
Mathematical Foundations of the GraphBLAS
Jeremy Kepner (MIT Lincoln Laboratory Supercomputing Center), Peter Aaltonen (Indiana University),
David Bader (Georgia Institute of Technology), Aydın Buluç (Lawrence Berkeley National Laboratory),
Franz Franchetti (Carnegie Mellon University), John Gilbert (University of California, Santa Barbara),

Dylan Hutchison (University of Washington), Manoj Kumar (IBM),
Andrew Lumsdaine (Indiana University), Henning Meyerhenke (Karlsruhe Institute of Technology),

Scott McMillan (CMU Software Engineering Institute), Jose Moreira (IBM),
John D. Owens (University of California, Davis), Carl Yang (University of California, Davis),

Marcin Zalewski (Indiana University), Timothy Mattson (Intel)

Abstract—The GraphBLAS standard (GraphBlas.org) is being
developed to bring the potential of matrix-based graph algo-
rithms to the broadest possible audience. Mathematically, the
GraphBLAS defines a core set of matrix-based graph operations
that can be used to implement a wide class of graph algorithms in
a wide range of programming environments. This paper provides
an introduction to the mathematics of the GraphBLAS. Graphs
represent connections between vertices with edges. Matrices can
represent a wide range of graphs using adjacency matrices
or incidence matrices. Adjacency matrices are often easier to
analyze while incidence matrices are often better for representing
data. Fortunately, the two are easily connected by matrix multi-
plication. A key feature of matrix mathematics is that a very small
number of matrix operations can be used to manipulate a very
wide range of graphs. This composability of a small number of
operations is the foundation of the GraphBLAS. A standard such
as the GraphBLAS can only be effective if it has low performance
overhead. Performance measurements of prototype GraphBLAS
implementations indicate that the overhead is low.

I. INTRODUCTION

Graphs are among the most important abstract data
structures in computer science, and the algorithms
that operate on them are critical to applications in
bioinformatics [Georganas et al 2014], computer networks,
and social media [Ediger et al 2010], [Ediger et al 2011],
[Riedy et al 2012], [Riedy & Bader 2013]. Graphs have been
shown to be powerful tools for modeling complex problems
because of their simplicity and generality [Staudt et al 2016],
[Bergamini & Meyerhenke 2016]. For this reason, the field of
graph algorithms has become one of the pillars of theoretical
computer science, informing research in such diverse areas as
combinatorial optimization, complexity theory, and topology.
Graph algorithms have been adapted and implemented by the
military, commercial industry, and researchers in academia,
and have become essential in controlling the power grid,
telephone systems, and, of course, computer networks.

Parallel graph algorithms are notoriously difficult
to implement and optimize [Ediger et al 2012],

This material is based in part upon work supported by the NSF under
grant number DMS-1312831, by DOE ASCR under contract number DE-
AC02-05CH11231, and by the DoD under contract number FA8721-05-C-
0003. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation, the Department of Energy, or the
Department of Defense.

[Ediger & Bader 2013], [McLaughlin & Bader 2014a],
[McLaughlin & Bader 2014b], [McLaughlin et al 2014],
[Staudt & Meyerhenke 2016]. The irregular data access
patterns and inherently high communication-to-computation
ratios found in graph algorithms mean that even the best
algorithms will have parallel efficiencies that decrease as the
number of processors is increased [Buluç & Gilbert 2012],
[Azad et al 2015]. Recent work on communication-avoiding
algorithms, and their applications to graph computations
[Ballard et al 2013], [Solomonik et al 2013], might defer but
not completely eliminate the parallel scalability bottleneck.
Consequently, novel hardware architectures will also be
required [Song et al 2010], [Song et al 2013]. A common
graph processing interface provides a useful tool for
optimizing both software and hardware to provide high
performance graph applications.

The duality between the canonical representation of
graphs as abstract collections of vertices and edges and
a matrix representation has been a part of graph theory
since its inception [Konig 1931], [Konig 1936]. Matrix
algebra has been recognized as a useful tool in graph
theory for nearly as long (see [Harary 1969] and references
therein, in particular [Sabadusi 1960], [Weischel 1962],
[McAndrew 1963], [Teh & Yap 1964], [McAndrew 1965],
[Harary & Tauth 1964], [Brualdi 1967]). The modern
description of the duality between graph algorithms and
matrix mathematics (or sparse linear algebra) has been
extensively covered in the literature and is summarized
in the cited text [Kepner & Gilbert 2011]. This text has
further spawned the development of the GraphBLAS math
library standard (GraphBLAS.org)[Mattson et al 2013]
that has been developed in a series of proceedings
[Mattson 2014a], [Mattson 2014b], [Mattson 2015],
[Buluç 2015], [Mattson 2016] and implementa-
tions [Buluç & Gilbert 2011], [Kepner et al 2012],
[Ekanadham et al 2016], [Hutchison et al 2015],
[Anderson et al 2016], [Zhang et al 2016]. This paper
describes the mathematical properties that have been
developed since [Kepner & Gilbert 2011] to support the
GraphBLAS.

The foundational mathematical concepts for matrix-based
graph analysis are the adjacency matrix and incidence matrix

ar
X

iv
:1

60
6.

