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Abstract—The success of SQL, NoSQL, and NewSQL databases 
is a reflection of their ability to provide significant functionality 
and performance benefits for specific domains, such as financial 
transactions, internet search, and data analysis.  The BigDAWG 
polystore seeks to provide a mechanism to allow applications to 
transparently achieve the benefits of diverse databases while 
insulating applications from the details of these databases.  
Associative arrays provide a common approach to the 
mathematics found in different databases: sets (SQL), graphs 
(NoSQL), and matrices (NewSQL).  This work presents the SQL 
relational model in terms of associative arrays and identifies the 
key mathematical properties that are preserved within SQL.  
These properties include associativity, commutativity, 
distributivity, identities, annihilators, and inverses. Performance 
measurements on distributivity and associativity show the impact 
these properties can have on associative array operations.  These 
results demonstrate that associative arrays could provide a 
mathematical model for polystores to optimize the exchange of 
data and execution queries. 

Keywords-Associative Array Algebra; SQL; NoSQL; NewSQL; 
Set Theory; Graph Theory; Matrices; Linear Algebra 

I.  INTRODUCTION  
Relational or SQL (Structured Query Language) databases 

[Codd 1970, Stonebraker 1976] such as PostgreSQL, MySQL, 
and Oracle have been the de facto interface to databases since 
the 1980s (see Figure 1) and are the bedrock of electronic 
transactions around the world. More recently, key-value stores 
(NoSQL databases) such as Google BigTable [Chang 2008], 
Apache Accumulo [Wall 2015], and MongoDB [Chodorow 
2013] have been developed for representing large sparse tables 
to aid in the analysis of data for Internet search. As a result, the 
majority of the data on the Internet is now analyzed using key-
value stores [DeCandia et al 2007, Lakshman & Malik 2010, 
George 2011]. In response to similar performance challenges, 
the relational database community has developed a new class 
of databases (NewSQL) such as C-Store [Stonebraker 2005], 
H-Store [Kallman 2008], SciDB [Balazinska 2009], VoltDB 
[Stonebraker 2013], and Graphulo [Hutchison 2015] to support 
new analytics capabilities within a database.  The SQL, 
NoSQL, and NewSQL concepts have also been blended in 
hybrid processing systems, such as Apache Pig [Olston 2008], 
Apache Spark [Zaharia 2010], and HaLoop [Bu 2010].  An 
effective mathematical model that encompasses the concepts of 

SQL, NoSQL, and NewSQL would enable their 
interoperability.  Such a mathematical model is the primary 
goal of this paper. 

 

 
Figure 1.  Evolution of SQL, NoSQL, NewSQL, and polystore 
databases.  Each class of database delivered new mathematics, 
functionality, and performance focused on new application areas. 

SQL, NoSQL, and NewSQL databases are designed for 
specific applications, have distinct data models, and rely on 
different underlying mathematics (see Figure 2).  Because of 
their differences, each database has unique strengths that are 
well suited for particular workloads.  It is now recognized that 
special-purpose databases can be 100x faster for a particular 
application than a general-purpose database [Kepner 2014].  In 
addition, the availability of high performance data analysis 
platforms, such as the MIT SuperCloud [Reuther 2013, Prout 
2015], allows high performance databases to share the same 
hardware platform without sacrificing performance. 

 

 
Figure 2.  Focus areas of SQL, NoSQL, NewSQL, and Polystore 
databases. 
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The recognition of “one size does not fit all” [Stonebraker 
& Çetintemel 2005] has led to the need for polystore databases, 
such as BigDAWG [Duggan 2015, Elmore 2015], that can 
contextualize queries and cast data between multiple databases 
so that a user can employ the best database for a particular task 
(see Figure 3). To achieve this goal, polystore databases need 
to bridge SQL, NoSQL, and NewSQL databases.  The 
Dynamic Distributed Dimensional Data Model (D4M) 
technology [Kepner 2012] was developed to provide a linear 
algebraic interface to graphs stored in NoSQL databases [Byun 
2012, Kepner 2013].  Subsequently, D4M has been 
successfully used with both SQL [Wu 2014, Gadepally 2015] 
and NewSQL [Samsi 2016] databases.  The effectiveness of 
D4M to seamlessly interact with these diverse databases rests 
on its associative array algebra [Kepner & Chaidez 2013, 
Kepner & Chaidez 2014, Kepner & Jansen 2016] that provides 
a mathematics that spans sets, graphs, and matrices.  The 
ability of D4M (and Myria [Halperin 2014]) to bridge multiple 
databases has laid the foundation for the polystore database 
concept. 

