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Abstract—Each step in the data analytics pipeline is impor-
tant, including database ingest and query. The D4M-Accumulo
database connector has allowed analysts to quickly and easily in-
gest to and query from Apache Accumulo using MATLAB®/GNU
Octave syntax. D4M.jl, a Julia implementation of D4M, provides
much of the functionality of the original D4M implementation to
the Julia community. In this work, we extend D4M.jl to include
many of the same database capabilities that the MATLAB®/GNU
Octave implementation provides. Here we will describe the
D4M.jl database connector, demonstrate how it can be used, and
show that it has comparable or better performance to the original
implementation in MATLAB®/GNU Octave.

I. INTRODUCTION

A database is an integral part of the data analytics pipeline.
Datasets that are too large to fit into memory and difficult
to organize and search require the use of a database for
storage and indexing. For efficient workflows, it is therefore
important to not only provide fast ways to get data in and
out of the database, but to do so in the language that the
analyst is using to analyze their data. This requires both a high-
performance database and good connectors that the analyst
can use without the burden of learning a new language just to
access their data. The D4M (Dynamic Distributed Dimensional
Data Model) library, in addition to being a powerful analytic
framework, provides database connectors to a number of
databases, including Apache Accumulo, a high-performance
NoSQL database.

Apache Accumulo is a key-value data store modeled after
Google Bigtable [1]. Some of its features include the ability to
add server-side iterators to do custom in-database operations
and cell-level visibility labels to restrict access on the indi-
vidual entry level. Because of its features and performance,
Accumulo has been used in a variety of applications, including
cloud monitoring [2], spatial data [3], and graph processing
[4]. Accumulo has been thoroughly benchmarked, and has
shown high performance for both query and ingest [5] [6].

The D4M tool is an analytical library for both MAT-
LAB®/GNU Octave and Julia that allows flexible data rep-
resentation and manipulation [7] [8]. D4M uses a mathe-
matical structure called an Associative Array to represent
data. Associative arrays can represent many different types
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of data, including graphical, numeric, and string data. They
also support a variety of arithmetic and set operations that are
facilitated through D4M and have a wide variety of uses [9]
[10]. These properties make D4M a good fit for large datasets,
particularly those that may need to be stored in a database,
such as Accumulo.

In order to access these datasets, D4M includes database
connectors that allow users to ingest data to and query data
from a database. In addition to SQL and SciDB connectors,
D4M has a custom database connector for Accumulo that has
been available in the MATLAB®/GNU Octave D4M package,
providing a simple means to bind to tables for ingesting and
querying data. D4M also has a schema that works particularly
well for Accumulo [11]. Accumulo was built with fast ingest
and query in mind, and past work has shown record-breaking
ingest performance using the D4M’s ingest and schema [6].

The D4M package for Julia developed recently brought
many of the capabilities of D4M to the Julia community.
Julia is a rapidly growing new language developed for both
performance and productivity, providing the ease of use of
a high level language, without compromising performance
[12]. There are a number of Julia packages that interact
with a variety of databases [13], however any work to show
performance of these connectors is difficult to find. The
initial D4M.jl provides the Associative Array representation
and operations, and has been shown to have equivalent or
better performance than the original MATLAB®/GNU Octave
implementation [8]. In this work, we extend D4M.jl to include
database connectors for Accumulo and show how performance
compares to the MATLAB®/GNU Octave version for query
and ingest.

In the following sections, we will describe these additions.
Section II will introduce D4M more in depth. In Section III
we describe the D4M.jl connector. Section IV will describe
the tests we ran to compare ingest and query in the Julia and
MATLAB®/GNU Octave D4M implementations, and Section
V will present and discuss the results of these experiments.

II. D4M

D4M is open-source software that provides a convenient
mathematical representation of the kinds of data that are
routinely stored in spreadsheets and large key-value databases.
Associations between multidimensional entities (tuples) using
string keys and string values can be stored in data structures
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called associative arrays. For example, in two dimensions, a
D4M associative array entry might be:

A('alice ', 'bob ') = 'cited ' or A('alice ', 'bob ') = 47.0

The above tuples have a 1-to-1 correspondence with their
key-value store representations:

('alice ','bob ','cited ') or ('alice ','bob ',47.0)

Fig. 1. A graph describing the relationship between alice, bob, and carl
(left). A sparse associative array A captures the same relationships (right). The
fundamental operation of graphs is finding neighbors from a vertex (breadth-
first search). The fundamental operation of linear algebra is matrix vector
multiply. D4M associative arrays make these two operations identical. Thus,
algorithm developers can simultaneously use both graph theory and linear
algebra to exploit complex data.