05
79

0v
2

 [
cs

.M
S]

 1
4

Ju
l 2

01
6

representations of graphs. From these concepts, a more formal
definition of a matrix can be constructed. How such a matrix
can be manipulated depends on the types of values the matrix
holds and the operations allowed on those values. Furthermore,
the mathematical properties of the matrix values determine
the mathematical properties of the whole matrix. This paper
describes the key mathematical concepts of the GraphBLAS
and presents preliminary results that show the overhead of
the GraphBLAS is minimal (as compared to their underlying
matrix libraries).

II. ADJACENCY MATRIX

Given an adjacency matrix A, if

A(i, j) = 1

then there exists an edge going from vertex i to vertex j (see
Figure 1). Likewise, if

A(i, j) = 0

then there is no edge from i to j. Adjacency matrices can have
direction, which means that A(i, j) may not be the same as
A(j, i). Adjacency matrices can also have edge weights. If

A(i, j) = a 6= 0

then the edge going from i to j is said to have weight a.
Adjacency matrices provide a simple way to represent the
connections between vertices in a graph. Adjacency matrices
are often square, and both the out-vertices (rows) and the in-
vertices (columns) are the same set of vertices. Adjacency
matrices can be rectangular, in which case the out-vertices
(rows) and the in-vertices (columns) are different sets of
vertices. Such graphs are often called bipartite graphs. In
summary, adjacency matrices can represent a wide range of
graphs, which include any graph with any set of the following
properties: directed, weighted, and/or bipartite.

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!

ou
t-v
er
te
x!

in-vertex!

Fig. 1. (left) Seven-vertex graph with 12 edges. Each vertex is labeled with
an integer. (right) 7× 7 adjacency matrix A representation of the graph. A
has 12 nonzero entries corresponding to the edges in the graph.

III. INCIDENCE MATRIX

An incidence, or edge matrix E, uses the rows to represent
every edge in the graph and the columns to represent every
vertex. There are a number of conventions for denoting an

edge in an incidence matrix. One such convention is to use
two incidence matrices

Eout(k, i) = 1 and Ein(k, j) = 1

to indicate that edge k is a connection from i to j (see
Figure 2). Incidence matrices are useful because they can
easily represent multi-graphs, hyper-graphs, and multipartite
graphs. These complex graphs are difficult to capture with an
adjacency matrix. A multi-graph has multiple edges between
the same vertices. If there was another edge, k′, from i to j,
this relationship can be captured in an incidence matrix by
setting

Eout(k
′, i) = 1 and Ein(k

′, j) = 1

(see Figure 3) [Note: Another convention is to use +1 and
-1, in which case the resulting matrix multiplication is the
graph Laplacian.] In a hyper-graph, one edge can connect more
than two vertices. For example, to denote that edge k has a
connection from i to j and j′ can be accomplished by also
setting

Ein(k, j
′) = 1

(see Figure 3). Furthermore, i, j, and j′ can be drawn from
different classes of vertices. E can be used to represent
multipartite graphs by defining an additional incidence array
E′in and seting

E′in(k, j
′) = 1

Thus, an incidence matrix can be used to represent a graph
with any set of the following graph properties: directed,
weighted, multipartite, multi-edge, and/or hyper-edge.

1!

2!
3!

4!

5!

6!

7!
8!

9!

10!
11! 12!

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

4! 5! 6! 7!3!2!1! 4! 5! 6! 7!3!2!1!
in-vertex!out-vertex!

ed
ge

 n
um

be
r!

Eout	 Ein	
1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

ed
ge

 n
um

be
r!

Fig. 2. (left) Seven-vertex graph with 12 edges. Each edge is labeled with an
integer; the vertex labels are the same as in Figure 1. (middle) 12×7 incidence
matrix Eout representing the out-vertices of the graph edges. (right) 12× 7
incidence matrix Ein representing the in-vertices of the graph edges. Both
Estart and Ein have 12 nonzero entries corresponding to the edges in the
graph.

IV. MATRIX VALUES

A typical matrix has m rows and n columns of real numbers.
Such a matrix can be denoted as

A : Rm×n

The row and and column indexes of the matrix A are

i ∈ I = {1, . . . ,m}

1!

2!
3!

4!

5!

6!

7!
8!

9!

10!
11! 12!

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!
13!

4! 5! 6! 7!3!2!1! 4! 5! 6! 7!3!2!1!

ed
ge

 n
um

be
r!

Eout	 Ein	
1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!
13!

ed
ge

 n
um

be
r!

13!

in-vertex!out-vertex!

Fig. 3. Graph and incidence matrices from Figure 2 with a hyper-edge (edge
12) and a multi-edge (edge 13). The graph is a hyper-graph because edge 12
has more than one in-vertex. The graph is a multi-graph because edge 8 and
edge 13 have the same out- and in-vertex.

and
j ∈ J = {1, . . . , n}

so that any particular value A can be denoted as A(i, j).
The row and column indices of matrices are natural numbers
I, J : N. [Note: a specific implementation of these matrices
might use IEEE 64-bit double-precision floating point numbers
to represent real numbers, 64-bit unsigned integers to represent
row and column indices, and the compressed sparse rows
(CSR) format or the compressed sparse columns (CSC) format
to store the nonzero values inside the sparse matrix.]

