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Abstract—This work extends the personalized PageRank model
invented by Brin and Page to a family of PageRank models
with various damping schemes. The goal with increased model
variety is to capture or recognize a larger number of types
of network activities, phenomenons and propagation patterns.
The response in PageRank distribution to variation in damp-
ing mechanism is then characterized analytically, and further
estimated quantitatively on 6 large real-world link graphs. The
study leads to new observation and empirical findings. It is found
that the difference in the pattern of PageRank vector responding
to parameter variation by each model among the 6 graphs is
relatively smaller than the difference among 3 particular models
used in the study on each of the graphs. This suggests the
utility of model variety for differentiating network activities and
propagation patterns. The quantitative analysis of the damping
mechanisms over multiple damping models and parameters is
facilitated by a highly efficient algorithm, which calculates all
PageRank vectors at once via a commonly shared, spectrally
invariant subspace. The spectral space is found to be of low
dimension for each of the real-world graphs.

I. INTRODUCTION

Personalized PageRank, invented by Brin and Page [1], [2],
revolutionized the way we model any particular type of activ-
ities on a large information network. It is also intended to be
used as a mechanism to counteract malicious manipulation of
the network [1]–[3]. PageRank has underlain Google’s search
architecture, algorithms, adaptation strategies and ranked page
listing upon query. It has influenced the development of other
search engines and recommendation systems, such as topic-
sensitive PageRank [4]. Its impact reaches far beyond digital
and social networks. For example, GeneRank is used for
generating prioritized gene lists [5], [6]. The seminal paper [1]
itself is directly cited more than ten thousands times as of
today. As surveyed in [7], [8], a lot of efforts were made to
accelerate the calculation of personalized PageRank vectors, in
part or in whole [9], [10]. Certain investigation were carried
out to assess the variation in PageRank vector in response
to varying damping parameter [11], [12]. Most efforts on
PageRank study, however, are ad hoc to the Brin-Page model.
Chung made a departure by introducing a diffusion-based
PageRank model and applied it to graph cuts [13], [14].

In this paper we follow Brin and Page in the modeling
aspect that warrants more attention as the variety of networks
and activities on the networks increases incessantly. We extend
the model scope to capture more network activities in a
probabilistic sense. We study the damping effect on PageRank
distribution. We consider the holistic distribution because it
serves as the statistical reference for inferring conditional
page ranking upon query. Our study has three intellectual
merits with practical impact. (1) A family of damping models,

which includes and connects the Brin-Page model and Chung’s
model. The family admits more probabilistic descriptions of
network activities. (2) A unified analysis of damping effect on
personalized PageRank distribution, with parameter variation
in each model and comparison across models. The analysis
provides a new insight into the solution space and solution
methods. (3) A highly efficient method for calculating the
solutions to all models under consideration at once, particular
to a network and a personalized vector. Our quantitative
analysis of 6 real-world network graphs leads to new findings
about the models and networks under study, which we present
and discuss in Sections III and V. Our modeling and analysis
methods can be potentially used for recognizing and estimating
activity or propagation patterns on a network, provided with
monitored data.

II. PAGERANK MODELS

We first review briefly two precursor models and then
introduce a family of PageRank models.

A. Brin-Page model

Brin and Page describe a network of webpages as a link
graph, which is represented by a stochastic matrix 𝑃 [1].
We adopt the convention that 𝑃 is stochastic columnwise.
Every webpage is a node with (outgoing) links, i.e., edges, to
some other webpages and with incoming edges or backlinks as
citations to the page. If page 𝑗 has 𝑛𝑗 > 0 outgoing links, then
in column 𝑗 of 𝑃 , 𝑃𝑖,𝑗 = 1/𝑛𝑗 if page 𝑗 has a link to page 𝑖;
𝑃𝑖,𝑗 = 0, otherwise. In row 𝑖 of 𝑃 , every nonzero element 𝑃𝑖,𝑗

corresponds to a backlink from 𝑗 to 𝑖. In the Brin-Page model,
the web user behavior is described as a random walk on a
personalized Markov chain (i.e., a discrete-time Markov chain)
associated with the following probability transition matrix

