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Abstract—Detecting anomalous behavior in network traffic is a
major challenge due to the volume and velocity of network traffic.
For example, a 10 Gigabit Ethernet connection can generate over
50 MB/s of packet headers. For global network providers, this
challenge can be amplified by many orders of magnitude. De-
velopment of novel computer network traffic analytics requires:
high level programming environments, massive amount of packet
capture (PCAP) data, and diverse data products for “at scale”
algorithm pipeline development. D4M (Dynamic Distributed
Dimensional Data Model) combines the power of sparse linear
algebra, associative arrays, parallel processing, and distributed
databases (such as SciDB and Apache Accumulo) to provide a
scalable data and computation system that addresses the big data
problems associated with network analytics development. Com-
bining D4M with the MIT SuperCloud manycore processors and
parallel storage system enables network analysts to interactively
process massive amounts of data in minutes. To demonstrate
these capabilities, we have implemented a representative analytics
pipeline in D4M and benchmarked it on 96 hours of Gigabit
PCAP data with MIT SuperCloud. The entire pipeline from
uncompressing the raw files to database ingest was implemented
in 135 lines of D4M code and achieved speedups of over 20,000.

I. INTRODUCTION

The rapid rise of sophisticated cyber threats is well docu-
mented and a growing threat to our information systems [1],
[2]. Understanding internet phenomenology is challenging due
to the variety of new threats and volume of new data being
generated. To demonstrate the variety challenges, there are
approximately 250,000 new malware programs registered each
day [3], and a majority of all web traffic comes from bots,
many of which are malicious in nature [4]. These evolving
vulnerabilities can lead to public safety concerns [5] and
economic impact: it is estimated that cyber attacks will cost
nearly $2 trillion in 2019 [6].

Enhancing this data variety challenge is the massive scale of
internet and cyber networks. These ubiquitous networks form
the basis of worldwide communication and it is estimated
that in 2018, there will be almost 37 Terabytes per second
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(TB/s) of Internet Protocol (IP) traffic [7]. To underscore the
volume challenge in a more specific instance, consider the
task of collecting and analyzing network traffic data to detect
and remove botnets, networks of malicious computers that
are controlled as a group. Network traffic data is typically
collected using a packet capture appliance that intercepts
packets moving through a network. These packets can be
analyzed to look for broad trends across a network using
packet metadata such as IP addresses, protocol, packet lengths,
etc. that are stored in the packet header. As described in [8],
[9], there are a number of approaches to detecting botnets from
network flow data such as anomaly detection algorithms that
look for particular patterns in the movement of IP packets. For
example, a large number of packets with source IP addresses
communicating with particular destination IP addresses in
a non-human pattern may indicate a botnet or command-
and-control server. For large networks, capturing, storing and
processing packet capture data can be a large challenge.
Consider a 10 Gigabit Ethernet (10 GbE) link. Such a link
can often have over 100,000 packets/second. With a header
length of 40 bytes, this translates to nearly 50 MB/s of
storage and processing of header information alone! Looking
for patterns within such data rates can be quite a challenge.
Of course, enterprises and internet service providers often have
much larger network links and sustaining such rates is only
possible with massive computing systems serviced by parallel
filesystems and/or databases.

Development of novel computer network traffic analytics re-
quires: high level programming environments, massive amount
of packet capture (PCAP) data, and diverse data products
for “at scale” algorithm pipeline development. In this article,
we present our approach to developing a scalable internet
analytics platform applied to a IP network data using the D4M
(Dynamic Distributed Dimensional Data Model) [10] analytics
environment and MIT SuperCloud [11] interactive computing
environment. D4M combines the power of sparse linear al-
gebra, associative arrays, parallel processing, and distributed
databases (such as SciDB and Apache Accumulo) to provide
a scalable data and computation system that addresses the big
data problems associated with network analytics development.
The MIT SuperCloud allows users to interactively process
massive amounts of data in minutes using the software and
environments most familiar to them.

