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Abstract—Excessive memory usage in software applications
has become a frequent issue. A high degree of parallelism and the
monitoring difficulty for the developer can quickly lead to mem-
ory shortage, or can increase the duration of garbage collection
cycles. There are several solutions introduced to monitor memory
usage in software. However they are neither efficient nor scalable.
In this paper, we propose a dynamic tracing-based sampling
algorithm to collect and analyse run time information and metrics
for memory usage. It is implemented as a kernel module which
gathers memory usage data from operating system structures
only when a predefined condition is set or a threshold is passed.
The thresholds and conditions are preset but can be changed
dynamically, based on the application behavior. We tested our
solutions to monitor several applications and our evaluation
results show that the proposed method generates compact trace
data and reduces the time needed for the analysis, without loosing
precision.

I. INTRODUCTION

Analysing software systems is becoming exceedingly diffi-

cult and complex because of the large-scale parallelism and

multiple abstraction layers. Newer systems include multiple

nodes in parallel, each containing a large number of cores as

well as parallel co-processors for graphics, signal processing

and networking. Virtualisation, at the machine and network

level, further complicates observability and performance de-

bugging.

Dynamic analysis through execution tracing is a solution

for the detailed run time analysis of such systems. Tracing

works by hooking into the different layers and locations

of the software and by collecting runtime data while the

software is running. It gathers valuable information about

system execution and can be used in software comprehension

and for finding problems and misbehaviors.

Although tracing in general is a great solution to analyse

runtime behavior of systems, it may present some challenges:

the trace size may be huge (in the gigabytes for only a few

seconds of tracing). The large tracing data size impacts the

storage space required, the analysis time, and may hinder

opportunities for the timely detection of sensitive problems.

Our goal is to analyse system memory usage from the kernel

point of view, since this is where actual physical resources

are eventually consumed. Many state-of-the-art tools perform

virtual memory monitoring from userspace [10], [3]. Their

methods mostly require the instrumentation of the memory

allocator of the programming language, or use a pre-loaded

library that overrides the original memory allocation functions.

Those solutions are not portable and can only target a specific

runtime environment.

We propose a generic trace-based architecture to monitor

and analyse the memory usage of any application, possibly

involving multiple processes and programming languages. The

challenges we face and aim to solve in this trace-based

dynamic memory usage analysis method are as follows:

• The high frequency of memory operations makes for huge

trace files.

• It is not usually possible to reduce the trace size by

just targeting a single process, using basic trace filtering

techniques, since the actual physical memory release is

done out of the process context.

• Tracing can itself contribute to the memory pressure.

This paper presents a dynamic sampling technique to reduce

the amount of trace data generated. The technique works by

hooking on some memory related functions (i.e., using existing

tracepoints) in the operating system kernel and listen to the

events. Then, instead of generating events for each occurrence

of the function, it only collects samples when a predefined

condition is true, (e.g., a predefined but changeable threshold is

passed or a particular time duration has elapsed). The proposed

method:

• instruments the Kernel to get the required information;

• provides filtering and aggregation mechanisms based on

some thresholds to reduce the frequency of events;

• generates metrics and visualizations from the trace file.

This can lead to greater efficiency when used to trace

high frequency operations like memory allocations. In some

applications, memory related functions are called at a very

high frequency, (e.g., more than 10,000 times per millisecond),

generating huge trace files. As we will see later in the paper,

the new approach reduces the size of trace data and the

analysis time, while providing the same analysis output and

precision.

The contribution of the paper lies in the proposal of an effi-

cient architecture for in-kernel trace sampling and aggregation.

The solution was tested to track high frequency kernel memory

allocation functions, and the efficiency and usefulness of the

method were confirmed.

In the remainder of the paper, we first review the related

work. Then, after exposing the motivation for this work, we



propose our new architecture and conclude with use cases and

evaluations.

II. RELATED WORK

Tracing is a dynamic analysis method that collects trace

logs for the execution of a software system. A trace log

entry can represent a function call, a system call, a signal,

a network packet, etc. Unlike debugging, which is a step by

step procedure going through the program execution to get

its current state, or discover a problem, tracing is a more

background process. Tracing collects runtime data during the

execution and stores it on a local or remote disk for later

analysis [9]. The tracing impact must be as low as possible to

preserve the normal software behavior.

LTTng [6] is a low impact open source Linux tracing tool

developed in the DORSAL Lab1 to provide tracing capabilities

for the Linux kernel and user-space applications. Kernel trac-

ing can be performed dynamically using Kprobes, or statically

using the TRACE EVENT macro. Traces generated by LTTng

can be used to analyse the run-time behavior of systems.