 

 
Figure 3.  BigDAWG polystore database architecture.  Analytic 
translators contextualize queries to specific databases.  Data 
translators cast data between databases. 

Mathematics is one of the most important differences 
among SQL, NoSQL, and NewSQL databases (see Figure 4).  
The relational algebra found in SQL databases is based upon 
selection, union, and intersection of special sets called 
relations.  NoSQL is designed for analyzing sparse 
relationships among data and relies on graph theory and graph 
analysis.  NewSQL databases use matrices and linear algebra to 
look for patterns in numeric data. 

 

 
Figure 4.  Mathematics of breadth-first search for SQL, NoSQL, and 
NewSQL databases. 

The approach to developing an associative array model of 
the above databases is as follows.  First, the relevant aspects of 
relations are summarized.  Second, the sparse matrix operations 
that encompass graph algorithms and matrix mathematics are 
given.  Third, the associative array model that describes 
NoSQL and NewSQL databases is described.  Fourth, relations 

and their corresponding operations are defined in terms of 
associative arrays.  Fifth, the mathematical properties required 
by graph algorithms and matrix mathematics are confirmed for 
relational operations.  Finally, performance results illustrating 
the impact of these properties are presented and discussed. 

II. RELATIONS 
The relational model, based on set theory, is a key 

mathematical foundation for SQL databases.  The relational 
model effectively consists of relational algebra, relational 
calculus, and the structured query language (SQL) that balance 
the theoretical, implementation, and systems design aspects of 
databases.  The relational model is well covered in the 
literature [Maier 1983, Codd 1990, Abiteboul 1995]; only the 
most relevant aspects of the model are reviewed here.  Some of 
the more significant mathematical contributions of the 
relational model to databases include 
 
(R1) Relations: a mathematical definition of database tables 

sufficient for their representation without constraining 
their implementation; 

(R2) Query semantics: a mathematical definition of operations 
on relations sufficient for proving the correctness of 
database queries; 

(R3) Proof of the equivalence of declarative and procedural 
syntaxes over the above definitions that has enabled the 
use of declarative semantics for database users and 
procedural semantics for database builders [Codd 1972]. 

 
Of these results, (R3) has been enormously important, but 
would not be possible without (R1) and (R2).  (R3) has been 
critical to the success of SQL databases that follow the 
relational model.  (R3) has enabled the successful coexistence 
of separate interfaces and languages for users and 
implementers, with the confidence that neither would create a 
fundamental mathematical contradiction for the other. 

The relational model is based on balancing mathematical 
rigor with implementation practicality.  Too much 
mathematical rigor burdens a database implementation with 
unnecessary mathematics.  Too little mathematical rigor makes 
it is difficult to know if a database implementation will work.  
As with all good compromises, there have been advocates for 
improvement on both sides.  As cited earlier, many new 
databases under the names of NoSQL and NewSQL differ from 
the relational model to meet new performance and analysis 
demands.  Likewise, there is extensive mathematical work on 
modifications to the relational model to increase its 
mathematical rigor [Imieliński 1984a, Imieliński 1984b, 
Kanellakis 1989, Tsalenko 1992, Plotkin 1998, Priss 2006, van 
Emden 2006, Litak 2014, Hutchison 2016].  One motivation 
for increasing the mathematical rigor [Kelly 2012] is to align 
relations with well-established Zermelo-Fraenkel Choice (ZFC) 
set theory [Zermelo 1908, Fraenkel 1922] that is the foundation 
for a number of branches of mathematics. 