𝑀𝛼(𝑣) = 𝛼𝑃 + (1− 𝛼)𝑣𝑒T, 𝛼 ∈ (0, 1), 𝑒T𝑣 = 1, (1)

where 𝑣 ≥ 0 is a personalized or customized distribu-
tion/vector, 𝑒 denotes the vector with all elements equal to
1, and the damping factor 𝛼 describes a Bernoulli decision
process. At each step, with probability 𝛼, the web user follows
an outlink; or with probability (1 − 𝛼), the user jumps to
any page by the personalized distribution 𝑣. The personalized
transportation term is innovative. It customizes the Markov
chain with respect to a particular type of relevance. In this
paper we assume that the personalized vector 𝑣 is given
and fixed, and focus on investigating the damping effect. In
particular, with Brin-Page model, we focus on the role of 𝛼.
The notation for the Markov chain may thus be simplified to
𝑀𝛼, or 𝑀 when 𝛼 is clear from the context.
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Page ranking upon a search query depends on the stationary
PageRank distribution, denoted by 𝑥 = 𝑥(𝛼), of the Markov
chain:

𝑀𝛼 𝑥 = 𝑥, 𝑒T𝑥 = 1. (2)

Arasu et al [15] recast the eigenvector equation (2) to a linear
system to solve for 𝑥,

(𝐼 − 𝛼𝑃 )𝑥 = (1− 𝛼)𝑣, (3)

where 𝐼 is the identity matrix. Because 𝛼‖𝑃‖1 < 1, the
solution can be expressed via the Neumann series for the
inverse of (𝐼 − 𝛼𝑃 ),

𝑥(𝛼) = (1− 𝛼)

∞∑︁
𝑘=0

𝛼𝑘𝑃 𝑘𝑣. (4)

The weights (1−𝛼)𝛼𝑘 decrease by the factor 𝛼 from one step
to the next. In [1], Brin and Page set 𝛼 to 0.85.

In (4), the solution to Brin-Page model with 𝛼 ∈ (0, 1) is
not the stationary distribution of network 𝑃 . It is analyzed
in terms of steps on 𝑃 . Term 𝑘 represents the probabilistic
accumulation of the Bernoulli decision process at each step
by (1) to step 𝑘, 𝑘 ≥ 0. Every step has its print in distribution
𝑥(𝛼).

B. Chung’s model

Chung introduced a PageRank model [13] in the form of a
heat or diffusion equation, with 𝑣 as the initial distribution,

𝜕𝑥

𝜕𝛽
= −(𝐼 − 𝑃 )𝑥, 𝑥(0) = 𝑣, (5)

where (𝐼−𝑃 ) is the Laplacian of the link graph, and we use 𝛽
to denote the time variable. From the viewpoint of probabilistic
theory, model (5) is underlined by the Kolmogorov’s backward
equation system for a continuous-time Markov chain with
−(𝐼 − 𝑃 ) as the transition rate matrix and with the identity
matrix 𝐼 as the initial transition matrix. The solution to (5) is

𝑥(𝛽) = 𝑒−𝛽(𝐼−𝑃 )𝑣 = 𝑒−𝛽
∞∑︁
𝑘=0

𝛽𝑘

𝑘!
𝑃 𝑘𝑣. (6)

C. A model family

We introduce a family of PageRank models. Each member
model is characterized by a scalar damping variable 𝜌 and
a discrete probability mass function (pmf) 𝑤(𝜌) = {𝑤𝑘 =
𝑤𝑘(𝜌), 𝑘 ∈ N𝑤}. The support N𝑤 ⊂ N may be finite or
infinite. There are a few equivalent expressions to describe our
models. We start by defining the model with a kernel function
𝑓(𝜆, 𝜌),

𝑓(𝜆, 𝜌) =
∑︁

𝑘∈𝑁𝑤

𝑤𝑘(𝜌)𝜆
𝑘, |𝜆| ≤ 1. (7)

The solution specific to network graph 𝑃 and personalized
vector 𝑣 is,

𝑥𝑓 (𝜌) = 𝑓(𝑃 )𝑣 =

(︃ ∑︁
𝑘∈𝑁𝑤

𝑤𝑘(𝜌)𝑃
𝑘

)︃
𝑣. (8)