A matrix of complex numbers

C = {x+ y
√

-1 : x, y ∈ R}

is denoted
A : Cm×n

A matrix of integers

Z = {. . . ,−1, 0, 1, . . .}

is denoted
A : Zm×n

A matrix of natural numbers

N = {1, 2, 3, . . .}

is denoted
A : Nm×n

Using the above concepts, a matrix is defined as the following
two-dimensional (2D) mapping

A : I × J → S

where the indices I, J : Z are finite sets of integers with m
and n elements, respectively, and

S ∈ {R,Z,N, . . .}

is a set of scalars. Without loss of generality, matrices can be
denoted

A : Sm×n

A vector is a matrix in which either m = 1 or n = 1. A
column vector is denoted v : Sm×1 or simply v : Sm×1. A

row vector can be denoted v : S1×n or simply v : Sn. A
scalar is a single element of a set s ∈ S and has no matrix
dimensions.

V. SCALAR OPERATIONS

Matrix operations are built on top of scalar operations that
can be used for combining and scaling graph edge weights.
The primary scalar operations are standard arithmetic addition,
such as

1 + 1 = 2

and arithmetic multiplication, such as

2× 2 = 4

These scalar operations of addition and multiplication can
be defined to be a wide variety of functions. To prevent
confusion with standard arithmetic addition and arithmetic
multiplication, ⊕ will be used to denote scalar addition and ⊗
will be used to denote scalar multiplication. In this notation,
standard arithmetic addition and arithmetic multiplication of
real numbers

a, b, c ∈ R

where
⊕ ≡ + and ⊗ ≡ ×

results in

c = a⊕ b ⇒ c = a+ b

and
c = a⊗ b ⇒ c = a× b

Generalizing ⊕ and ⊗ to a variety of operations enables a
wide range of algorithms on scalars of all different types (not
just real or complex numbers).

Certain ⊕ and ⊗ combinations over certain sets of scalars
are particularly useful because they preserve essential mathe-
matical properties, such as additive commutativity

a⊕ b = b⊕ a

multiplicative commutativity

a⊗ b = b⊗ a

additive associativity

(a⊕ b)⊕ c = a⊕ (b⊕ c)

multiplicative associativity

(a⊗ b)⊗ c = a⊗ (b⊗ c)

and the distributivity of multiplication over addition

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

The properties of commutativity, associativity, and dis-
tributivity are extremely useful properties for building graph
applications because they allow the builder to swap operations
without changing the result. Example combinations of ⊕ and

⊗ that preserve scalar commutativity, associativity, and dis-
tributivity include (but are not limited to) standard arithmetic

⊕ ≡ + ⊗ ≡ × a, b, c ∈ R

max-plus algebras

⊕ ≡ max ⊗ ≡ + a, b, c ∈ {−∞∪ R}

max-min algebras

⊕ ≡ max ⊗ ≡ min a, b, c ∈ {-∞∪ R≤0}

finite (Galois) fields such as GF(2)

⊕ ≡ xor ⊗ ≡ and a, b, c ∈ {0, 1}

and power set algebras

⊕ ≡ ∪ ⊗ ≡ ∩ a, b, c ⊂ Z

Other functions that do not preserve the above properties can
also be defined for ⊕ and ⊗. For example, it is often useful
for ⊕ or ⊗ to pull in other data, such as vertex indices of a
graph.

VI. MATRIX PROPERTIES

Associativity, distributivity, and commutativity are very
powerful properties that enable the construction of composable
graph algorithms (i.e., operations can be reordered with the
knowledge that the answers will remain unchanged). Compos-
ability makes it easy to build a wide range of graph algorithms
with just a few functions. Given matrices

A,B,C ∈ Sm×n

let their elements be specified by

a = A(i, j) b = B(i, j) c = C(i, j)

Commutativity, associativity, and distributivity of scalar oper-
ations translates into similar properties on matrix operations
in the following manner.

Additive commutativity allows graphs to be swapped and
combined via matrix element-wise addition (see Figure 4)
without changing the result

a⊕ b = b⊕ a ⇒ A⊕B = B⊕A

where matrix element-wise addition is given by

C(i, j) = A(i, j)⊕B(i, j)

Multiplicative commutativity allows graphs to be swapped,
intersected, and scaled via matrix element-wise multiplication
(see Figure 5) without changing the result

a⊗ b = b⊗ a ⇒ A⊗B = B⊗A

where matrix element-wise (Hadamard) multiplication is given
by

C(i, j) = A(i, j)⊗B(i, j)

Additive associativity allows graphs to be combined via ma-
trix element-wise addition in any grouping without changing
the result

(a⊕b)⊕c = a⊕ (b⊕c) ⇒ (A⊕B)⊕C = A⊕ (B⊕C)

Multiplicative associativity allows graphs to be intersected
and scaled via matrix element-wise multiplication in any
grouping without changing the result

(a⊗b)⊗c = a⊗ (b⊗c) ⇒ (A⊗B)⊗C = A⊗ (B⊗C)

Element-wise distributivity allows graphs to be intersected
and/or scaled and then combined or vice versa without chang-
ing the result

a⊗(b⊕c) = (a⊗b)⊕(a⊗c) ⇒ A⊗(B⊕C) = (A⊗B)⊕(A⊗C)