The emerging diversity of databases has initiated a dialogue 
regarding the traditional relational model and the newer graph 
and matrix models.  This dialogue is akin to the earlier 
declarative and procedural conversation that culminated in the 
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relational model.  This work seeks similar progress by 
demonstrating that an associative array model can provide 

 
(A1) Associative arrays: a mathematical definition of database 

tables for SQL, NoSQL, and NewSQL databases that 
accurately describes their implementation; 

(A2) Associative array algebra: a mathematical definition of 
database queries and computations that accurately 
describes the operations performed by SQL, NoSQL, and 
NewSQL databases; 

(A3) Equivalence of relational and array syntaxes over the 
above definitions that enables the use of either in a SQL, 
NoSQL, or NewSQL database. 

 
Of these results, (A3) has the most potential to impact 
polystore databases.  Likewise, (A3) would not be possible 
without (A1) and (A2). 

The mathematical challenge of creating an associative array 
model encompassing SQL, NoSQL, and NewSQL is 
reconciling their mathematical differences.  SQL databases 
focus on set operations (subsets, unions, intersections), and the 
relational model is based on an elegant approach to set theory 
that provides only those attributes of formal set theory that are 
required for SQL databases.  NoSQL and NewSQL databases 
focus on high performance data analysis (graph algorithms and 
matrix mathematics) that require mathematical properties such 
as associativity, commutativity, distributivity, identities, 
annihilators, and inverses.  Reproducing the balance that led to 
the success of the relational model in another model is difficult.  
Detailed analysis of this balance leads down the same well-
traveled path of those who have advocated for both more or 
less mathematical rigor in the relational model.  Instead, just as 
Alexander solved the problem of the Gordian Knot, this paper 
asserts the desired outcome (relations are associative arrays) 
and the implications of this assertion are then addressed. 

III. GRAPHS AND MATRICES 
The duality between graph algorithms and matrix 

mathematics (or sparse linear algebra) has been extensively 
covered in the literature and is summarized in the cited text 
[Kepner & Gilbert 2011].  This text has further spawned the 
development of the GraphBLAS math library standard 
(GraphBLAS.org)[Mattson 2013] that is described in the series 
of proceedings [Mattson 2014a, Mattson 2014b, Mattson 2015, 
Buluc 2015, Buluc 2016].  The essence of the graph algorithms 
and matrix mathematics duality are three operations: element-
wise addition, element-wise multiplication, and matrix 
multiplication.  In brief, an m×n matrix A is defined as a 
mapping from pairs of integers to values 

A: {1,...,m}×{1,...,n} →  
where  is the set of values that form a semiring 
( ,⊕,⊗,0,1)[Kepner & Jansen 2016] with addition operation 
⊕, multiplication operation ⊗, additive identity/multiplicative 
annihilator 0, and multiplicative identity 1.  The construction of 
a sparse matrix is denoted 

A = (I,J,V) 
where I, J, V are vectors of the rows, columns, and values of 
the nonzero elements of A. 

Given m×n matrices A, B, and C, element-wise matrix 
addition (and its graph equivalent: weighted graph union) is 
denoted 

C = A ⊕ B 
or more specifically 

C(i,j) = A(i,j) ⊕ B(i,j) 
where i ∈ {1,...,m} and j ∈ {1,...,n}.  Element-wise matrix 
multiplication (and its graph equivalent, weighted graph 
intersection) is denoted 

C = A ⊗ B 
or more specifically 

C(i,j) = A(i,j) ⊗ B(i,j) 
For a m×l matrix A, l×n matrix B, and m×n matrix C, matrix 
multiplication (and its graph equivalent, multisource weighted 
breadth-first search) combines addition and multiplication and 
is written 

C = A ⊕.⊗ B = A B 
or more specifically 

C(i,j) = ⊕k A(i,k) ⊗ B(k,j) 
where k ∈ {1,...,l}.  Finally, the matrix transpose (and its graph 
equivalent, graph edge reversal) is denoted 

A(j,i) = AT(i,j) 
The above operations have been found to enable a wide 

range of graph algorithms and matrix mathematics while also 
preserving the required vector-space properties [Heaviside 
1887, Peano 1888] such as commutativity 

