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Abstract—Increasing amounts of data from varied sources,
particularly in the fields of machine learning and graph an-
alytics, are causing storage requirements to grow rapidly. A
variety of technologies exist for storing and sharing these data,
ranging from parallel file systems used by supercomputers to
distributed block storage systems found in clouds. Relatively
few comparative measurements exist to inform decisions about
which storage systems are best suited for particular tasks. This
work provides these measurements for two of the most popular
storage technologies: Lustre and Amazon S3. Lustre is an open-
source, high performance, parallel file system used by many of the
largest supercomputers in the world. Amazon’s Simple Storage
Service, or S3, is part of the Amazon Web Services offering, and
offers a scalable, distributed option to store and retrieve data
from anywhere on the Internet. Parallel processing is essential
for achieving high performance on modern storage systems.
The performance tests used span the gamut of parallel I/O
scenarios, ranging from single-client, single-node Amazon S3 and
Lustre performance to a large-scale, multi-client test designed to
demonstrate the capabilities of a modern storage appliance under
heavy load. These results show that, when parallel I/O is used
correctly (i.e., many simultaneous read or write processes), full
network bandwidth performance is achievable and ranged from
10 gigabits/s over a 10 GigE S3 connection to 0.35 terabits/s using
Lustre on a 1200 port 10 GigE switch. These results demonstrate
that S3 is well-suited to sharing vast quantities of data over the
Internet, while Lustre is well-suited to processing large quantities
of data locally.

Keywords—High Performance Computing, High Performance
Storage, Lustre, Amazon Simple Storage Service, MIT Super-
Cloud

I. INTRODUCTION

Rapidly growing diverse data is being collected via varying
sensors, social media, and scientific instruments. These data
are being analyzed with machine learning and graph analytics
to reveal the complex relationships between different data
feeds. Many machine learning and graph analytics workloads
are executed in large data centers on large cached or static data
sets. While research on static and streaming graph analytics
problems is primarily limited by the amount of processing
required, there exists a growing requirement for high perfor-
mance and readily available storage systems to manipulate this
data in real-time and store it at rest.

This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Air Force Contract No. FA8721-
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of DARPA.

A variety of technologies exist for storing and sharing data,
ranging from parallel file systems used by supercomputers to
distributed block storage systems found in clouds. Relatively
few comparative measurements exist to inform decisions about
which storage systems are best suited for particular tasks [1]–
[3]. This work provides these detailed measurements for two
of the most popular storage technologies: Lustre and Amazon
S3.

The DARPA Graph Challenge [4] is an example of a
recent effort to push the boundaries of current scalability
constraints in the field of graph analytics. Two challenges
have been proposed: a Subgraph Isomorphism challenge [5],
which seeks to identify the structure of relationships in a given
graph, and a Stochastic Block Partitioning challenge [6] which
looks to discover the distinct community structure or specific
community membership for each node in the graph.

Large datasets are the "fuel" for this Graph Challenge
"rocket," and, today, a variety of curated, public, real-world
graphs, as well as synthetic data sets, are available [7]. The
vast majority of these data sets are relatively modest in size by
supercomputing standards, measuring tens of gigabytes, but as
we move toward achieving the ability to manipulate graphs as
large as a trillion edges, the data storage requirements balloon,
both in terms of the quantity of storage required and the
performance it must deliver in order to manipulate the graphs
in near real-time.

This paper outlines the results of performance measure-
ments done as part of the DARPA HIVE [4] program in which
we sought to measure the achievable single-client performance
of two classes of storage solutions. The first class, super-
computing storage, is represented by the Lustre parallel file
system [8] in two back-end network configurations: Infiniband
and 10 Gigabit Ethernet. The second class, cloud storage,
is represented by the Amazon Simple Storage Service (S3),
accessed via a minimal hop-count, low-latency Internet route
through a 100-Gigabit backhaul fiber connection on a 10
Gigabit Ethernet-connected client node. Additionally, we ran
similar measurements against a modern high performance
compute cluster’s storage array in a distributed manner with
multiple client nodes to measure obtainable performance in a
massively parallel configuration.

The primary goal of this paper is to provide a set of base-
line measurements showing the kind of performance actually
obtainable from storage systems under real-world conditions.
The organization of the rest of this paper is as follows. Section
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II describes the two storage solutions measured in this paper.
Section III provides details on the setup and organization of
the experiment as well as detail on our testing methodology.
Section IV presents the performance results we obtained dur-
ing our experiments and an overview of our findings. Section
V summarizes the work and describes future directions.