Matrix multiply distributivity allows graphs to be trans-
formed via matrix multiply and then combined or vice versa
without changing the result

a⊗(b⊕c) = (a⊗b)⊕(a⊗c) ⇒ A(B⊕C) = (AB)⊕(AC)

where matrix multiply

C = A⊕.⊗B = AB

is given by

C(i, j) =

l⊕
k=1

A(i, k)⊗B(k, j)

for matrices with dimensions

A : Sm×l B : Sl×m C : Sm×n

Matrix multiply associativity is another implication of scalar
distributivity and allows graphs to be transformed via matrix
multiplication in various orderings without changing the result

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) ⇒ (AB)C = A(BC)

Matrix multiply commutativity can be achieved when com-
bined with the transpose operation

(AB)T = BTAT

where the transpose of a matrix is given by

AT(j, i) = A(i, j)

VII. 0-ELEMENT: NO GRAPH EDGE

Sparse matrices play an important role in graphs. Many im-
plementations of sparse matrices reduce storage by not storing
the 0-valued elements in the matrix. In adjacency matrices,
the 0 element is equivalent to no edge from the vertex that is
represented by the row to the vertex that is represented by the
column. In incidence matrices, the 0 element is equivalent to
the edge represented by the row not including the vertex that
is represented by the column. In most cases, the 0 element is
standard arithmetic 0, but in other cases it can be a different
value. Nonstandard 0 values can be helpful when combined
with different ⊕ and ⊗ operations. For example, in different

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊕ "

⊕ "

4!

2!1!

5!7!
= !

= !

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊕ "

⊕ "

4!

2!1!

5!7!
= !

= !

Fig. 4. Illustration of the commutative property of the element-wise addition
of two graphs and their corresponding adjacency matrix representations.

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊗"

⊗"

2!

7!
= !

= !

C!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

4!

2!1!

7!

B!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

2!

5!7!
⊗"

⊗"

2!

5!7!
= !

= !

Fig. 5. Illustration of the commutative property of the element-wise multipli-
cation of two graphs and their corresponding adjacency matrix representations.

contexts 0 might be +∞, -∞, or ∅ (empty set). For any value
of 0, if the 0 element has certain properties with respect to
scalar ⊕ and ⊗, then the sparsity of matrix operations can be
managed efficiently. These properties are the additive identity

a⊕ 0 = a

and the multiplicative annihilator

a⊗ 0 = 0

Example combinations of ⊕ and ⊗ that exhibit the additive
identity and multiplicative annihilator include
• standard arithmetic (+.×) on real numbers R
• max-plus algebra (max.+) on real numbers with a de-

fined minimal element {-∞∪ R}

• min-plus algebra (min.+) using real numbers with a
defined maximal element {R ∪∞}

• max-min algebra (max.min) using non-negative real
numbers [0,∞)

• min-max algebra (min.max)] using non-positive real
numbers (-∞,≤ 0]

• max-min algebra (max.min) using non-positive real num-
bers with a minimal element {-∞∪ R≤0}

• min-max algebra (min.max) using non-negative real
numbers with a maximal element {R≥0 ∪∞}

• Galois field (xor.and) over a set of two numbers {0, 1}
• power set (∪.∩)] on any subset of integers Z
The above examples are a small selection of the operators

and sets that are useful for building graph algorithms. Many
more are possible. The ability to change the scalar values and
operators while preserving the overall behavior of the graph
operations is one of the principal benefits of using matrices
for graph algorithms.

VIII. MATRIX GRAPH OPERATIONS

The main benefit of a matrix approach to graphs is the
ability to perform a wide range of graph operations on diverse
types of graphs with a small number of matrix operations.
These core matrix operations and some example graph oper-
ations they support are as follows
• building a sparse matrix from row, column, and value

triples, which corresponds to constructing a graph from
a set of out-vertices, in-vertices, and edge weights

• extracting the row, column, and value tuples correspond-
ing to the nonzero elements in a sparse matrix, which
corresponds to extracting graph edges from the matrix
representation of a graph

• transposing the rows and the columns of a sparse matrix,
which is equivalent to swapping the out-vertices and the
in-vertices of a graph

• using matrix multiplication to perform single-source
breadth-first search, multisource breadth-first search, and
weighted breadth-first search on a graph

• extracting a sub-matrix from a larger matrix is equivalent
to selecting a sub-graph from a larger graph

• assigning a matrix to a set of indices in a larger matrix
inserts a sub-graph into a graph

• using element-wise addition of matrices and element-
wise multiplication of matrices to perform graph union
and intersection along with edge weight scaling and
combining

The above collection of functions has been shown to be useful
for implementing a wide range of graph algorithms. These
functions strike a balance between providing enough functions
to be useful to application builders while being few enough
that they can be implemented effectively.

A. Building a Matrix: Edge List to Graph

Graph data can often be represented as triples of vectors i,
j, and v corresponding to the nonzero elements in the sparse

matrix. Constructing an m×n sparse matrix from vector triples
can be denoted

C = Sm×n(i, j,v,⊕)

where
i : I l j : J l v : Sl

are all l element vectors. The optional ⊕ operation defines how
multiple entries with the same row and column are handled.

B. Extracting Tuples: Graph to Vertex List

Extracting the nonzero tuples from a sparse matrix can be
denoted mathematically as

(i, j,v) = A

C. Transpose: Swap Out-Vertices and In-Vertices

Swapping the rows and columns of a sparse matrix is a
common tool for changing the direction of vertices in a graph
(see Figure 6). The transpose is denoted as

C = AT

or more explicitly

C(j, i) = A(i, j)

where A : Sm×n and C : Sn×m
Transpose also can be implemented using triples as follows

(i, j,v) = A

C = Sn×m(j, i,v)

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!