A ⊕ B = B ⊕ A 
A ⊗ B = B ⊗ A 
(A  B)T = BT  AT 

associativity 
(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) 
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) 
(A     B)     C = A     (B     C) 

distributivity 
A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C) 
A     (B ⊕ C) = (A     B) ⊕ (A     C) 

and the additive and multiplicative identities 
A ⊕  = A 
A ⊗  = A 
A      = A 

where  is a matrix of all 0, is a matrix of all 1, and  is a 
matrix with 1 along its diagonal.  Furthermore, these matrices 
possess a multiplicative annihilator 

A ⊗  =  
A      =  

Their corresponding inverses may also exist 
A        ⊕ -A         =  
A(i,j)  ⊗  A(i,j)-1 =  
A             A-1       =  

when ( ,⊕,0) and ( ,⊗,1) are groups (i.e., have inverses) 
[Galois 1832]. 
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Most significantly, the properties of matrices are determined 
by the properties of the set of values .  In other words, the 
properties of  determine the properties of the corresponding 
matrices.  The above properties are required for the 
development and implementation of data analysis algorithms. 

IV. ASSOCIATIVE ARRAYS 
Associative arrays can be rigorously built up from ZFC set 

theory, groups, and semirings, culminating with the 
observation that linear algebra is a specialization of associative 
array algebra. How associative arrays encompass graphs, 
matrices, NoSQL, and NewSQL is described extensively in 
[Kepner & Jansen 2016] and is only summarized here.   

As described earlier, sparse matrices are a common 
representation used for both graphs and linear algebra.  The 
standard definition of sparse matrices requires generalization to 
encompass the tables found in SQL, NoSQL, and NewSQL 
databases.  The primary difference between a matrix and an 
associative array is the specification of the row and column 
indices.  In a matrix, the row and column indices are drawn 
from the sets of integers {1,...,m} and {1,...,n}.   Associative 
array row and column “keys” can be drawn from any strict, 
totally ordered set (i.e., any uniquely sortable set).   Associative 
array row and column keys can be negative numbers, real 
numbers, or character strings.  The true dimensions of an 
associative array are often very large (e.g., all possible finite 
strings).  Instead, the size of an associative array is more 
commonly used and is defined as the number of nonzero rows, 
m, and the number of nonzero columns, n.  An equally 
important quantity is the number of nonzeros in an associative 
array, which is denoted by the function nnz().  The size and nnz 
of an associative array can change through the course of a 
calculation.  There are no size constraints on associative array 
operations.  Element-wise addition, element-wise 
multiplication, and array multiplication are valid for 
combinations of associative arrays of any size.  

Associative arrays derive much of their power from their 
ability to represent data intuitively in easily understandable 
tables. Consider the list of songs and the various features of 
those songs shown in Figure 5. The tabular arrangement of the 
data shown in Figure 5 is an associative array (denoted A). This 
arrangement is similar to those widely used in spreadsheets and 
databases.  Figure 5 illustrates two properties of associative 
arrays that may differ from other two-dimensional 
arrangements of data.  First, each row key and each column key 
in A unique, to allow rows and columns to be queried 
efficiently.  Second, associative arrays do not store rows or 
columns that are entirely empty, to allow insertion, selection, 
and deletion of data to be performed by associative array 
addition, multiplication, and products.  These properties are 
what makes A an associative array and allows A to be 
manipulated as a spreadsheet, database, matrix, or graph. 

 

 
Figure 5.  Tabular arrangement of a list of songs and the various 
features of those songs into an associative array A. The array A is an 

associative array because each row label (or row key) and each 
column label (or column key) in A is unique.  The size of the 
associative array is m = 4 and n = 4. 

V. RELATIONS AS ASSOCIATIVE ARRAYS 
A first step in adapting the relational model to associative 

arrays is to define a relation in terms of associative 
arrays.  This step is done by asserting a relation is an 
associative array and considering the implications of the 
assertion.   Operationally, asserting that relations are 
associative arrays means that the row keys of an associative 
array are arbitrary but distinct at the time of input and output of 
a relational operation.  Using this definition, some of the 
implications can be illustrated by a series of common questions 
about relations,  specifically, whether or not relations are sets, 
tuples, indices, ordered, multisets (bags), or sequences. 