II. DATA STORAGE

The concept of an object-based storage system was first
introduced in the early 1990s by researchers, and within a
decade its use was widespread both in industry and high
performance computing circles [9]. A storage object, much
like a file in a general-purpose file system, represents a
collection of related bytes physically residing on some storage
device. Objects provide a similar abstraction for data access
to files and typically offer a standard interface by which
permissions, attributes, and other associated metadata can be
manipulated [10].

A. The Lustre parallel file system

Lustre is designed to meet the highest bandwidth file
requirements on the largest systems in the world. The open-
source Lustre parallel file system presents itself as a standard
POSIX general-purpose file system, and it is mounted by
client computers running the Lustre client software. A file
stored in Lustre is broken into two components: metadata
and object data (see Figure 1). Metadata consist of the fields
associated with each file such as filename, file permissions,
and timestamps. Object data consist of the binary data stored
in the file. File metadata are stored in the Lustre metadata
server (MDS). Object data are stored in object storage servers
(OSS). (Figure 1) When a client requests data from a file,
the MDS returns pointers to the appropriate objects in the
OSSes indicating the location of the requested data and the
byte ranges in the objects associated with the requested file.
This action is transparent to the user and handled by the
Lustre client. To an application, Lustre operations appear as
standard file system operations and require no modification of
application code [11], [12].

Fig. 1: Simplified depiction of the Lustre file system’s archi-
tecture, split into Metadata Servers (MDS) and Object Storage
Servers (OSS).

Like most general-purpose file systems, Lustre is designed
to maximize the performance of sequential read accesses and
not random lookups of data. This optimization model fits
nicely with our proposed use case, as most of the formats

typically used to represent large graphs (e.g. Matrix Market
I/O [13], [14] and tab or comma-separated values) are mostly
composed of large and monolithic streams of ASCII text data.

Lustre’s security model relies on standard UNIX permis-
sions, which are simple but flexible enough to accommodate
most needs.

B. Amazon Simple Storage Service

Amazon’s Simple Storage Service (S3) [15] is object storage
with a simple web interface and RESTful API [16] designed
to store and retrieve any amount of data from anywhere on the
Internet. Its design allows it to scale past trillions of objects,
each of which can be up to 5 terabytes (TB) in size [17]. The
usage model of a RESTful API is different from that of a
traditional POSIX file system and usually requires the explicit
usage of a supporting library or code to allow storage, retrieval,
or manipulation of data within the object store; otherwise, it
follows the familiar model in which metadata are stored and
retrieved separately from data.

Buckets and objects are the primary resources managed
within Amazon’s S3 and can be likened to folders and files
within a traditional general-purpose file system. Each of these
has associated "subresources", such as access control lists
(ACLs), versioning information, logging configuration, and
life-cycle management information, all of which are handled
in much the same way as metadata, such as extended attributes
would be on a POSIX file system [18].

The Amazon S3 security model is based on policies defined
by access control lists attached to the aforementioned buckets
or objects as subresources [19].

III. EXPERIMENTAL ENVIRONMENT

A. Hardware and Operating System

All three of the experiments described below were per-
formed on the MIT SuperCloud [20] and the Lincoln Lab-
oratory TX-Green Supercomputer.

The TX-Green Supercomputer at Lincoln Laboratory used
for the Lustre Ethernet test is a petascale system that consists
of a heterogeneous mix of AMD, Intel, and Knights Landing-
based servers connected to a single, non-blocking 10 Gigabit
Ethernet Arista DCS-7508 core switch. All of the compute
nodes used in both the single-client and multiple client runs
were Haswell-based Intel Xeon E5 servers with 256 GB of
RAM. The Lustre central storage system uses a 5 petabyte
Seagate ClusterStor CS9000 storage array that is directly
connected to the core switch, as is each individual cluster node.
This architecture provides high bandwidth to all the nodes and
the central storage, and is depicted in Figure 2.

The Lustre Infiniband test made use of the MIT SuperCloud
system, a similarly heterogeneous environment sitting atop a
1 petabyte Seagate ClusterStor central storage array connected
to a Mellanox FDR network. Both of these environments run
the same version of the LLGrid Operating System Image, a
custom Linux distribution based on Fedora Core 20.