As depicted in Figure 1, large enterprises typically develop
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Fig. 1. D4M and MIT SuperCloud allows high performance without signifi-
cantly compromising coding effort

analytics in environments such as Julia [12] or machine
learning environments like TensorFlow [13] or Caffe [14].
While these have low coding effort and are useful for rapid
analytic programming, they often come at the cost of lower
relative performance. Deploying these algorithms to work at
the scale of network traffic often implies translating these
complex analytics into high performance languages such as
C or C++ which requires significant coding effort. The time
taken for this transition can be prohibitive for applications such
as cyber analytics where there is a need for rapid deployment
of analytics. Using MIT SuperCloud and D4M together allows
cyber network analysts to overcome the scalability wall shown
in Figure 1.

The rest of the article is organized as follows: Section II
describes the tools used to develop a scalable network analysis
pipeline, Section III details the implementation and Section IV
describes scaling and analytic results. Finally, we conclude in
Section V.

II. TOOLS

The scalable architecture described in this article leverages
prior work on D4M, Associative Arrays and the MIT Super-
Cloud computing platform.

A. D4M

The Dynamic Distributed Dimensional Data Model (D4M)
is a software library developed at MIT Lincoln Laboratory
that is used in a number of applications for processing large
amounts of data. D4M is made up of three components:

1) Support for a mathematical data object called associative
arrays;

2) A schema that is used to represent unstructured data as
associative arrays; and

3) A library of software tools for connecting associative
arrays with database management systems [15] such as
Apache Accumulo, SciDB, mySQL, PostGRES.

The D4M library is currently written to work in the analytic
environments of MATLAB, GNU Octave, Julia [16] and is
currently being implemented as a Python toolbox. To connect
to database engines, D4M can leverage high speed connectors
or leverage existing connectors. D4M is a natural environment

to match the scaling requirements of network packet capture
data and analytics.

B. Associative Arrays

Associative Arrays generalize matrices to better match the
intuitions of spreadsheets, databases, and tables, all while
supporting the power of linear algebra. The indices of an asso-
ciative array can range over arbitrary (though usually totally
ordered and finite) sets, while the entries of an associative
array may lie in an arbitrary semiring, which support addition
and multiplication operations subject to most of the familiar
field laws (associativity, commutativity, distributivity, identity,
etc.).

This allows associative arrays to support many of the
algebraic features of matrices, including element-wise addition
and multiplication, as well as array multiplication and Kro-
necker products. By having its rows and columns meaningfully
labeled, associative arrays also allow these operations to be
well-defined between arrays of varying dimensions, unlike
their matrix cousins.

Associative array algebra can provide a uniform mathe-
matical framework to describe operations in SQL, noSQL
and NewSQL databases [17]. For example, in Figure 2, we
describe how one would express the same operation in three
different styles of database systems.

C. MIT SuperCloud

The MIT SuperCloud [11] is a high performance computing
environment developed at the Massachusetts Institute of Tech-
nology. Unlike traditional supercomputing systems that are
tuned for large-scale batch processing, the MIT SuperCloud
is designed for data scientists interested in iterative analysis
of machine learning and AI workloads. Specific technologies
such as interactive databases [18], and high performance ana-
lytic IDEs such as Jupyter [19] provide a familiar environment
for analysts. Figure 3 shows the IDE used by MIT SuperCloud
users.

Scaling jobs to tens of thousands of cores on the SuperCloud
is straightforward due to support for distributed computing
paradigms such as Map-Reduce [20] and analytics develop-
ment environments tuned for high performance distributed
computing [21].

III. DEVELOPING SCALABLE PIPELINE AND ANALYTICS

Developing network analytics involves developing a
pipeline that can scale with the massive amount of data
collected by packet capture devices. This section details the
network data used and computational pipeline developed.