Are relations ZFC sets?  Relations in the traditional 
relational model require some, but not all, properties of ZFC set 
semantics.  The values of associative arrays are ZFC sets.  The 
keys of associative arrays are ZFC sets.  Expressing relations as 
associative arrays means that they adhere to ZFC set semantics. 

Are relations tuples?  A row of an associative array is 
mathematically a row vector.  Mathematically, tuples are also 
vectors so relations are tuples. 

Are relations indices?  In the past, it has been efficient in 
both space and time if a relation can be represented as a tuple 
of integer indices that connect to values in a table.  Today, this 
implementation guidance is less important and it is 
mathematically more flexible to treat relations as tuples of their 
actual values, which is how they are defined in associative 
arrays. 

Are relations ordered sets?  Mathematically, ordering of 
rows or columns is not required for either relations or 
associative arrays.  However, as a practical matter, ordering is 
required for real database tables, and there is no negative 
mathematical consequence for requiring rows and columns to 
be ordered sets.  Thus, associative array rows and columns are 
ordered sets. 

Are relations multisets (bags)?  Identical rows are a reality 
in many databases, implying that relations are multi-sets.    The 
row key of an associative array distinguishes rows with 
identical values. 

Are relations sequences? A practical approach to 
implementing multiple identical rows is to view relations as a 
mathematical sequence instead of a set.  In a sequence, each 
row is paired with a number that sets the order of the rows; 
hence, the term sequence ID in SQL databases. A sequence ID 
is effectively equivalent to the row key in an associative array.  
NoSQL databases embrace this view to the point of fully 
exposing the unique sequence ID as a user-controlled 
parameter. 

Defining relations as associative arrays provides new 
answers to the above questions.  However, new questions arise 
that also must be addressed.  Primary amongst these are the 
differences among 0, ∅, null, empty entries, and empty rows 
and columns.  To provide the necessary mathematical 
properties for matrix calculations, associative arrays follow the 
conventions set by sparse matrices that define 0 as the non-
stored element.  More specifically, the value corresponding to 

Artist Date Duration Genre
053013ktnA1 Bandayde 2013-05-30 5:14 Electronic
053013ktnA2 Kastle 2013-05-30 3:07 Electronic
063012ktnA1 Kitten 2010-06-30 4:38 Rock
082812ktnA1 Kitten 2012-08-28 3:25 Pop
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the ⊕ identity and the ⊗ annihilator is the non-stored element.  
Because of its mathematical properties, the 0 element is unique 
and there is no distinction between 0 and “no data” or null.  As 
a practical matter, when it is desired to distinguish between 
these states, usually a workaround can be found.  A unique 0 is 
useful as it does not require that exceptions be defined for 
every operation. 

VI. QUERIES AS ASSOCIATIVE ARRAY ALGEBRA 
Relational algebra and SQL have defined a wide range of 

operations that are useful for executing queries on relations.  
Some of these operations are union ∪, intersection ∩, set 
difference \, Cartesian product ×, project Π, rename ρ, select σ, 
natural join ⋈, equijoin ⋈k, theta join ⋈θ, left outer join ⟕, 
right outer join ⟖, full outer join ⟗, antijoin ▷, extended 
projection, and aggregation.  In discussions of the relational 
model, the list of operations most commonly discussed include  
union ∪, intersection ∩, set difference \, project Π, rename ρ, 
select σ, and theta join ⋈θ. 

In practice, all computations are restricted to the nonzero 
rows and nonzero columns of the associative array 
representation of relations.  .  Likewise, since the row keys in 
an associative array representation of a relation are arbitrary, it 
is assumed that wherever convenient the row keys of any 
associative array can be made distinct.  Thus, it is common for 
there to be no operations that require the comparison of two 
arbitrary values.  In many computations, the only operations 
that need to be specified are the identities 

v ⊕   0 = v                               v ⊗ 1 = v 
and the additive inverse and multiplicative annihilator 

v ⊕ -v = 0                               v ⊗ 0 = 0 
where v ∈ .  Results that can be proven under the above 
conditions will hold for a wide variety of ⊕ and ⊗ operations. 