The matrix function 𝑓(𝑃 ) is stochastic. The rank distribution
vector 𝑥𝑓 is the superposition of step terms with probabilis-
tic weights 𝑤𝑘. The step term 𝑘 describes the probabilistic
propagation of 𝑣 at step 𝑘. For a specific case, the damping
variable may have a designated label, with a specific range, and
the pmf may have a specific support and additional parameters.
For convenience, we assume N as the support. Over the infinite
support, the damping weights must decay after certain number
of steps and vanish as 𝑘 goes to infinity. In theory, every
discrete pmf can be used as a model kernel in (8). In practice,
each describes a particular type of activity or propagation.

The family includes Brin-Page model and Chung’s model.
For the former, the damping variable is denoted by 𝛼, the
damping weights (1 − 𝛼)𝛼𝑘, 𝑘 ≥ 0, follow the geometric
distribution with the expected value 𝛼(1 − 𝛼)−1. The kernel
function is (1−𝛼)(1−𝛼𝜆)−1. For Chung’s model, we denote
the damping variable by 𝛽, 𝛽 > 0. The damping weights
𝑒−𝛽𝛽𝑘/𝑘!, 𝑘 ≥ 0, follow the Poisson distribution with the
expected value 𝛽. The model’s kernel function is 𝑒−𝛽(1−𝜆).

We describe a few other models, among many, in the family.
In fact, the precursor models are two special cases of the
model associated with the Conway-Maxwell-Poisson (CMP)
distribution, which has an additional parameter 𝜈 to the pmf,

𝑤𝑘(𝜌, 𝜈) =
𝜌𝑘

(𝑘!)𝜈 𝑍
, 𝜈 > 0,

where 𝑍 is the normalization scalar, and 𝜈 is the decay rate
parameter. The case with 𝜈 = 0 is the geometric distribution;
the case with 𝜈 = 1 is the Poisson distribution. If the value of
𝜌 is fixed, the weights decay faster with a larger value of 𝜈.
The negative binomial distribution, or the Pascal distribution,
also includes the geometric distribution as a special case. It
includes other cases that render damping weights with slower
decay rates.

In the rest of the paper, for the purpose of including and
illustrating new models, we use the model associated with the
logarithmic distribution, for 𝛾 ∈ (0, 1),

𝑓(𝜆, 𝛾) =
−1

ln(1− 𝛾)

∞∑︁
𝑘=1

(𝛾𝜆)𝑘

𝑘
=

ln(1− 𝛾𝜆)

ln(1− 𝛾)
. (9)

The weights decrease slightly faster than the geometrically
distributed ones, but not in the CMP distribution class.

We now present the system of linear equations with 𝑥(𝜌)
in (8) as the solution,

𝐴(𝑃 )𝑥 = 𝑣, 𝐴(𝑃 ) = 𝑓−1(𝑃 ). (10)

The matrix 𝐴 is an 𝑀 matrix. In particular, 𝐴 = (1−𝛼)−1(𝐼−
𝛼𝑃 ) for Brin-Page model, 𝐴 = 𝑒𝛽(𝐼−𝑃 ) for Chung’s model
and 𝐴 = ln(1 − 𝛾) ln−1(𝐼 − 𝛾𝑃 ) for the log-𝛾 model (9).
The algebraic model expression (10) will be used next for the
model expression in a differential equation.

III. RESPONSE TO VARIATION IN DAMPING

We provide a unified analysis of the response in PageRank
distribution to the variation in the damping parameter value
as well as to the change, or connection, from one model to
another.