A. IP Network Traces

IP network packets form the basic unit in which information
is transmitted across the internet. An individual network packet
consists of a header and payload. The header consists of typ-
ical information that one needs to correctly route a particular
packet such as source IP, destination IP, etc. Headers are
typically 40 bytes in size. The second part of the packet is the
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Fig. 3. Jupyter Notebook IDE available on the MIT SuperCloud.

payload or user data. This consists of the actual data payload of
the packet. Payload information often consists of encrypted or
sensitive user data and most network analytics focus on packet
headers for their analysis. Listing III-A shows an example of
the information (in associative array form) encapsulated by an
individual packet’s header.

(PacketID,frame.time_relative|0.000000000) 1
(PacketID,frame.time|2017 Apr 12 07:49:36.18828 EDT)

1
(PacketID,ip.dst|63.237.205.194) 1
(PacketID,ip.len|1500) 1
(PacketID,ip.proto|6) 1
(PacketID,ip.src|133.40.77.44) 1
(PacketID,tcp.dstport|55428) 1
(PacketID,tcp.flags|0x00000010) 1
(PacketID,tcp.srcport|80) 1

Using the packet header metadata, it is possible to determine
clusters of similar network flows [22], important activity using
centrality measures [23], and anomalous behavior based on
clustering techniques [24]. We have also applied domain
agnostic techniques such as dimensional analysis [25] and
background modeling techniques for power-law data [26].

The MAWI Working Group (http://mawi.wide.ad.jp/mawi/)
collects and shares a variety of network trace data collected
on the WIDE network (http://www.wide.ad.jp/) backbone in
Japan [27]–[29]. The working group has made a rich repository

of data available for researchers interested in analyzing trends
in network traffic. The MAWI dataset provides a realistic view
into data collected by global internet service providers.

B. Computing Pipeline
Figure 4 describes the pipeline used to extract, store and

process packet capture data described in Section III-A.
.
Each step of this pipeline is described below:
1) Uncompress: Data from packet capture appliances is

often written in a binary compressed format. In this step,
we uncompress each of the binary packet capture files
in parallel in order to make it readable for subsequent
processing.

2) Split: In order to make processing large data files
efficient on high performance computing systems, each
uncompressed binary file is read by a packet analyzer
such as tcpdump [30] and split into smaller files.
This step ensures that further processing is amenable
to parallelization.

3) Parse: In this step, each of the split files is run through
a network analyzer such as tshark [31] in order to
convert the packet capture (pcap) data into to a human
readable format. For our implementation, each output
file is stored in a tab-separated value (TSV) format.

4) Sort: Each TSV packet capture file is converted into a
dense associative array that is similar to a dense table
in a relational database.

5) Sparse: Each dense array generated in the previous
step is converted in an equivalent graph using the D4M
schema.

6) Ingest: Each subgraph is inserted into a suitable
database. For the purpose of our evaluation, we use the
high-performance Apache Accumulo database [32].

In the following section, we describe specific settings and
performance details of the above pipeline.

IV. EXPERIMENTAL RESULTS

In order to test the pipeline of Figure 4, we use data products
made available by the MAWI working group. The dataset we
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Fig. 4. Analytics pipeline used for processing network packet capture data.

use called a “Day in the Life” (DITL) internet traces, consists
of 4 days (96 hours) of 1 Gigabit packet capture headers
collected on two days in 2015 and two days in 2017.

In total, the raw data in compressed form, is approxi-
mately 700 GB. When converted to an analyst-friendly form
by uncompressing, parsing, and sorting, the data expands
to approximately 20 TB. Scaling performance analysis was
performed on MIT Lincoln Laboratory Supercomputing Cen-
ter’s system. This system consists of 650 nodes with Intel
Xeon 64-core processors and 180 nodes with 32-core AMD
Opteron processors. For our scaling experiments, processing
is performed on Xeon-64 nodes and databases are operated
on AMD Opteron nodes. For the results presented below, the
maximum processing size was performed on 385 Intel Xeon-
64 nodes (24,640 cores) and the largest database instance was
distributed across 128 AMD Opteron nodes.

In the subsections below, we described the implementation
details of the pipeline presented in Section III-B.