For instance, trace-driven tools are proposed in the literature

for disk block analysis [5], virtual machine analysis [1], [2],

userspace level applications (e.g., Chromium browser) [15],

[12], web applications [4] and live stream analysis [8]. Since

LTTng is a low-impact tracer [7], and provides data at multiple

system levels, it has been used in this paper to collect the

tracing data about memory usage.

Griswold et al. [10] instrumented memory allocation and

liberation operations of the Icon programming language. The

instrumentation was done using macros, which was not op-

timized for multi-threaded applications. The trace generated

was used to present the memory usage as a 2D graph where

each object allocated is shown as a rectangle, proportional to

the size of the allocation.

GCspy [14] is a memory monitoring framework developed

by Printezis et al. This tool follows a client-server architecture:

the collection of data is done on the server side and the

visualization on the client side. The data collection requires

using an instrumented memory allocator. The authors started

by instrumenting the Java Virtual Machine (JVM) to track

memory allocations in the Java programming language.

Cheadle et al. [3] extended GCspy to support dlmalloc,

the C memory allocator used by the Glibc library. They

also proposed different optimization to GCspy to reduce the

communication frequency between the client and the server, as

well as an automatic problem detector. GCspy uses animated

images to show the state of the heap memory throughout time.

This visualization is not appropriate with some applications,

since the refresh rate of the animation cannot handle high

frequency memory events.

Jurenz et al. [11] extended VampirTrace, a performance

analysis tool, to provide a detailed memory analysis based

on execution traces. Instrumentation is done using shared

1Distributed open reliable systems analysis lab (DORSAL)
http://www.dorsal.polymtl.ca

library pre-loading. Original memory manipulation symbols

like malloc, free, calloc, etc. are overridden with new functions

that contain the required tracepoints. The limitation of this

method is that it targets only the processes that are started with

the pre-loaded library. There is no way to trace an already

running program, or to trace all the programs running on

the system at the same time. TraceCompass2 also provides a

memory analysis view that uses library pre-loading to collect

LTTng-UST traces.

Massif is a heap memory profiler provided with Val-

grind [13]. It hooks into the application loading code using

LD PRELOAD and shows its heap memory usage. It can be

used to optimize and reduce the memory usage of programs.

Although Massif is a useful tool to monitor memory usage, it

easily doubles the execution time of the application.

III. MOTIVATION

Tracking memory usage is important to know which pro-

cesses are consuming more memory resources and therefore

to detect performance problems. The operating system uses

complex mechanisms to manage the physical memory. When

a process allocates memory, a new virtual memory space is

created and assigned to the process. The real physical memory

allocation is done afterward, when the memory is actually

accessed by the process. The opposite operation is even more

tricky. When a process asks the kernel to release (free) the

memory, the kernel releases it from its virtual memory space.

However, the physical release only happens when another

process needs to get more physical memory.

Many tools use sampling to track the memory usage of

processes using the /proc filesystem. Most of those tools use

a sampling frequency of 1 Hz, which gives a low precision

result. Using a fixed sampling frequency is not a good solution,

since the rate of memory operations varies considerably from

one process to another and through time.

Tracing is another way to get information from the kernel.

If we trace memory operations like allocations and liberations,

we can track in a very precise way the memory usage of

processes. The problem is that those are high frequency events

with the potential of overwhelming the tracing subsystem,

causing lost events, which prevent precise computations. Even

if we were able to collect all events using big tracing buffers,

the trace file would be huge and very difficult to read and

analyse.

One idea to limit the trace size is to filter the tracing events

to include just one process, but this solution is not possible

because, as mentioned earlier, the physical memory liberation

does not always occur in the context of the target process. It

may happen in the context of kernel threads or in the context

of another process that reclaims the memory.

In this paper, we combine the benefits of both approaches,

tracing and sampling, by proposing a dynamic trace-based

sampling method. The sampling rate is defined based on the

frequency of the related trace events.

2http://www.tracecompass.org



Fig. 1. Sampling

IV. ARCHITECTURE

Memory management of modern operating systems is now

much more complex. Each process has a contiguous virtual

address space in which it allocates the required memory

objects. A physical memory page is associated to a virtual

one, by the page fault handler, only when the process actually

accesses it.

In this paper, we provide a tool to monitor virtual and

physical memory usage using a combination of tracing and

sampling techniques. The proposed architecture is shown in

Figure 2.

Fig. 2. Architecture

A. Virtual memory monitoring

The method tracks the virtual memory usage from the kernel

space. It traces the different system calls related to memory

allocation and release, and uses them as triggers for the Kernel

Counters Reader.

Memory-related functions like malloc(), calloc(), realloc(),

and free() use system calls to interact with the operating sys-

tem modules where the memory management is accomplished.