A. Intra-model damping variation

By (8), we obtain the trajectory of the PageRank vector
𝑥(𝜌) with the change in the damping variable 𝜌,

𝑥̇(𝜌) =
𝑑𝑥(𝜌)

𝑑𝜌
=

𝜕

𝜕𝜌
𝑓(𝑃 )𝑣 = 𝑄(𝑃 )𝑥(𝜌), (11)

where 𝑄(𝑃 ) = 𝜕
𝜕𝜌𝑓(𝑃 )𝑓−1(𝑃 ) by (10), which we may

refer to as the 𝜌-transition matrix. Equation (11) generalizes
Chung’s diffusion model (5), in which the 𝛽-transition matrix
𝑄 = −(𝐼 −𝑃 ) is independent of 𝛽. For the Brin-Page model
with damping variable 𝛼,

𝑄(𝛼) =
[︀
𝑃 (𝐼 − 𝛼𝑃 )−1 − (1− 𝛼)−1𝐼

]︀
. (12)

For the log-𝛾 model (9),

𝑄(𝛾) =
(1− 𝛾)−1

ln(1− 𝛾)
𝐼 − 𝑃 (𝐼 − 𝛾𝑃 )−1(ln(𝐼 − 𝛾𝑃 ))−1. (13)

For each model, 𝑒T𝑄 = 0.
In addition to the element-wise response in the rank vector,

we would also like to have an aggregated measure of the
response to variation in 𝜌. Let 𝑥(𝜌𝑜) be a reference PageR-
ank vector. We may use Kullback-Leibler divergence [16] to
measure the discrepancy of 𝑥(𝜌) from 𝑥(𝜌𝑜),

𝐾𝐿(𝑥(𝜌), 𝑥(𝜌𝑜)) =
∑︁
𝑖

𝑥𝑖(𝜌) log
𝑥𝑖(𝜌)

𝑥𝑖(𝜌𝑜)
. (14)

When 𝜌 = 𝜌𝑜, 𝐾𝐿(𝑥(𝜌), 𝑥(𝜌𝑜)) = 0. We have the rate of
change in KL divergence with the variation in 𝜌,

𝑑

𝑑𝜌
𝐾𝐿(𝑥(𝜌), 𝑥(𝜌𝑜)) = 𝑥̇(𝜌)T(log 𝑥(𝜌)− log 𝑥(𝜌𝑜) + 𝑒)

(15)
We will describe in Section IV efficient algorithms for calcu-
lating the vectors and measures above.

B. Inter-model correspondence

Each model has its own damping form and parameter. The
expected value of the step weight distribution is,

𝜇(𝑤(𝜌)) =
∑︁
𝑘∈N𝑤

𝑘 · 𝑤𝑘(𝜌). (16)

We may explain this as the expected value of walking steps.
We establish the point of correspondence between models by
their expected values. That is, for any two models, we set their
expected values equal to each other. Without loss of generality,
we let the expected values for the Brin-Page model serve as the
reference. In particular, we have the correspondence equalities

𝛼

1− 𝛼
= 𝛽,

𝛼

1− 𝛼
=

(︂
𝛾

1− 𝛾

)︂
−1

ln(1− 𝛾)
(17)

for Chung’s model and for the log-𝛾 model, respectively.
We will show the comparisons in PageRank vectors at such
correspondence points in Section V.

IV. EFFICIENT ALGORITHMS FOR BATCH RANKING

We introduce novel algorithms for efficient quantitative
analysis of damping effect on PageRank distribution. Provided
with a network graph 𝑃 and a personalized distribution vector
𝑣, the algorithms can be used in one batch of computation
across multiple models as well as over a range of damping
parameter value per model.

A. Reduction to irreducible subnetworks

Information networks in real world applications are not
necessarily irreducible and aperiodic as assumed by many
existing iterative solutions for guaranteed convergence. To
meet such convergence conditions, some heuristics were used
to perturb or twist the network structure with artificially
introduced links [17], [18]. Instead, we decompose the net-
work into strongly connected sub-networks by applying the
Dulmage-Mendelsohn (DM) decomposition algorithm [19] to
the Laplacian matrix 𝐼 − 𝑃 . The DM algorithm is highly
efficient when diagonal elements are non-zero. It renders the
matrix in block upper triangular form. See Figure 1 for the
Google link graph released by Google in 2002 [20]. Each
diagonal block 𝐵𝑖𝑖 corresponds to a subnetwork. A square
diagonal block corresponds to an irreducible subnetwork. A
non-zero off-diagonal block 𝐵𝑖𝑗 in the upper part, 𝑖 < 𝑗,
represents the links from cluster 𝑗 to cluster 𝑖. The top block is
associated with a sink cluster without outgoing links to other
cluster; the bottom block is associated with a source cluster
without incoming edges from other clusters. The solution for
the entire network can be obtained by the solutions to the
subnetworks and successive back substitution.
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(b) link graph after DM permutation