A. Equivalence 
In dealing with any new data representation, the first step is 

to define when two representations are equivalent [Howe 
2005].  Relational equivalence for associative arrays is denoted  

A ~ B 
and implies every row in A has an identical row in B, and every 
row in B has an identical row in A.  This definition allows 
multiple identical rows.  A stronger version further requires 
exactly the same number of identical rows in A and B.  
Equivalence can be computed via the equivalency permutation 
array P of the nonzero rows in A to the nonzero rows in B 
where P(iA,iB) = 1 (and 0 otherwise) if row A(iA,:) is the same 
as row B(iB,:).  P can be computed by using a variety of 
notational conventions 
 

P = A  (A ⊕.⊗ BT)  B 
   = A  (A &.=  BT)  B 

where ⊕ is &, ⊗ is =, and 
IA is the set of nonzero rows in A 

A = (IA, IA,1) is the identity array over IA 
IB is the set of nonzero rows in B 

B = (IB, IB,1) is the identity array over IB 

or more specifically 
P(iA,iB) = &j (A(iA,j) = B(iB,j)) 

where iA ∈ IA and iB ∈ IB.  Likewise, P can computed as 
P(iA,iB) =  δ(A(iA,:),B(iB,:)) 

where δ(,) is the Kronecker delta function.  If every nonzero 
row in A has a nonzero row in P and if every row in B has a 
nonzero column in P, then 

A ~ B 
Using the convention of restricting to the nonzero rows of A 
and B, P can also be computed simply as 

P = ABT 
where ⊕.⊗ is &.= or δ(,) is implied.  Likewise, by the 
transpose identity 

PT = BAT 
The stronger version of equivalence can obtained by imposing 
the further requirement that if P is stripped of its row and 
column keys, it forms a symmetric matrix where 

PT = P 
Using this definition of equivalence allows most relational 
operations to be defined in terms of variations on the 
construction of the permutation matrix P. 

B. Project 
The project operation picks sets of J columns from a 

relation A and is typically written in relational algebra as 
ΠJ(A) 

The SQL equivalent is 
SELECT J(1),...,J(n) FROM A 

or simply 
A.J(1),...,J(n) 

In terms of associative array algebra, project can be 
accomplished via many expressions, such as 

A ⊕.⊗ (J,J,1)   or    A (J,J)   or    A (J)   or    A(:,J) 
given the shorthand notation for the identity array 

(J,J,1) = (J,J) = (J) 
and the Matlab notation A(:,J) for column selection. 

C. Rename 
The rename operation picks columns J from a relation A 

and assigns them new names J'.  Rename is written in relational 
algebra as 

ρJ/J'(A) 
The SQL equivalent is 

SELECT J(1),...,J(n) AS J'(1),...,J'(n) FROM A 
 
In associative array algebra, rename can be accomplished with 
the many expressions, such as 

A ⊕.⊗ (J,J',1)      or      A (J,J') 

D. Union 
The union operation selects all the distinct rows in two 

relations A and B and is written in relational algebra as 
A ∪ B 

The SQL equivalent is 
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SELECT ∗ FROM A UNION SELECT ∗ FROM B 
In associative array algebra, using the convention of distinct 
row keys for nonzero rows, union can be written as 

A ⊕ B 

E. Intersection 
The intersection operation combines the common rows in 

two relations A and B and is written in relational algebra as 
A ∩ B 

The SQL equivalent is 
SELECT ∗ FROM A INTERSECT SELECT ∗ FROM B 

In associative array algebra, using the equivalence permutation 
array, intersection can be computed with the following 
expressions 

PB     or      PTA 

F. Set Difference 
Set difference returns the rows in relation A that are not 

found in relation B and is written in relational algebra as 
A \ B 

The SQL equivalent is 
SELECT ∗ FROM A EXCEPT SELECT ∗ FROM B 

In associative array algebra, assuming the additive inverse v ⊕ 
-v = 0, intersection can be written using the equivalence 
permutation array as 

A ⊕ -PB 

G. Select 
The select operation returns all rows in the relation A that 

satisfy a function ϕ on the subset of columns J 
σϕ(J)(A) 

The SQL equivalent is 
SELECT ∗ FROM A WHERE ϕ(A.J(1),...,J(n)) 

In associative array algebra, select can be written using the 
select permutation array 

PA 
where 

P =  (ϕ(A(:,J)) ϕ(A(:,J))T)  ⊗ A 

or 
P =  (ϕ(A(:,J)) 

The function ϕ can be any function on the J columns of a row 
of an associative array that produces either a 0 or a 1 (i.e., ⊕.θ 
∈ {0,1}). 