Table I shows the mapping between library functions and

system calls.

The behavior of the allocator differs depending on the size

of the allocation. Small allocations are achieved using sbrk

system calls, which increase the size of an existing virtual

space region. In this case, releasing the memory allocated

doesn’t automatically reduce the size of the virtual space. In

contrast, big allocations are done using mmap and released

right away by munmap after the memory is freed by the

applications (Figure 3)

TABLE I
MAPPING BETWEEN MEMORY FUNCTIONS AND SYSTEM CALLS

size <= MMAP THRESHOLD size >MMAP THRESHOLD

Malloc
calloc
realloc

sbrk mmap

free
None, or sbrk(negative)
depending on
M TRIM THRESHOLD

munmap

Fig. 3. Virtual memory growth after allocation and release operations

The virtual memory of a specific process also grows when a

shared library is loaded or when a shared segment is mapped

into the address space using shmat.

The system calls cited in Table I are used as triggers for the

Kernel Counter Reader which reads the exact value of virtual

memory usage from the mm struct of the concerned process

and generates an LTTng trace event.

B. Physical memory monitoring: Dynamic sampling algorithm

Physical memory monitoring presents a big challenge com-

pared to virtual memory: the memory manager of the operating

system generates a huge number of events, and recording them

all in a trace file is almost impossible.

Sampling can be a good solution for this case, but choosing

a sampling rate is not an easy task. Some processes demand

and access the memory very frequently during the execution,

while others access it less frequently. A low sampling rate

gives a bad precision but, on the other hand, a high sampling

rate generates a huge amount of useless data for inactive

processes.

In Algorithm 1, the method that dynamically changes the

sampling rate, depending on processes activity, is presented.

It is a 2D sampling algorithm that uses the time and

the memory variability to chose the appropriate time to get

memory usage information from the Kernel data structures.

An event is generated if the timer finishes, or before that if the

memory variability of a process exceeds a certain threshold,

as shown in Figure 4. The blue points represent timer events,

and the red points are the events caused by the threshold.

Memory variability is computed by hooking on

kmem mm page alloc and kmem mm page free events,

which occur when a physical page is allocated or released.

The Kernel keeps information about physical memory usage



Input:

Sampling rate

Variability threshold

//Main thread

startTimer(rate)

if Timer tick then
processes ←− ListSystemProcesses()
for process in processes do

trace memory(process)
variability[process] ←− 0

end

restartTimer()
end

//Kprobe hook

if memory page allocated/released then
process ←− getCurrentProcess()
variability[process]+ = PAGE SIZE ∗ direction

if variability[process] exceeds the threshold then
trace memory(process)

end

end
Algorithm 1: Dynamic sampling Algorithm

Fig. 4. (Time, Space) Sampling

in the mm struct data structure (RSS: Resident set size) This

counter is adjusted each time a physical page is inserted or

removed from the page table of the process.

The proposed algorithm is implemented as a Kernel module

and is configurable through the proc file system (sampling rate,

variability threshold).

Lock-free data structures are used to provide a good scala-

bility:

• RCU Hashmap is used to hold process information

• Memory variability is defined as atomic long to avoid

using heavy synchronization mechanisms.

V. EVALUATION

In this section, we evaluate the performance and the useful-

ness of our tool. Benchmarking was performed with a synthetic

workload and then with real applications. We compared our

method with Massif, another state-of-the-art tool, to confirm

the correctness of our analysis.

A. Performance

The performance tests are executed on an Intel i7-4790 CPU

@ 3.60GHz with 6 GB of main memory and an Intel SSD 530

Series 240 GB hard disk, running Linux Kernel version 4.4.

The traces are collected using LTTng 2.8.

The following cases are used for benchmarking:

• No tracing: the program runs without any tracing mech-

anism.

• Dynamic sampling: We used our dynamic sampling mod-

ule with a sampling period of 10 ms and a memory

variability threshold of 10 MB.

• LTTng all memory events: We traced all memory al-

location and release events. We used the tracepoints

kmem mm page alloc and kmem mm page free.

• Massif: We used Massif, a widely used memory moni-

toring tool.

A program was developed to generate a memory access

workload. It allocates, accesses and frees a memory buffer of

a certain size, and repeats the operation until it reaches 20GB

of workload. The execution time of this program with the

different configurations is presented in Table II and Figure 5.

The same benchmark is also performed with real applications:

Firefox, a widely-used web browser, and Totem, the default

movie player of the GNOME desktop. The results are reported

in Table III.

Fig. 5. Tracing impact on execution time

The results show that the overhead of Massif is very high, as

compared to other cases. It is 5x slower with the benchmarking

program, 3x slower with Totem and 20x slower with Firefox.