6!

4!

3!

2!1!

5!7!

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v
er
te
x!

in-vertex!T

ou
t-v
er
te
x!

Fig. 6. Transposing the adjacency matrix of a graph switches the directions
of its edges.

D. Matrix Multiplication: Breadth-First-Search, and Adja-
cency Matrix Construction

Matrix multiplication is the most important matrix opera-
tion and can be used to implement a wide range of graph
algorithms. Examples include finding the nearest neighbors of
a vertex (see Figure 7) and constructing an adjacency matrix
from an incidence matrix (see Figure 8). In its most common
form, matrix multiplication using standard arithmetic addition
and multiplication is given by

C = AB

or more explicitly

C(i, j) =

l∑
k=1

A(i, k)B(k, j)

where

A : Rm×l B : Rl×n C : Rm×n

Matrix multiplication has many important variants that include
non-arithmetic addition and multiplication

C = A ⊕.⊗ B

where

A : Sm×l B : Sl×n C : Sm×n

and the notation ⊕.⊗ makes explicit that ⊕ and ⊗ can be
other functions.

One of the most common uses of matrix multiplication is
to construct an adjacency matrix from an incidence matrix
representation of a graph. For a graph with out-vertex inci-
dence matrix Eout and in-vertex incidence matrix Ein, the
corresponding adjacency matrix can be computed by

A = ET
outEin

where the individual values in A can be computed via

A(i, j) =
⊕
k

ET
out(i, k)⊗Ein(k, j)

6!

4!

3!

2!1!

5!7!

A!
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

in
-v

er
te

x!

out-vertex!T

= !

v	 A v	T

Fig. 7. (left) Breadth-first search of a graph starting at vertex 4 and traversing
to vertices 1 and 3. (right) Matrix-vector multiplication of the adjacency matrix
of a graph performs the equivalent operation.

A	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

ou
t-v

er
te

x!

in-vertex!

1!

3!
2!

4!
5!
6!
7!

edge number!
ou

t-v
er

te
x!

Eout	

4! 5! 6! 7!3!2!1!
in-vertex!Ein	

1!

3!
2!

4!
5!
6!
7!
8!
9!

10!
11!
12!

ed
ge

 n
um

be
r!

T

= !⊕.⊗	

4! 5! 6! 7!3!2!1! 8! 9! 10!11!12!

Fig. 8. Construction of an adjacency matrix of a graph from its incidence
matrices via matrix-matrix multiply. The entry A(4, 3) is obtained by
combining the row vector ET

out(4, k) with the column vector Ein(k, 3) via

matrix-matrix product A(4, 3) =
12⊕

k=1
ET

out(4, k)⊗Ein(k, 3).

E. Extract: Selecting Sub-graphs

Selecting sub-graphs is a very common graph operation (see
Figure 9). This operation is performed by selecting out-vertices
(row) and in-vertices (columns) from a matrix A : Sm×n

C = A(i, j)

or more explicitly

C(i, j) = A(i(i), j(j))

where i ∈ {1, ...,mC}, j ∈ {1, ..., nC}, i : ImC , and j : JmC

select specific sets of rows and columns in a specific order.
The resulting matrix C : SmC×nC can be larger or smaller
than the input matrix A. This operation can also be used to
replicate and/or permute rows and columns in a matrix.

Extraction can also be implemented with matrix multiplica-
tion as

C = S(i) A ST(j)

where S(i) and S(j) are selection matrices given by

S(i) = SmC×m({1, ...,mC}, i, 1)

S(j) = SnC×n({1, ..., nC}, j, 1)

A(i,j)	
1!

3!
2!

4!
5!
6!
7!

4! 5! 6! 7!3!2!1!

6!

4!

3!

2!1!

5!7!

ou
t-v
er
te
x!

in-vertex!

Fig. 9. Selection of a 4-vertex sub-graph from the adjacency matrix via
selecting subsets of rows and columns i = j = {1, 2, 4, 7}.

F. Assign: Modifying Sub-Graphs

Modifying sub-graphs is a very common graph operation.
This operation is performed by selecting out-vertices (row) and
in-vertices (columns) from a matrix C : Sm×n and assigning
new values to them from another sparse matrix, A : SmA×nA

C(i, j) = A

or more explicitly

C(i(i), j(j)) = A(i, j)

where i ∈ {1, ...,mA}, j ∈ {1, ..., nA}, i : ImA and j : JnA

select specific sets of rows and columns.

G. Element-Wise Addition and Element-Wise Multiplication:
Combining Graphs, Intersecting Graphs, and Scaling Graphs

Combining graphs along with adding their edge weights
can be accomplished by adding together their sparse matrix
representations

C = A⊕B

where A,B,C : Sm×n or more explicitly

C(i, j) = A(i, j)⊕B(i, j)

where i ∈ {1, ...,m}, and j ∈ {1, ..., n}.
Intersecting graphs along with scaling their edge weights

can be accomplished by element-wise multiplication of their
sparse matrix representations

C = A⊗B

where A,B,C : Sm×n or more explicitly

C(i, j) = A(i, j)⊗B(i, j)

where i ∈ {1, ...,m}, and j ∈ {1, ..., n}.