Fig. 1: The 1:1000 sparsity map of adjacency matrix of Google link graph
[20] with 875,713 page nodes in (a) the provided ordering and (b) the ordering
rendered by the DM decomposition, depicted by imagesc in matlab. Each
point shows the number of non-zeros, in log scale, in the corresponding
1000×1000 block. The subnetwork in the middle of (b) is strongly connected
with 434,818 nodes.

B. Cascade of iterations

Several iterative methods exist for computing the PageRank
vector by the Brin-Page model. They include the power
method by the eigenvector equation (2), and the Jacobi, Gauss-
Seidel, and SOR methods by equation (3). There are various
acceleration techniques used for calculating the PageRank
vector, or a small part of the vector, or even a single pair
of nodes between the personalized vector and the PageRank
vector [10], [21]–[23]. For the Brin-Page model, the iterative



methods converge slower as 𝛼 increases and gets closer to 1.
We developed a cascading initialization scheme. The solution
to the model with 𝛼 is used as the initial guess to the iteration
for the solution to the model with 𝛼+ 𝛿𝛼, 𝛿𝛼 > 0. Although
it has accelerated the computation with successively increased
𝛼 values, this technique is limited to sequential computation
and ad hoc to the Brin-Page model. We introduce next a novel
algorithm without these limitations.

C. Shared invariant Krylov space

Our new algorithm for batch calculation of PageRank vec-
tors with multiple models and parameter values is based on
the very fact that the solutions to the models in Section II all
reside in the same Krylov space,

𝒦(𝑃, 𝑣) = {𝑣, 𝑃𝑣, 𝑃 2𝑣, · · · , 𝑃 𝑘𝑣, · · · }, 𝑣 ≥ 0

𝑒T𝑣 = 1
. (18)

The space has the property 𝑃𝒦(𝑃, 𝑣) = 𝒦(𝑃, 𝑣), i.e., it
is a spectrally invariant subspace. In PageRank terminology,
𝒦(𝑃, 𝑣) is a personalized invariant subspace. We have the
remarkable fact about the model family in Section II.

Theorem 1. Any model solution (8), at any particular damp-
ing parameter value, and its trajectory (11) are functions in
the Krylov space 𝒦(𝑃, 𝑣).

Theorem 2. Let 𝑚 = dimension(𝒦). Denote by 𝐾 the matrix
composed of the Krylov vectors. Let 𝐾 = 𝑄𝑅 be the QR
factorization of 𝐾. Then, 𝑄𝑒1 = 𝑣 and 𝑃𝑄 = 𝑄𝐻 , where
𝐻 is an 𝑚×𝑚 upper Hessenberg matrix, and 𝑒1 is the first
column of the identity matrix 𝐼 .

A few remarks. Matrix 𝐻 in Theorem 2 is the representation
of matrix 𝑃 under basis 𝑄 in the Krylov space. In numerical
computation, we use a rank-revealing version of the QR
factorization with 𝑄𝑒1 = 𝑣. In theory, the dimension 𝑚 is
equal to the number of spectrally invariant components of 𝑃
that present in 𝑣. In the extreme case, 𝑚 = 1 when 𝑣 is the
Perron vector of 𝑃 . In general, by the condition 𝑒T𝑣 = 1,
𝑣 is not deficient in Perror component. In our study on real-
world graphs, which we will detail shortly in Section V, the
numerical dimension is low, matrix 𝐻 is therefore small. We
may view this as a manifest of the smallness of the real-world
graphs under study. We exploit these theoretical and practical
facts.

Corollary 3. For any function 𝑔 in the Krylov space (18), we
have 𝑔(𝑃 )𝑣 = 𝑄𝑔(𝐻)𝑒1.