Associative arrays can represent complex relationships in
either a sparse matrix or a graph structure (see Figure 1).
Thus, associative arrays provide a natural data structure for
performing both matrix and graph operations. Such algorithms
are the foundation of many complex database operations across
a wide range of fields [14]. Constructing complex composable
query operations can be expressed by using simple array
indexing of the associative array keys and values, which
themselves return associative arrays:

A('alice ',:) alice row
A('alice bob ',:) alice and bob rows
A('al* ',:) rows beginning with al
A('alice : bob ',:) rows alice to bob
A(1:2, :) first two rows
A == 47.0 subarray with values 47.0

The composability of associative arrays stems from their
ability to define fundamental mathematical operations whose
results are also associative arrays. Given two associative arrays
A and B, the results of all the following operations will also
be associative arrays:

A + B A - B A & B A | B A * B

Measurements using D4M indicate these algorithms can be
implemented with a tenfold decrease in coding effort when
compared to standard approaches [7].

III. D4M.JL AND ACCUMULO

When D4M.jl was implemented in [8], the database connec-
tivity feature was left for future work. Here we first give a short
description of the initial D4M.jl implementation, followed by
the details of the new database features.

Fig. 2. D4M architecture. D4M server bindings leverage various database
connectors, including the custom-built Accumulo connector.

A. D4M.jl

D4M can be implemented in any language that provides
support for sparse linear algebra operations, and this includes
Julia. Julia is a newer language developed for both high perfor-
mance and high-level dynamic programming [15]. Typically,
languages are either high performance, low level, but difficult
for development, or high-level and easy for development, but
without the performance that a low-level language usually
provides. The Julia developers aimed to create a language
that is both high-level and high performance. Julia contains
both state of the art numeric computation libraries and a state
of the art Just-in-Time (JIT) compiler built on Low Level
Virtual Machine (LLVM) [16]. In this way, Julia’s low-level
functionality can be optimized, so that the user does not need
to resort to using other languages as low-level building blocks.
By leveraging the selected chain of modern programming lan-
guage technologies within Julia, the Julia community has been
rapidly expanding the high-level functions of Julia without
compromising in performance. Further, Julia has been shown
to be effective in high performance computing [17].

D4M.jl provies the functionality of D4M, but with familiar
Julia syntax and conventions to the Julia programmer, much
the same way D4M-Matlab is designed to be intuitive to the
MATLAB® user [18]. This makes D4M.jl more useable to
the Julia community. For example, because Julia uses square
brackets for indexing rather than the parentheses that are used
in MATLAB®, D4M.jl follows this convention.

Benchmarking work has shown D4M.jl to have comparable
performance to MATLAB®-D4M, and in some cases surpass
the D4M-Matlab implementation in key D4M operations,
including matrix multiply and addition [8]. Julia has better
support for arrays of strings than MATLAB® does, yielding
a simpler code base and better performance on operations
Associative Arrays that have string row and column keys.



B. D4M.jl Accumulo Connector

In addition to the library that provides the Associative
Array data structure and its associated operations, D4M gives
the user a common syntax to access to several database
connectors, including JDBC for SQL and the Shim connector
for SciDB. The connector for Accumulo is custom-built in
Java and is part of the D4M distribution.

The Java Accumulo connector can be invoked from any
language that can call Java functions. In the original D4M
implementation, we used Matlab’s inherent ability to create
Java objects and call Java functions. While Julia natively
does not have an ability to call Java functions, the JavaCall.jl
package provides this capability [19]. JavaCall uses the Java
Native Interface to create an in-process Java Virtual Machine
(JVM), which is accessed through the jcall function.