IX. PERFORMANCE

A standard such as the GraphBLAS can only be effective if
it does not impose unnecessary overhead on the computations
it performs. One test of the overhead is to compare the
GraphBLAS implementation to other standard sparse matrix
libraries. Figure 10 shows the performance of one prototype
GraphBLAS implementation compared to a state-of-the art
GPU graph library (Gunrock) [Wang et al 2016].

The dataset used are random undirected Kronecker graphs
with edge factor 32 and scale factor ranging from 16 to 21.
Each experiment conducts a BFS starting from a high degree
node in the graph. The GraphBLAS performance of sparse
matrix - sparse vector multiplication is similar to Gunrock
BFS performance. The similarity in performance indicates that
the GraphBLAS is not introducing a high overhead. Each
experiment is launched on these graphs from node 0 except
on the scale 19 graph, which is launched from node 1. The
runtime is an average of 10 runs to reduce variance.

We ran all experiments in this paper on a Linux work-
station with 2× 3.50 GHz Intel 4-core E5-2637 v2 Xeon
CPUs, 256 GB of main memory, and an NVIDIA K40c
GPU with 12 GB on-board memory. The GPU programs
were compiled with NVIDIA’s nvcc compiler (version 7.5.17)
using the -O3 optimization level. The C code was compiled
using gcc 4.8.5. All results ignore transfer time (from disk-
to-memory and CPU-to-GPU). The Gunrock code was exe-
cuted using the command-line configuration --undirected
--traversal-mode=1 --iteration-num=10.

0.05 0.1 0.2 0.5 1.0 2.0

Millions of Edges Traversed

100

101

102
R

u
n
ti

m
e
 (

m
s)

Gunrock

GraphBLAS

Fig. 10. Sparse matrix times sparse vector performance for a prototype
GraphBLAS implementation as compared to an optimized GPU graph library
(Gunrock) performing BFS in a similar manner.

Figure 11 shows the overhead of a second prototype Graph-
BLAS implementation, the GraphBLAS Template Library
(GBTL)[Zhang et al 2016].We measured the GraphBLAS API
overhead using the GraphBLAS Template Library (GBTL) on
a machine with an Intel i5-4670k processor and a GTX660
CUDA-capable graphics card. The overhead results reflect the
difference in runtime, in terms of percentages, between the
CUDA backend of GBTL invoked using GraphBLAS API and
the direct calling of underlying implementation. We obtain
the numbers by averaging the overhead of 16 runs on Erdős-
Rényi random graphs generated using the same dimension and
sparsity. The code is compiled using the -O2 optimization
level on version 7.5.18 of the CUDA toolkit with gcc 4.9.3.
The results indicate that the overhead of the GraphBLAS is
small compared to the underlying math being performed.

A⊕B C=A(i,j) AB AT f(A) C(i,j)=A

O
ve

rh
ea

d
(%

)

0

1

2

3

4

5

6

7

8

9

10

apply assign ewiseadd extract mxm tranpose

O
ve
rh
ea
d	
(%
)

GraphBLAS	Template	Library	Overhead
10

8

6

4

2

0

Fig. 11. Percentage overhead of the GraphBLAS Template Library prototype
implementation on six different GraphBLAS operations.

X. CONCLUSIONS

Matrices are a powerful tool for representing and manipulat-
ing graphs. Adjacency matrices represent directed-weighted-
graphs with each row and column in the matrix representing
a vertex and the values representing the weights of the edges.
Incidence matrices represent directed-weighted-multi-hyper-
graphs with each row representing an edge and each column
representing a vertex. Perhaps the most important aspects
of matrix-based graphs are the mathematical properties of

commutativity, associativity, and distributivity. These proper-
ties allow a very small number of matrix operations to be
used to construct a large number of graphs. These properties
of the matrix are determined by the element-wise properties
of addition and multiplication on the values in the matrix.
The GraphBLAS allows these matrix properties to be readily
applied to graphs in a low-overhead manner.

ACKNOWLEDGMENTS

The authors would like to thank Hedayat Alghassi, Michael
Anderson, Ariful Azad, Muthu Baskaran, Paul Burkhardt,
Steven Dalton, Tim Davis, Joe Eaton, Alan Edelman, Sterling
Foster, Vijay Gadepally, Joseph Gonzalez, Torsten Hoefler,
Erik Holk, Thejaka Kanewala, Tze Meng Low, Dave Martinez,
John Matty, Asit Mishra, Samantha Misurda, Mostofa Patwary,
Fabrizio Petrini, Albert Reuther, Jason Riedy, Victor Royt-
burd, Nadathur Satish, Narayanan Sundaram, Richard Veras,
Michael Wolf, Albert-Jan Yzelman, Peter Zhang, and Xia Zhu.

REFERENCES

[Anderson et al 2016] M. Anderson, N. Sundaram, N. Satish, M. Patwary,
T. L. Willke, & P. Dubey, GraphPad: Optimized Graph Primitives for
Parallel and Distributed Platforms, Proceedings of the IPDPS, 2016.