When dimension 𝑚 is modest, we translate by Corollary
3 the calculation of 𝑥𝑔 = 𝑔(𝑃 )𝑣 with 𝑁 × 𝑁 matrix 𝑃 on
vectors to the calculation of 𝑥̂𝑔 = 𝑔(𝐻)𝑒1 with 𝑚×𝑚 matrix
𝐻 on vectors, followed by a matrix-vector product 𝑄𝑥̂𝑔 . The
vector 𝑥̂𝑔 is the spectral representation of 𝑥𝑔 in the Krylov
space. In the model family, solutions 𝑥𝑓 (8) differ from one
to another in their spectral representations 𝑥̂𝑓 , they share the
same basis matrix 𝑄 in the ambient network space.

Our algorithm consists of the following major steps. Let
𝒢 = {𝑔} be a set of functions under study. (1) Calculu-
ate Krylov vectors to form matrix 𝐾 in Theorem 2, apply
rank-revealing 𝑄𝑅 factorization to 𝐾, and find numerical
dimension 𝑚; 1 (2) Construct the matrix 𝐻 , by Theorem 2,
from 𝑅 and the permutation matrix Π rendered by the rank-
revealing 𝑄𝑅; (3) Calculate 𝑥̂𝑓 = 𝑔(𝐻)𝑒1 for all functions
in 𝒢; (4) Transform 𝑥̂𝑓 from the Krylov-spectral space to the
ambient network space by the same basis matrix 𝑄, based on
Corollary 3.

V. EXPERIMENTS ON REAL-WORLD LINK GRAPHS

We show in numerical values how PageRank vector re-
sponses to variation in damping variable with each model and
across models, on 6 real-world link graphs.

A. Experiment setup: data and models

The 6 link graphs we used for our experiments are publicly
available at the Koblenz Network Collection [24]. The basic
information of the graphs is summarized in Table 1, where
max(𝑑𝑜𝑢𝑡) is the maximum out-degree (the number of cita-
tions) of graph nodes, max(𝑑𝑖𝑛) is the maximum in-degree
(the number of backlinks), 𝜇(𝑑𝑜𝑢𝑡) = 𝜇(𝑑𝑖𝑛) is the average
out-degree, which equals to the average in-degree, and LSCC
stands for the largest strongly connected component(s) of the
graph. The Google graph of today is reportedly containing
hundreds of trillions of nodes, substantially larger than the
snapshot size used here.

TABLE 1: Dataset Description

Total #nodes #nodes in LSCC [max(𝑑𝑜𝑢𝑡), 𝜇(𝑑𝑜𝑢𝑡),max(𝑑𝑖𝑛)]

Google [20] 875,713 434,818 [4209, 8.86, 382]

Wikilink [24] 12,150,976 7,283,915 [7527, 50.48, 920207]

DBpedia [25] 18,268,992 3,796,073 [8104, 26.76, 414924]

Twitter(www) [26] 41,652,230 33,479,734 [2936232, 42.65, 768552]

Twitter(mpi) [27] 52,579,682 40,012,384 [778191, 47.57, 3438929]

friendster [28] 68,349,466 48,928,140 [3124, 32.76, 3124]

For variation analysis of each graph in Table 1, the as-
sociated link matrix 𝑃 is well specified. We use the same
personalized or customized distribution vector 𝑣, which we
get by drawing elements from standard Gaussian distribution
𝒩 (0, 1), followed by normalization 𝑣T𝑒 = 1. We report
variation analysis results with three particular models : Brin-
Page model (3) with damping variable 𝛼, Chung’s model (5)
with variable 𝛽, and the log-𝛾 model (9). The last is used as
an illustration of new models in the family (8).