Using JavaCall.jl generally involves importing a class, cre-
ating an object, then calling the function you are interested
in on that object. At times it can be difficult getting the Java
function calls just right, with inputs and outputs of the correct
data type, where sometimes Julia data types are sufficient and
occasionally Java objects are required. In D4M.jl, we provide
an easy-to-use interface to call the Java functions involved in
database operations so the user does not have to worry about
these details. A number of functions and structs hold java
objects and make Java calls.

# Initialize JVM
dbinit()

# Connect to Database
DB = dbsetup("mydb02","db.conf")

# Create Tables
Tedge = DB["my_Tedge","my_TedgeT"]
TedgeDeg = DB["my_TedgeDeg"]

# Insert Associative Array into Database
put(Tedge,A)

# Query Database
Arow = Tedge["e1,",:]
Acol = Tedge[:,"v1,"]

# Delete Tables
delete(Tedge)
delete(TedgeDeg)

Listing 1. Using D4M.jl for Accumulo database operations.

The D4M.jl workflow for interacting with Accumulo is
as follows. First, a call to dbinit() will initialize the
JVM with the required libraries on the class path. The
dbsetup() function creates a DBserver struct, which
holds the connection information for the Accumulo database,
and tables can be created or connected to by indexing into
the DBserver struct. Tables can either be single tables or
table pairs, which bind to both a table and its transpose,
which occur frequently in Accumulo schemas. Data can be
ingested using the put() function, which ingests Associative
Arrays, or putTriple(), which will ingest arrays of strings.
Tables can be queried by using the same indexing syntax as
Associative Arrays, and column queries on table pairs will

automatically query the transpose table for speed. Finally,
tables can be easily deleted using the delete() function.
See Listing 1 for an example of this workflow.

IV. EXPERIMENTAL SETUP

While D4M.jl and Matlab-D4M use the same Java Accu-
mulo connector, there is always some small overhead call-
ing these connectors from another language with easy-to-use
wrappers. Therefore, we ran some tests to demonstrate the
efficiency of D4M.jl compared to Matlab-D4M. We focused
on the two most frequently used database operations: ingest
and query.

A. Database Ingest

While data ingest is not the most frequently used database
operation, it is the most time consuming. Therefore, it is
important to minimize overhead when ingesting data. To
compare ingest rates between D4M.jl and Matlab-D4M, we
ingested graphs of various sizes with a varying number of
ingestors.

Since the best Accumulo ingest rates require having a num-
ber of ingest processes inserting data at once, we ran ingest on
1, 2, 4, 8, and 16 processes. For Matlab-D4M, parallel ingest
was achieved using the pMatlab library [20], and for D4M.jl
the SPMD submodule from the DistributedArrays package
was used [21]. The SPMD programming model provides the
control needed to ensure each process is inserting data at
the same time to achieve peak overall ingest rate. Graphs
were generated on each of the k ingest processes using the
Graph500 unpermuted power law graph generator [22] with
scale (s) 12-18 and an average degree (d) of 16, producing
graphs with 2s vertices and d∗2s edges on each ingest process,
or k ∗ d ∗ 2s edges in the final ingested graph. We ingest
the adjacency matrices of these graphs and their transposes.
Performance is measured in edges ingested/second .

B. Database Query

The most frequently used database operation is database
query. Querying the database is often done interactively, and
a slow query response can interrupt an analysts’s workflow.
To compare query rates between D4M.jl and Matlab-D4M, we
queried a large graph for vertices with varying return sizes.

First we ingested a large graph, generated in the manner
described in IV-A, using 8 processes each ingesting a scale 17
graph (approximately 8∗16∗217 = 16, 777, 216 edges) and its
degrees in a separate Degree Table. Using the Degree table, we
find which vertices have in and out degrees of approximately
size 1, 10, 100, 1000, and 10000. Each query is run on
random chosen vertices from these categories, with vertices
kept consistent between the Matlab-D4M and D4M.jl queries.
Four types of queries were run: single and multiple vertex
row and column queries. The multiple vertex queries selected
five vertices, approximately placing the return size halfway
between the degree scales specified above. Performance is
measured in edges returned/second.
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Fig. 3. Ingest rates for Matlab-D4M (solid lines) and D4M.jl (dashed lines). The plot on the left shows ingest rate against the number of ingest processes
for several graph sizes, and the plot on the right shows ingest rate against graph size.