H. Theta Join 
A theta join returns the rows of two relations A and B 

joined where they satisfy the function θ on the J columns of A 
and J' columns of B and is written in relational algebra as 

A ⋈θ(J,J') B 
The SQL equivalent is 

SELECT ∗ FROM A, B WHERE θ(A.J(1),...,J(n),B.J'(1),...,J'(n)) 
In associative array algebra, select can be written using the θ 
permutation array as 

PB ⊕ PPTA      or      PTA ⊕ PTPB 

where 
P = A  (A(:,J) ⊕.⊗ B(:,J')T)  B 
   = A  (A(:,J)   θ    B(:,J')T)  B 

The function θ can be any function on two rows of an 
associative array that produces either a 0 or a 1 (i.e., θ ∈ 
{0,1}).  If the operation is restricted to the nonzero rows of A 
and B, then the A and B terms can be dropped and the θ 
permutation array can be written as 

P = A(:,J) θ B(:,J')T 

I. Extended Projection 
An extended projection applies a function ϕ on the subset 

of columns J of a relation A and returns the output of that 
function as a new relation with a column key j'.  Extended 
projection is written in relational algebra as 

j'Πϕ(J)(A) 
The SQL equivalent is 

SELECT ϕ(A.J(1),...,J(n)) AS j' FROM A 
In associative array algebra, extended projection can be written 
as 

A  ⊕.⊗ (J,j') 
where ⊕.⊗ = ϕ.  The function ϕ can be any function on a row 
of an associative array. 

J. Aggregation 
The aggregation operations applies an aggregate function ƒ 

on all the values of column j' of relation A that share a common 
value in column j.  Aggregation is written in relational algebra 
as 

j'Gƒ(j)(A) 
The SQL equivalent is 

SELECT ƒj' FROM A GROUP BY j 
In associative array algebra, aggregation can be written as 

P ƒ.⊗ A(:,j') 
where P is the permutation array defined by cross-correlating 
column j with itself 

P = A  (A(:,j) ⊕.⊗ A(:,j)T)  A 
    = A  (A(:,j) ⊕.=  A(:,j)T)  A 

The function ƒ can be any binary commutative function on a 
column of an associative array. 
 

VII. PROPERTIES AND PERFORMANCE 
Having expressed the main relational operations in terms of 

associative array algebra, the mathematical properties 
necessary for graph and matrix computation can be checked.  
The results of this analysis are summarized in Tables 1 and 2. 
The derivation of all of these properties is beyond the scope of 
this paper, but as an example, perhaps the most important 
property, distributivity is derived in the context of relational 
renaming over union and intersection.  These operations are the 
closest direct analogs to array multiplication and element-wise 
addition. 

Showing that renaming distributes over union is computed 
as follows 
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ρJ/J'(A ∪ B) ~ (A ⊕ B) (J,J')       
= A (J,J') ⊕ B (J,J')  
~ ρJ/J'(A) ∪ ρJ/J'(B) 

Showing that renaming distributes over intersection is 
computed as follows 
  ρJ/J'(A) ∩ ρJ/J'(B) ~ ((A (J,J')) (B (J,J')T) B (J,J') 

= ((A (J,J')) ( (J,J')T BT) B (J,J') 
= ((A ( (J,J') (J',J)) BT) B (J,J') 
= (A (J) BT) B (J,J') 
= (ABT) B (J,J') 
= (PB) (J,J') 
~ ρJ/J'(A ∩ B) 

Because the above derivations use the corresponding properties 
of associative arrays, the results can be more general than the 
relational algebra would suggest.  Specifically, distributivity 
would still hold if rename modified the values in a manner 
consistent with associative array multiplication.  Likewise, 
distributivity would still hold if union and intersection modified 
the values in a manner consistent with element-wise addition. 
 