Fig. 2: Architecture of the MIT SuperCloud systems. Users
connect to the system over either a local area network or a
wide area network. At the time of connection, their system
joins the MIT SuperCloud and can act as a compute node in
order to run parallel programs interactively. The centerpiece
of the MIT SuperCloud is several file systems (Seagate,
DDN, Dell, Hadoop, and Amazon S3) running on several
different network fabrics (10 GigE, InfiniBand, OmniPath).
The MIT SuperCloud is a well-suited platform for performing
comparative filesystem benchmarks.

To test the performance of data ingest into and retrieval from
Amazon Web Services, a single node from the MIT Super-
Cloud cluster described above was split off, and a SolarFlare
SFC9020 10 Gigabit Ethernet card was installed with a direct
10 Gigabit Ethernet fiber link into the Massachusetts Green
High Performance Computing Center (MGHPCC) core net-
work. This regional network provides 0.5 terabits of bandwidth
in a loop to participating members, including a 100 gigabit
run into a carrier hotel in New York City, which also serves
to connect an Amazon Web Services [21] point of presence.

B. Software and Test Methods

As both of the systems under test are network-based storage,
albeit of differing types, our experiment calculated the average
rate of data transfer based on the number of bytes transmitted
and received on the Ethernet and Infiniband interfaces of the
client nodes during the period that the transfer occurred. For
the series of single compute node tests, we varied the number
of client "worker" processes assigned to copying data while
keeping one worker assigned to the storage or retrieval of one
10 GB chunk of data in each case. In the larger, multi-node,
whole-cluster benchmark, a 30 GB blob of data was assigned
to each node.

All of the chunks of data stored and received were generated
using the pseudorandom number generator provided by the
/dev/urandom device in Linux in order to avoid the possibility
that any underlying compression or deduplication features
enabled in the Linux kernel VFS layer, the Lustre file system,
or Amazon’s Simple Storage Service could skew the results
of our test. In addition to this, to avoid client-side caching of
the data obtained in our Lustre read test, a full flush of the
Linux kernel page cache (Listing 1) was performed on each
compute node prior to each test run in any of the Lustre read
tests. As the Amazon S3 test was performed entirely using the
Amazon Web Services CLI tools (awscli) using their RESTful
API directly and not by means of a file system VFS layer (e.g.,
FUSE [22]), no such steps were required.

echo "Dropping filesystem page cache.."
echo 1 > /proc/sys/vm/drop_caches

Listing 1: Dropping Linux Kernel page cache to avoid VFS
layer caching of Lustre read tests.

For the Infiniband benchmark to a Lustre file system, the
64-bit counters in the PortXmitData and PortRcvData fields
were queried using the perfquery (Listing 2) command, with
the result multiplied by the number of Infiniband lanes present
in the port in order to obtain an accurate value for total bytes
transferred. In our test, the link used was a Mellanox Fourteen
Data Rate (FDR) Infiniband [23] connection consisting of four
lanes of 14 Gb/s each for a maximum aggregate throughput
of 56 Gb/s.

perfquery -x

Listing 2: Using perfquery to get 64-bit Infiniband interface
counters.

To capture the Ethernet traffic statistics for both the Lustre
on Ethernet and Amazon S3 benchmarks, the output of the
"Bytes Transmitted" (1) or "Bytes Received" (9) field in
/proc/net/dev associated to the appropriate network interface
from which the data would be sent or received was sampled
once, when all of the worker processes for the test had begun,
and then again once the last worker process had terminated.
Both the Amazon S3 and Lustre file system tests were done
with a 10 Gigabit Ethernet connection.

for run in {1..10}
do

echo "Launching process for ${run}..."
cp ${LOCATION}/randomdata-10G-${run} \

/dev/null &
sleep 0.1

done
wait

Listing 3: Bash script to launch a batch of 10 worker processes
on a single compute node, each retrieving data from Lustre.

By measuring traffic statistics at the interface level through-
out our test, we were able to monitor for and eliminate the
effect of any file system read caching skewing that portion of
our experimental results.

Finally, a simple bash script was used to bring it all together,
the central loop of which is depicted in Listing 3. Exotic data
migration tools were not used for any of the tests; the standard
UNIX cp file-copy tool was by itself sufficient to achieve
adequate performance. Multiple runs were performed in each
test case, with time and interface statistics being sampled and
reset at the beginning and end of each run. The resulting
data were examined and aberrant results, likely caused by the
variability of the Internet in the Amazon S3 test or concurrent
loads causing contention on the shared file system in the Lustre
case, were discarded.