In contrast, the overhead of the two other cases is almost

negligible. It doesn’t exceed 1% in all cases.

It is expected that the Dynamic sampling algorithm and

LTTng all memory events are similar in terms of execution

time because we are tracing the same kernel functions in both

cases, the difference is in the number of events generated.

Table IV shows that with a sampling period of 10 ms and a

memory variability threshold of 10 MB, we can reduce the



TABLE II
EXECUTION TIME IN SECONDS AS A FUNCTION OF THE MALLOC BUFFER SIZE, WITH DIFFERENT TRACING MECHANISMS

Malloc Buffer Size / Tracing Mechanism Massif Dynamic Sampling LTTng (All memory events) No tracing

100 MB 11.03 2.24 2.34 2.239
250 MB 10.86 2.19 2.26 2.183
500 MB 11.2 2.13 2.2 2.134
1G 11.2 2.203 2.18 2.126
2 GB 11.96 2.15 2.16 2.097

TABLE III
EXECUTION TIME IN SECONDS FOR SOME APPLICATIONS WITH DIFFERENT TRACING MECHANISMS

Application / Tracing Mechanism Massif Dynamic Sampling LTTng (All memory events) No tracing

Firefox 51 2.509 2.59 2.51
Totem (10 seconds video) 28 10.641 10.645 10.752
Benchmark application (Buffer size = 500 MB) 11.2 2.13 2.2 2.134

size of the trace by a factor between 3 and 7 for a normal

workload.

An interesting phenomenon happens when the buffer size is

more than 4 GB. The operating system goes into a thrashing

state. Memory pages start to be moved between the main

memory and the swap space, which creates a huge memory

activity. Tracing all memory activity at this point is very

inefficient, and somehow impossible since the number of

events is very high. The Dynamic Sampling Mechanism is

able to handle this case by filtering the unnecessary events on

the kernel side.

B. Correctness

In this section, we use our tool to monitor the virtual and

the physical memory usage of different applications and we

use Massif, the Valgind memory profiler, to validate that the

results are the same with both tools.

At first, We traced our program using the dynamic bench-

marking mechanism and we used TraceCompass to show

the results graphically. The output of our tool (Figure 6)

corresponds perfectly to logic behind the code. The program

allocates 500 MB, access the allocated memory and the frees

it.

We can see that the virtual memory, shown in red, is allo-

cated when malloc() is called. The physical memory, shown

in blue, is allocated when the memory pages are accessed

using memset(). The virtual and physical memory are released

during the free() function call.

Fig. 6. Virtual and physical memory usage monitoring

Figures 8 and 7 show that both tools give similar memory

usage graphs for Firefox. Totem memory usage is also plotted

by both tools in Figures 9 and 10 which displays the same

output for both approaches.

Fig. 7. Firefox memory usage at startup using LTTng

Fig. 8. Firefox memory usage at startup using Massif

Our tools bring other important advantages when compared

to Massif. Physical memory usage is shown and the analysis

covers all the processes running on the system at the same

time, not only one targeted process.



TABLE IV
NUMBERS OF EVENTS IN THE TRACE FILE GENERATED BY LTTNG (ALL MEMORY EVENTS) AND THE DYNAMIC SAMPLING MECHANISM

malloc size / tracing mechanism LTTng (All memory events) Dynamic Sampling Reduction factor

5 GB 8508992 142984 59.51
4 GB 3636861 52771 68.92
2 GB 102387 29686 3.45
1G 101200 28317 3.57
500 MB 124644 28425 4.39
250 MB 173558 32834 5.29
100 Mb 300623 40635 7.4

Fig. 9. Totem memory usage to play a video using LTTng

+

Fig. 10. Totem memory usage to play a video using Massif

VI. CONCLUSION

In this paper, a framework to collect memory usage infor-

mation for enterprise applications is proposed. It includes a

dynamic sampling algorithm to gather runtime information

from the operating system kernel. The method checks if a

certain time has elapsed or if a threshold was reached and

then gathers information from the kernel data structures and

generates trace events to be processed and analysed later.

The thresholds are dynamic and can be updated based on the

application behavior and memory usage pattern (e.g., the rate

of memory allocation calls).

We have tested our method against some real world ap-

plications like Firefox and the Totem video player, and the

results demonstrate that the performance cost of the proposed

approach is negligible while the precision is preserved.

The proposed solution was used to analyse memory usage.

However, the architecture is generic enough to be used for

any other resource usage metric. It can actually be used

for other high frequency tracing events within the operating

system kernel, like network usage, disk I/O, etc. Extending the

proposed method to support other kinds of metrics, and using

other high frequency events, will be investigated as a future

work.
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