Table 1.  Identity, annihilator, and inverse properties of relational 
operations in terms of associative arrays.  Unary functions with 
parameters are treated as binary functions.  The potential performance 
impact of the elimination of an operation via the recognition of one of 
these properties is typically O(nnz(A)). 
Operation Identity Annihilator Inverse 
Project     
Rename    
Union   
Intersection    
Difference   A 
Select ϕ = 1 ϕ = 0  
Theta Join  A 
Extended 
Projection 

J = j' 
 ϕ(1,v) = v 

ϕ = 0 ϕ = 1 

Aggregation A(:,j) is unique 
ƒ(0,v) = v 

ƒ(0,v) = 0 ƒ(0,v) = 1 

 
 
 
 
Table 2.   Commutativity, associativity, and distributivity properties of 
relational operations on associative arrays. Unary functions with 
parameters are treated as binary functions.  The potential performance 
impact of elimination of an operation via the recognition of one of 
these properties is typically O(nnz(A)).  
Operation Commutativity Associativity Distributivity 
Projection no yes ∪, ∩, \ 
Rename no yes ∪, ∩, \ 
Union yes yes ∩ 
Intersection yes yes ∪ 
Difference no no  
Select1    
Theta Join2 yes   
1Assumes corresponding property in select function ϕ. 

2Assumes corresponding property in join function θ. 
 

One of the benefits of the properties in Table 1 is the ability 
to eliminate operations if the appropriate identity can be 
recognized.  Likewise, the properties in Table 2 allow 
operations to be reordered to reduce execution time.  These 
properties are particularly useful in the polystore context when 
selecting the optimal database to perform an operation.  Figures 
6 and 7 show the relative execution time impact of exploiting 
associativity and distributivity as a function of the size of the 
associative arrays.  These experimental measurements were 
conducted using the D4M (d4m.mit.edu) implementation of 
associative arrays. A fixed 4096×4096 associative array A was 
multiplied with square associative arrays B and C that varied in 
size.  All of the associative arrays were randomly generated 
with an average of 8 nonzero entries per row or column, which 
is consistent with many graph applications.  The results show 
the potential performance benefits of exploiting the distributive 
and associative properties.  Thus, the kinds of query 
optimizations that are found in many databases systems can be 
applied to a broad set of computations.  These optimizations 
are important for polystores as they allow the movement of 
computations and data to the appropriate databases. 

 
Figure 6.  Relative execution time of A (B ⊕ C) vs (A B) ⊕ (A C) as 
a function of the size of B and C as compared to A.  (A B) ⊕ (A C) is 
much faster than A (B ⊕ C) when A is smaller than B and C. 
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Figure 7.  Relative execution time of A (B C) vs (A B) C as a 
function of the size of B and C as compared to A.  (A B) C is much 
faster than A (B C) when A is smaller than B and C. 

 

VIII. SUMMARY AND FUTURE WORK 
The success of SQL, NoSQL, and NewSQL databases is a 

reflection of their ability to provide significant functionality 
and performance benefits for specific domains: transactions, 
internet search, and data analysis.  The BigDAWG polystore 
seeks to provide a mechanism to allow applications to 
transparently achieve the benefits of diverse databases while 
insulating applications from the details of these diverse 
databases.  Associative arrays provide a common approach to 
the mathematics found in different databases: sets (SQL), 
graphs (NoSQL), and matrices (NewSQL).  This work presents 
the SQL relational model in terms of associative arrays and 
identifies the key mathematical properties of NoSQL and 
NewSQL that are preserved within SQL.  These properties 
include associativity, commutativity, distributivity, identities, 
annihilators, and inverses. Performance measurements on 
distributivity and associativity show the impact these properties 
can have on associative array operations.  These results 
demonstrate that associative arrays can provide a model for 
polystores to leverage mathematical properties across databases 
to optimize the exchange of data and queries. 

Future work in this area will focus on a complete set of 
proofs for the aforementioned relational operations, detailed 
analysis of optimizations, and the potential application of 
uncertainty quantification to database queries. 
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