B. Variation in PageRank vector

In order to show the quantitative response in PageRank vec-
tor 𝑥𝑓 over 𝑁 nodes with the variation in damping variable 𝜌,
we display the histogram of 𝑁 ·𝑥𝑓 (𝜌) for model 𝑓 at parameter
value 𝜌. In Figure 2 we show the histograms associated with

1These substeps are integrated in pratical computation in order to deter-
mine quickly a sufficient number of Krylov vectors.
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(a) 𝑥(𝜌) of Google link graph
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(b) 𝑥(𝜌) of Twitter(www) link graph

Fig. 2: Inter-model comparison of histograms of 𝑁 · 𝑥𝑓 (𝜌) among the
three models with corresponding parameter values 𝛼𝑜, 𝛽𝑜 and 𝛾𝑜 so that the
expected value of walking steps for each model is 𝛼𝑜/(1− 𝛼𝑜) = 5.6̇ with
𝛼𝑜 = 0.85, see the model correspondence equalities (17). (a) comparison on
Google link graph; (b) comparison on Twitter(www) link graph.

three models on Google network. The parameter for Brin-
Page model is set to the value 𝛼𝑜 = 0.85. The parameter
for the other two models are set by (17). We observe that
the histogram with Brin-Page model has higher and narrower
peaks than Chung’s model. The histogram of log-𝛾 model is in
between. This is expected by the relationships in the damping
weights among the three models, as discussed in Section III-B.
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(a) Brin-Page model
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(b) log-𝛾 model
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(c) Chung’s model
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(e) log-𝛾 model
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(f) Chung’s model

Fig. 3: Comparison in histograms of 𝑁 ·𝑥𝑓 (𝜌) on the Google link graph over
a range of damping variable value. Left column: Brin-Page model, Middle
column: log-𝛾 model, Right column: Chung’s model. Top row: 2D display
of 6 histograms associated with 6 parameter values shown in the respective
legends. The histogram in black with Brin-Page model is associated with the
value 𝛼 = 0.85. The corresponding parameter values with Chung’s model and
log-𝛾 model are set by (17), the associated histograms are color coded by the
corresponding parameter values. Bottom row: a stack of multiple histograms
shown in 3D space over the range 𝛼 ∈ [0.7, 0.97] with Brin-Page model,
𝛽 ∈ [2.6̇, 32.3̇] with Chung’s model, and 𝛾 ∈ [0.7787, 0.994] with log-𝛾
model. The histograms with Chung’s model have flattened peaks at larger
values (toward the back end). The log-𝛾 model is nearly insensitive to 𝛾
change in the range above.

Figure 3 and Figure 4 show the variation in the histograms
over a range of the damping variable per model as well as
the comparison side by side between the three models on two
datasets. The models have similar behaviors on the other 4
graphs in Table 1. Supplementary material can be found in
[29]. With larger damping factors in the models, the distribu-
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(b) log-𝛾 model
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(c) Chung’s model
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(f) Chung’s model

Fig. 4: Comparison in histogram of 𝑁 · 𝑥𝑓 (𝜌) on the Twitter graph over a
range of dampling value, in the same settings as in Figure 3.

tion become less centralized. Log-𝛾 model, specifically, is less
sensitive to 𝛾(𝛼) range with 𝛼 ∈ [0.7, 0.97].

C. Relative variation measured by KL divergence

0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

2

4

6

8

10

12

14
KL divergence

analytical derivative

emprical derivative, =0.008

emprical derivative, =0.002

(a) 𝛼𝑜 = 0.85
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(b) 𝛾𝑜 = 0.94146
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(c) 𝛽𝑜 = 5.6̇
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(d) 𝛼𝑜 = 0.95
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(e) 𝛾𝑜 = 0.98831
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(f) 𝛽𝑜 = 19

Fig. 5: Intra-model relative variation as defined in (14) in PgeRank distribu-
tion, on the Google graph, with respect to two reference distribution at 𝛼𝑜 ∈
{0.85, 0.95} with Brin-Page model (left column), 𝛾𝑜 ∈ {0.94146, 0.98831}
with log-𝛾 model (middle column), and 𝛽𝑜 ∈ {5.6̇, 19} with Chung’s
model (right column). Blue curves: the KL score 𝐾𝐿(𝑥𝑓 (𝜌)||𝑥𝑓 (𝜌𝑜)) with
numerically computed distribution vectors; Red curves: the derivative of the
KL score (𝑑/𝑑𝜌)𝐾𝐿(𝑥𝑓 (𝜌)||𝑥𝑓 (𝜌𝑜)). The red curves with · marker and ◇
marker are obtained empirically from numerical distribution vectors, with step
size Δ𝜌 = (0.002, 0.008) respectively. The red curves with × marker are
obtained analytically by (15). Remarks. With Brin-Page model and log-𝛾
model, the distribution changes gently from the reference distribution in the
neighborhood of the reference value 𝛼𝑜 = 0.85, by the KL curve and the
KL derivative curve. In sharp contrast, the distribution with Chung’s model
deviates rapidly from the reference distribution.