[Azad et al 2015] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori,
O. Schwartz, S. Toledo, & S. Williams, Exploiting Multiple Levels of
Parallelism in Sparse Matrix-Matrix Multiplication, Technical Report
1510.00844.arXiv

[Ballard et al 2013] G. Ballard, A. Buluç, J. Demmel, L. Grigori, B. Lipshitz,
O. Schwartz, & S. Toledo, Communication optimal parallel multipli-
cation of sparse random matrices, In Proceedings of the twenty-fifth
annual ACM symposium on Parallelism in algorithms and architectures
(pp. 222-231), 2013

[Bergamini & Meyerhenke 2016] E. Bergamini & H. Meyerhenke, Approx-
imating Betweenness Centrality in Fully-dynamic Networks. Accepted
by Internet Mathematics. Taylor and Francis Group. To appear.

[Buluç & Gilbert 2011] A. Buluç & J. Gilbert, The Combinatorial BLAS:
Design, implementation, and applications. International Journal of High
Performance Computing Applications (IJHPCA), 2011

[Buluç & Gilbert 2012] A. Buluç & J. Gilbert, Parallel sparse matrix-matrix
multiplication and indexing: Implementation and experiments, SIAM
Journal on Scientific Computing 34.4 (2012): C170-C191

[Buluç 2015] A. Buluç, GraphBLAS Special Session, IEEE HPEC 2015,
Waltham, MA

[Brualdi 1967] R.A. Brualdi, Kronecker products of fully indecomposable
matrices and of ultrastrong digraphs, Journal of Combinatorial Theory,
2:135-139, 1967

[Chakrabarti 2004] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A
recursive model for graph mining. SIAM Data Mining, 2004.

[Ediger et al 2010] D. Ediger, K. Jiang, J. Riedy, and D.A. Bader, Mas-
sive Streaming Data Analytics: A Case Study with Clustering Coeffi-
cients, 4th Workshop on Multithreaded Architectures and Applications
(MTAAP), Atlanta, GA, April 23, 2010

[Ediger et al 2011] D. Ediger, J. Riedy, H. Meyerhenke, and D.A. Bader,
Tracking Structure of Streaming Social Networks, 5th Workshop on
Multithreaded Architectures and Applications (MTAAP), Anchorage,
AK, May 20, 2011

[Ediger et al 2012] D. Ediger, R. McColl, J. Riedy, and D.A. Bader,
STINGER: High Performance Data Structure for Streaming Graphs,
The IEEE High Performance Extreme Computing Conference (HPEC),
Waltham, MA, September 20-22, 2012

[Ediger & Bader 2013] D. Ediger and D.A. Bader, Investigating Graph
Algorithms in the BSP Model on the Cray XMT, 7th Workshop on
Multithreaded Architectures and Applications (MTAAP), Boston, MA,
May 24, 2013

[Ekanadham et al 2016] K. Ekanadham, B. Horn, J. Jann, M. Kumar, J.
Moreira, P. Pattnaik, M. Serrano, G. Tanase, H. Yu, Graph programming
interface (GPI): a linear algebra programming model for large scale
graph computations, Proceedings of the ACM International Conference
on Computing Frontiers (CF’16), 72-81, 2016.

[Georganas et al 2014] E. Georganas, A. Buluç, J. Chapman, L. Oliker,
D. Rokhsar and K. Yelick, Parallel De Bruijn Graph Construction
and Traversal for De Novo Genome Assembly, Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’14), 2014

[Harary & Tauth 1964] F. Harary & C.A. Tauth, Connectedness of products
of two directed graphs, SIAM Journal on Applied Mathamatics, 14:250-
254, 1966

[Harary 1969] F. Harary, Graph Theory, Reading:Addison-Wesley, 1969
[Hutchison et al 2015] D. Hutchison, J. Kepner, V. Gadepally, & A. Fuchs,

Graphulo implementation of server-side sparse matrix multiply in
the Accumulo database, IEEE High Performance Extreme Computing
(HPEC) Conference, Walham, MA, September 2015.

[Kepner & Gilbert 2011] J. Kepner & J. Gilbert (editors), Graph Algorithms
in the Language of Linear Algebra, SIAM Press, Philadelphia, 2011

[Kepner et al 2012] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond,
C. Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P.
Michaleas, A. Prout, A. Reuther, A. Rosa & C. Yee, Dynamic Distributed
Dimensional Data Model (D4M) Database and Computation System,
ICASSP (International Conference on Acoustics, Speech, and Signal
Processing), 2012, Kyoto, Japan

[Konig 1931] D. Konig, Graphen und Matrizen (Graphs and Matrices),
Matematikai Lapok, 38:116-119, 1931.

[Konig 1936] D. Konig, Theorie der endlichen und unendlichen graphen
(Theory of finite and infinite graphs), Leipzig:Akademie Verlag M.B.H.,
1936; see Richard McCourt (Birkhauser 1990) for an english translation
of this classic work

[Leskovec 2005] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos.
Realistic, mathematically tractable graph generation and evolution,
using Kronecker multiplication. European Conference on Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD 2005),
Porto, Portugal, 2005

[Mattson et al 2013] T. Mattson, D. Bader, J. Berry, A. Buluç, J. Dongarra,
C. Faloutsos, J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner,
C. Leiserson, A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M.
Stonebraker, S. Wallach, & A. Yoo, Standards for Graph Algorithms
Primitives, IEEE HPEC 2013, Waltham, MA

[Mattson 2014a] T. Mattson, Workshop on Graph Algorithms Building
Blocks, IPDPS 2014, Pheoniz, AZ

