244 ms 39086 ms
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Table A.8: Query 6 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 12002 ms 6146 ms 12880 ms 6664 ms 12629 ms 7032 ms
Predicate order 12694 ms 6177 ms 12944 ms 6644 ms 12704 ms 6985 ms
Similar constant 12312 ms 6102 ms 12706 ms 6598 ms 12712 ms 7210 ms
Skewed constant 147256 ms 80089 ms 169093 ms 82895 ms 182392 ms 83093 ms
Table swap 7991 ms 3304 ms 8221 ms 3432 ms 8223 ms 3512 ms

Table A.9: Query 7 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 12869 ms 7648 ms 13093 ms 7720 ms 13505 ms 7883 ms
Predicate order 12754 ms 7678 ms 13042 ms 7842 ms 13524 ms 7884 ms
Similar constant 12827 ms 7680 ms 13097 ms 7696 ms 13458 ms 7869 ms
Skewed constant 323 ms 275 ms 456 ms 320 ms 431 ms 403 ms
Table swap 2481 ms 1272 ms 2601 ms 1350 ms 2620 ms 1502 ms

Table A.10: Query 8 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 4496 ms 10081 ms 4750 ms 10600 ms 4519 ms 10995 ms
Predicate order 4483 ms 10335 ms 4652 ms 11017 ms 4504 ms 11036 ms
Similar constant 4425 ms 10383 ms 4705 ms 10006 ms 4514 ms 11333ms
Skewed constant 8456 ms 21385 ms 8828 ms 23345 ms 8613 ms 24537 ms
Table swap 664 ms 317 ms 922 ms 545 ms 832 ms 587 ms
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Table A.11: Query 9 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 4652 ms 6502 ms 4923 ms 6654 ms 4832 ms 6893 ms
Predicate order 4753 ms 6634 ms 5343 ms 7098 ms 5208 ms 7129 ms
Similar constant 4423 ms 6742 ms 4828 ms 6928 ms 4787 ms 7188 ms
Skewed constant 32454 ms 67121 ms 34852 ms 68323 ms 33947 ms 68932 ms
Table swap 1647 ms 1165 ms 1923 ms 1239 ms 1832 ms 1387 ms

Table A.12: Query 10 Average Runtimes

No Load Load 1 Load 2
Tree 1 Tree 2 Tree 1 Tree 2 Tree 1 Tree 2

Base query 31495 ms 23496 ms 34293 ms 24933 ms 33298 ms 25209 ms
Predicate order 30938 ms 23922 ms 35980 ms 25096 ms 34454 ms 26748 ms
Similar constant 28381 ms 20487 ms 30092 ms 21933 ms 30212 ms 22117 ms
Skewed constant 4201 ms 3017 ms 4821 ms 3428 ms 4782 ms 3689 ms
Table swap 6029 ms 15991 ms 6492 ms 16021 ms 6332 ms 16118 ms
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Figure B-1: Multi-Island Data Federation
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Figure B-2: BigDawg Workflow
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