We show the relative variation in PageRank vector with
respect to a reference vector by (14). For Brin-Page model,
we consider two particular reference vectors: one is associated
with 𝛼 = 0.85 as chosen originally by Brin and Page, the other
is at 𝛼 = 0.95, much closer to the extreme case 𝛼 = 1, in
which the walks follow the links only. For Chung’s model and
log-𝛾 model, we use the corresponding parameter values by



(17). We show the differences between the three models on
the Google graph in Figure 5 at the corresponding reference
values, respectively, and on the twitter graph in Figure 6.
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(c) 𝛽𝑜 = 5.6̇
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Fig. 6: Intra-model relative variation in PageRank distribution by (14), on
the Twitter graph. The rest is in the same setting as in Figure 5.

D. Batch calculation: efficiency and accuracy

We show first that the Krylov space dimension is numeri-
cally low for each of the 6 real world link graphs. Figure 7
gives the diagonal elements of each upper-triangular matrix 𝑅
obtained by a rank-revealing QR factorization. The elements
below 10−17 are not shown. The numerical dimension ranges
from 19 with DBpedia link graph to 62 with Google link
graph. The low numerical dimension makes our algorithm
in Section IV highly efficient. In addition, we exploited the
sparsity of matrix 𝑃 in the Krylov vector calculation, see
details in [30].
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Fig. 7: The diagonal elements of each upper-triangular matrix 𝑅
obtained by a rank-revealing QR factorization for the 6 datasets in
Table 1. Google link graph has the highest numerical dimension 62
among the 6 datasets, and the DBpedia link graph has the lowest
numerical dimension 19.

The accuracy of our batch algorithm is evaluated in two
ways. One is by 𝑒𝑟𝑟 = ‖(𝑥Krylov − 𝑥G-S)./𝑥G-S‖∞, the
maximum element-wise relative difference in the PageRank

vectors of Brin-Page model between the Gauss-Seidel method
and our Krylov subspace method. In our experiments, the
relative errors for all 6 datasets are below 10−10. In the other
way, we show in Figure 5 and Figure 6 that the empirical rate
of change agrees well with analytical prediction (15).

VI. CONCLUDING REMARKS

Our model extension, connection, unified analysis and nu-
merical algorithm for quantitative estimation in batch are
original, to our knowledge. Our study leads to new observation
and several findings. (a) In network propagation pattern in
response to variation in the damping mechanism, the inter-
model difference among the 3 models is much more significant
than the inter-dataset difference among the 6 datasets. This
suggests the utility of model variety for differentiating network
activities or propagation patterns. (b) The model solutions
reside in the same customized, spectrally invariant subspace.
On each of the 6 real-world graphs, the space dimension
is low, which is a small-world phenomenon. (c) The shared
computation is not limited to one personalized distribution.
The Krylov space associated with a particular vector 𝑣 contains
certainly many other distribution vectors. In fact, every Krylov
vector is a distribution vector. This finding may lead to a
much more efficient way to represent and compute PageRank
distributions across multiple personalized vectors. (d) The
low spectral dimension, estimated once for a particular graph
𝑃 and a personalized/customized vector 𝑣, may serve as a
reasonable upper bound on the number of iterations by any
competitive algorithm, with one matrix-vector product per
iteration, for Brin-Page model, at any 𝛼 value in (0, 1), or
any other model in the family (8). The power method and
the Gauss-Seidel iteration take more iterations to reach the
same error level on the larger real-world graphs among the
studied, and take many more iterations when 𝛼 gets closer to
1. In brief conclusion, estimating PageRank distribution under
various damping conditions is valuable and easily affordable.
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