[Mattson 2014b] T. Mattson, GraphBLAS Special Session, IEEE HPEC 2014,
Waltham, MA

[Mattson 2015] T. Mattson, Workshop on Graph Algorithms Building Blocks,
IPDPS 2015, Hyderabad, India

[Mattson 2016] T. Mattson, Workshop on Graph Algorithms Building Blocks,
IPDPS 2016, Chicago, IL

[McAndrew 1963] M.H. McAndrew, On the product of directed graphs,
Proceedings of the American Mathematical Society, 14:600-606, 1963

[McAndrew 1965] M.H. McAndrew, On the polynomial of a directed graph,
Proceedings of the American Mathematical Society, 16:303-309, 1965

[McLaughlin & Bader 2014a] A. McLaughlin and D.A. Bader, Revisiting
Edge and Node Parallelism for Dynamic GPU Graph Analytics, 8th
Workshop on Multithreaded Architectures and Applications (MTAAP),
Phoenix, AZ, May 23, 2014

[McLaughlin & Bader 2014b] A. McLaughlin and D.A. Bader, Scalable and
High Performance Betweenness Centrality on the GPU, Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC’14), New Orleans, LA, November
16-21, 2014

[McLaughlin et al 2014] A. McLaughlin, J. Riedy, and D.A. Bader, Opti-
mizing Energy Consumption and Parallel Performance for Betweenness
Centrality using GPUs, The 18th Annual IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, September 9-
11, 2014

[Meyerhenke et al 2015] H. Meyerhenke, P. Sanders, C. Schulz, Parallel
Graph Partitioning for Complex Networks, 29th IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2015)

[Riedy & Bader 2013] J. Riedy & D.A. Bader, Multithreaded Community
Monitoring for Massive Streaming Graph Data, 7th Workshop on

Multithreaded Architectures and Applications (MTAAP), Boston, MA,
May 24, 2014

[Riedy et al 2012] J. Riedy, H. Meyerhenke, and D.A. Bader, Scalable
Multi-threaded Community Detection in Social Networks, 6th Workshop
on Multithreaded Architectures and Applications (MTAAP), Shanghai,
China, May 25, 2012

[Sabadusi 1960] G. Sabadusi, Graph multiplication, Mathematische
Zeitschrift, 72:446-457, 1960

[Solomonik et al 2013] E. Solomonik, A. Buluç, & J. Demmel, Minimizing
communication in all-pairs shortest paths. In IEEE International Sym-
posium on Parallel & Distributed Processing (IPDPS), 548-559, 2013

[Song et al 2010] W.S. Song, J. Kepner, H.T. Nguyen, J.I. Kramer, V.
Gleyzer, J.R. Mann, A.H. Horst, L.L. Retherford, R.A. Bond, N.T.
Bliss, E.I. Robinson, S. Mohindra, and J. Mullen, 3-D Graph Processor,
Workshop on High Performance Embedded Computing, September 2010

[Song et al 2013] W.S. Song, J. Kepner, V. Gleyzer, H.T. Nguyen, and J.I.
Kramer, Novel Graph Processor Architecture, MIT Lincoln Laboratory
Journal, vol. 20, no. 1, pp. 92-104, 2013

[Staudt & Meyerhenke 2016] C.L. Staudt & H. Meyerhenke, Engineering
Parallel Algorithms for Community Detection in Massive Networks,
IEEE Transactions on Parallel and Distributed Systems vol. 27, no. 1,
pp. 171-184, 2016.

[Staudt et al 2016] C.L. Staudt, A. Sazonovs, H. Meyerhenke, NetworKit:
A Tool Suite for Large-scale Network Analysis, Network Science,
Cambridge University Press

[Teh & Yap 1964] H.H. Teh & H.D. Yap, Some construction problems of
homogeneous graphs, Bulletin of the Mathematical Society of Nanying
University, 164-196, 1964

[Van Loan 2000] C.F.V. Loan. The ubiquitous Kronecker product. Journal of
Computation and Applied Mathematics, 123(1-2):85–100, 2000

[Wang et al 2016] Y. Wang, A. Davidson, Y. Pan, Yuduo Wu, A. Riffel &
J.D. Owens, Gunrock: A high-performance graph processing library on
the GPU, 21th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2016, March 2016

[Weischel 1962] P.M. Weischel. The Kronecker product of graphs, Proceed-
ings of the American Mathematical Society, 13(1):47–52, 1962

[Zhang et al 2016] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, & S.
McMillan, GBTL-CUDA: Graph Algorithms and Primitives for GPUs,
GABB workshop at IPDPS 2016

	I Introduction
	II Adjacency Matrix
	III Incidence Matrix
	IV Matrix Values
	V Scalar Operations
	VI Matrix Properties
	VII 0-Element: No Graph Edge
	VIII Matrix Graph Operations
	VIII-A Building a Matrix: Edge List to Graph
	VIII-B Extracting Tuples: Graph to Vertex List
	VIII-C Transpose: Swap Out-Vertices and In-Vertices
	VIII-D Matrix Multiplication: Breadth-First-Search, and Adjacency Matrix Construction
	VIII-E Extract: Selecting Sub-graphs
	VIII-F Assign: Modifying Sub-Graphs
	VIII-G Element-Wise Addition and Element-Wise Multiplication: Combining Graphs, Intersecting Graphs, and Scaling Graphs

	IX Performance
	X Conclusions
	References