All database operations were initiated through D4M in
either MATLAB® or Julia 0.6 on the MIT SuperCloud [23],
which consists of several 16-core Xeon-E5 machines with 64
GB of RAM. These operations were performed on a single
node Accumulo instance running on the MIT SuperCloud
dynamic database system [24].

V. RESULTS

Figures 3 and 4 show performance results for ingest and
query, respectively, comparing Matlab-D4M and D4M.jl. Fig-
ure 3 shows two views of ingest performance: the ingest rate
against the number of ingest processes (left) and against the
graph size (right).

The first plot in Figure 3 shows ingest rate scales with the
number of ingest processes for four of the seven graph sizes.
Performance for the remaining three were similar and were left
out for readability. The Julia implementation ingested data at
a faster rate than the Matlab-D4M in most cases, with the
exception of the size 14 graph. The ingest rates increase fairly
consistently with the increasing number of ingest processes,
possibly dropping off somewhat at 16 processes on the larger
graphs. The Matlab-D4M ingest processes see similar drop
off, suggesting this may be Accumulo related.

In the second plot in Figure 3, we see how the ingest
rate scales with graph size. One thing to note is the lines
corresponding to the D4M.jl ingest tend to be more flat and
gently sloped than those of the Matlab-D4M ingest, with the
exception of the 16 process ingest. The Matlab-D4M ingest
starts at a lower rate than D4M.jl, peaks and surpasses the
D4M.jl ingest rate for graphs of size 13-15, and tapers off to
a slower rate than D4M.jl at larger graph sizes. D4M.jl shows
a similar increase and then decrease in ingest rate as graph size
increases, but it is much less pronounced. The best ingest rates
occurred for graphs of size 13 and 14. Both Julia and Matlab
D4M ingest in batches with approximately 500,000 characters
in each batch by default, which has previously been selected
to give the best performance. At size 13 and 14, the entire
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Fig. 4. Query rates in entries returned/second against the degrees of the
vertices queried for Matlab-D4M (solid lines) and D4M.jl (dashed lines). The
queries run are single vertex row (SVR), single vertex column (SVC), multiple
vertex row (MVR), and multiple vertex column (MVC).

graph fits into one batch, whereas size 15 and above must be
inserted in two or more batches.

The improvement in ingest performance for D4M.jl may
be attributed to better string array handling in Julia. On the
D4M side, ingest mainly consists of extracting the triples from
the Associative Array and splitting them into appropriate sized
chunks before calling the Java function that ingests them. That
the D4M.jl ingest rates are better than Matlab-D4M’s at the
larger graph sizes suggests that this may be the case.

Figure 4 shows how the edges returned/second increases
for increasing number of expected returned edges. The cor-
responding D4M.jl and Matlab-D4M lines in this plot follow
each other consistently, with D4M.jl faster in in some cases
and Matlab-D4M in others. Both column queries returned
more edges/second than the row queries, although in each case
the multiple vertex queries returned more edges per second
than their corresponding single vertex queries, as expected.



VI. CONCLUSIONS AND FUTURE WORK

D4M is used for both its flexible data representation and ma-
nipulation and its ability to connect to a number of databases.
In this work, we introduced D4M.jl database capabilities using
D4M’s custom Accumulo connector. We used the JavaCall
Julia package to make calls to the Accumulo connector, which
is written in Java. We provided simple to use wrapper functions
that abstract away the Java function calls, allowing both
flexibility and ease of use.

Overall results show that D4M.jl performs comparable to
or better than Matlab-D4M. For the most part, D4M.jl seems
to scale better with increasing the number of ingest processes,
and scales to larger graph sizes much more gracefully than
Matlab-D4M. In all cases, query rates for D4M.jl and Matlab-
D4M were very close. Both the MATLAB®/GNU Octave and
Julia implementations of D4M can be accessed through the
D4M website download page [25].

The next obvious step for this work is to provide the
functionality to make Graphulo calls from Julia. Graphulo is
a package that consists of server-side iterators for Accumulo
that implement GraphBLAS kernels, which can be used to run
graph algorithms on data stored in Accumulo. Like Matlab-
D4M, we may be interested in adding interfaces to connectors
for other types of databases, such as SQL and SciDB.
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