A. Step1: Uncompress Raw Data

In this step, we take 385 compressed input files (corre-
sponding to the number of computing nodes used in the
experiment) and convert them to 385 uncompressed output
files. Each input and output file corresponds with roughly 15
minutes of network flows. Each 2GB file expands to 6GB after
uncompressing which translates to an increase from 700GB
to approximately 2.3 TB. The maximum speedup is largely
impacted by the number of input files and eventually limited
by the file system I/O speed.

The code snippet below shows the D4M code used to
uncompress a single .pcap file. In this snippet, dataDir and
dataDOM corresponds with file locations on the system and
iFile corresponds to the compressed file to be processed by
each node:

uncompressCommand = [’gunzip -k ’ dataDIR dataDOM ’/
’ iFile ’.pcap.gz’]

system(uncompressCommand);

B. Step 2: Split Uncompressed Files

Once the uncompressed output files are generated from the
previous step, we split these files into smaller chunks in order
to optimize later steps in the pipeline. We first use tcpdump
to convert the 385 binary .pcap files into ASCII versions,
then split these files into into approximately 500,000 smaller
output .pcap files appended with a split ID. Similar to the

previous step, the maximum speedup is largely impacted by
the number of input files (which should closely match the
number of processing nodes) and eventually limited by file
system I/O.

The code snippet below shows the code used to convert
from binary to ASCII and split the input .pcap files. The
splitSize was set to be 5 MB.

splitCommand = [’/usr/sbin/tcpdump -C ’ splitSize ’
-r ’ dataDIR dataDOM ’/

iFile ’.pcap -w ’ dataDIR dataDOM ’/’ iFile
’/’ iFileName ’.pcap. 2>&1’];

[status,result] = system(splitCommand);

C. Step 3: Parse Split Files

With the approximately 500,000 split and uncompressed
.pcap files, we convert these files into a human readable format
using a tool such as tshark [31]. Using tshark, we convert
these .pcap into a tab separated value (TSV) format while
also filtering the headers for the fields shown in Section III-A.
Each output TSV file at this stage is approximately 5MB in
size (for a total of 2.3 TB across all files) and each TSV file
corresponds to rougly 1 second of network flow data. The
maximum speedup of this step is limited by the number of
cores available for parsing.

The code snippet below describes the D4M operations used
for parsing the split files:

savetsvCommand = [’/usr/sbin/tshark -r ’ dataDIR
dataDOM ’/’ iFile ’/’ ijFile ...

’ -n -Tfields ’ [’ -e ’ strrep(
tsvHeader(1:end-1),tab,’ -e ’)] ...

’ > ’ parseDIR dataDOM ’/’ iFile ’/
’ ijFile ’.tsv’];

system(savetsvCommand);

D. Step 4: Dense Array Construction (Sort)

In order to convert the 500,000 files in the previous step
to a format amenable for further processing, we use D4M to
convert these TSV files into associative array format (which
also sorts the data during construction). Each of the 5 MB
input files expands to roughly 50 MB (total of 20 TB) during
this step. At this point, data is human readable and ready
to construct the network graph. At this stage, the maximum
speedup is limited by the number of cores.

The code snippet below describes the D4M syntax to
load the input files, restructure the time field, construct the
associative array and save the resultant sorted array to disk.



ijTSVstr = StrFileRead([parseDIR dataDOM ’/’ iFile ’
/’ ijFile ’.tsv’]);

ijTSVstr = [tsvHeader ijTSVstr];
A = CSVstr2assoc(ijTSVstr,nl,tab);
[r c v] = A(:,’frame.time,’); %

Restructure time field.
tMatStr = Str2mat(v);
At = Assoc(r,’frame.time,’,Mat2str(tMatStr(:,[10:14

2:7 14:36 38])));
A = (A - At) + At;
A = putRow(A,CatStr(Row(A),’.’,[ijFile ’.A.mat,’]));
save([parseDIR dataDOM ’/’ iFile ’/’ ijFile ’.tsv.A.

mat’],’A’);

E. Step 5: Graph Construction (Sparse)

With the dense associative arrays from the previous step
stored on disk, we can now, in parallel, generate the sparse
version of the network graph. This sparse representation
directly corresponds to the incidence matrix of the graph. Each
of the 50 MB input associative array is converted to a sparse
representation using the D4M schema. The resultant output file
is saved to disk for database insertion. As in the previous step,
the maximum speedup of this step is limited by the number
of cores.