IV. PERFORMANCE RESULTS

The benchmark was designed to maximize data ingest and
retrieval speed with minimal ramp-up time. Standard tools



were used in a manner generally representative of a typical
user workload for copying data. Processes in the single-client
node tests were launched with 100ms of delay between each
startup, and, in the large-scale test, the entire run was initiated
concurrently.

Results for the single-client-node run are depicted in Fig-
ure 3.
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Fig. 3: Lustre file system on Infiniband/10 Gigabit Ethernet,
and Amazon S3 on 10 Gigabit Ethernet performance as a
function of data transfer rate achieved per number of worker
processes dispatched.

On our 10 Gigabit Ethernet-based Lustre system, wire-speed
read and write performance was achieved with as few as 2 cp
worker processes, and a single process was able to achieve
70-80% of peak. Lustre over Infiniband exhibited a similar
performance curve, albeit with a higher potential line rate
that is due to the increased potential speed of the Infiniband
interface.

While data transfer to and from Amazon S3 was able to
reach the same performance levels as the Lustre file system
on our single 10 Gigabit Ethernet test node, it required 12 or
13 separate worker processes to realize peak performance. A
single instance of the AWS copy command (aws s3 cp), with
no modifications to the Python source, is able to achieve a
transfer rate in either direction of approximately 130 MB/s on
our test system before consuming 100% of the single CPU it’s
running on.

Using system-level profiling on the running Python process
handling the data transfer revealed that data were being read
from and written to both the local disk and the network in
8 KB chunks. This buffer size is much too small to achieve
peak performance on anything beyond a very low-bandwidth
network. Further examination reveals that these block and
socket buffer size values appear to be hard-coded within the
system Python libraries themselves; an example is the the
HTTPConnection.send method in the system Python httplib
library, which has a socket buffer size of 8192 explicitly
defined as a constant [24]. Given the extreme level of CPU-
boundedness displayed by these tools when running at high
network rates, it’s possible that the Python interpreter itself is
also contributing to the high levels of resource utilization, as
much of the HTTP protocol and network code in httplib is

written in pure Python and not bound to a library written in
a language such a C or C++.
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Fig. 4: Lustre file system performance scaling on TX-Green
Supercomputer using multiple concurrently active 10 Gigabit
Ethernet client nodes.

In the multi-client benchmark results displayed in Figure 4,
we demonstrate that the Lustre file system, on modern storage
hardware and with a well-designed network architecture, ob-
tains near-linear performance improvement by increasing the
number of connected clients retrieving data from or pushing
data to the central storage array until the underlying physical
limitations of the network and storage hardware are met. While
the results shown in the graph above represent the average
start-to-finish transfer rate of each complete test, a sustained
peak throughput of 480 Gb/s in the read test and 350 Gb/s
in the write test was routinely achieved on the SuperCloud
hardware during the 128-node cluster run.

V. SUMMARY AND FUTURE WORK

The rise of machine learning and graph analytic systems
has created a need for diverse high performance storage and
ways to measure and compare the capabilities of these storage
systems. The Lustre file system and Amazon’s Simple Storage
Service are both designed to address the largest and most
challenging data storage problems. Relatively few comparative
measurements exist to inform decisions about which storage
systems are best suited for particular tasks. This paper provides
a baseline assessment of the performance and capabilities that
can be expected when choosing a storage solution.

The performance tests that we used span the gamut of
parallel I/O scenarios ranging from single-client, single-node
Amazon S3 and Lustre performance to a large-scale multi-
client test designed to demonstrate the capabilities of a modern
storage appliance under heavy load. These results show that
when parallel I/O is used correctly (i.e., many simultaneous
read or write processes), full network bandwidth performance
is achievable and ranged from 10 gigabits/s over a 10 GigE S3
connection to 0.35 terabits/s using Lustre on a 1200-port 10
GigE switch. These results demonstrate that S3 is well-suited
to sharing vast quantities of data over the Internet, while Lustre
is well-suited to processing large quantities of data locally.

We have established that one can achieve a very similar
baseline-level performance when sequentially reading and



writing large objects on both traditional supercomputing net-
work storage such as Lustre and Amazon’s cloud-based stor-
age solution. Traditional general-purpose file systems exposing
a POSIX API do provide slightly better ease of use for rapid
prototyping purposes; however, there are efforts such as s3fs-
fuse [25] that attempt to bridge that usability gap by providing
a file system-like interface to Amazon S3.

Future work in this area will include further scaling of the
Amazon S3 testing beyond a single Internet-connected client
node and additional whole-cluster Lustre testing as trays are
added to our central storage array.
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