The code snippet below describes the D4M syntax for
loading in the output array from Step 4 and converting it to a
sparse representation:

load([parseDIR dataDOM ’/’ iFile ’/’ ijFile ’.tsv.A.
mat’],’A’);

E = val2col(A,’|’);
save([parseDIR dataDOM ’/’ iFile ’/’ ijFile ’.tsv.A.

mat.E.mat’],’E’);

F. Step 6: Ingest

With the sparse data products of the previous step, it is easy
to use D4M to directly insert this data into Apache Accumulo.
Our prior work has demonstrated that Accumulo is capable of
extremely high ingest rates suitable for applications such as
internet traffic analysis. In our experiment, we create various
Accumulo instances with different configurations in order to
test scalability. For our testing, we deploy Accumulo on 32-
core AMD Opteron nodes. To test scalability, we use 1, 4, 16
node instances. For larger database instances, we found that
running multiple database systems over 16 nodes was more
efficient than larger Accumulo instance (i.e., 2, 4, 8 databases
running in parallel each with 16 nodes rather than 32, 64, and
128 node instances).

Each of the 385 Xeon-64 nodes is responsible for loading
a subset of the 500,000 sparse arrays from the previous step
into an Accumulo instance (or a particular Accumulo instance
in the case where we have multiple databases in parallel). The
maximum speedup for this step is limited by the number of
Accumulo cores available.

The code snippet below describes the D4M syntax for
loading the incidence matrix file, inserting into a table called
Tedge, generating the degree table and inserting it into
TedgeDeg. Details about the general schema and table design
can be found in [33].
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Fig. 5. Scaling Performance using D4M and MIT SuperCloud. The x-axis
indicate the number of processing cores and the y-axis the resulting speedup.

load([parseDIR dataDOM ’/’ iFile ’/’ ijFile ’.tsv.A.
mat.E.mat’],’E’);

put(Tedge,putVal(E,’1,’));
Edeg = putCol(sum(E.’,2),’degree,’);
put(TedgeDeg,num2str(Edeg));

G. Performance Analysis

To assess the performance of each step, the D4M code
included timers. For each of the first five steps of the pipeline,
the time measured includes the time for reading the file from
disk, performing the operation and writing the file back to disk.
For the insertion step, we measure the time taken to load the
file and insert into Accumulo. For each of the experiments,
we fix the data size and compute the speedup relative to the
time taken for a single core to perform the task.

Figure 5 describes the speedup associated with a varying
number of processing cores for each of the steps of the
processing pipeline. Each line in the figure is color coded
according to the color of the step in Figure 4. The ingest line
starts at 32 database cores and ends at 4096 database cores
(corresponding to 8 x 16-node Accumulo databases).

As seen in Figure 5, for Steps 1-5 of the pipeline, increasing
the number of cores leads to a near linear speedup. For the
database ingest, the speedup is largely limited by the number
of Accumulo cores available (4096 is the maximum number
of Accumulo cores in our experiment). The entire pipeline
from uncompressing the raw data to database ingest was
implemented in approximately 135 lines of D4M code.

V. CONCLUSIONS

Network and cyber security of the future will largely rely
on massive quantities of data. Internet network analysis will
continue to be challenged by the fast pace of analytic changes
coupled with massive quantities of data. In order to address



these challenges, it is important that researchers leverage
high level programming environments that simplify analytic
development along with computing platforms that support
high-performance analysis. In this article, we describe our
approach to developing such a toolbox based on D4M and
MIT SuperCloud. We describe our approach to using this
infrastructure to develop a processing pipeline for IP traces
collected by the MAWI working group. As is described in
the article, our system allows researchers to develop scalable
processing pipelines without compromising coding effort.
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