
 1

Interactive Supercomputing on 40,000 Cores for
Machine Learning and Data Analysis

Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William Arcand, David Bestor, Bill Bergeron,
Vijay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein, Lauren Milechin, Julia Mullen,

Andrew Prout, Antonio Rosa, Charles Yee, Peter Michaleas
Massachusetts Institute of Technology Lincoln Laboratory Supercomputing Center

Lexington, MA, USA

Abstract—Interactive massively parallel computations are critical
for machine learning and data analysis. These computations are
a staple of the MIT Lincoln Laboratory Supercomputing Center
(LLSC) and has required the LLSC to develop unique interactive
supercomputing capabilities. Scaling interactive machine learning
frameworks, such as TensorFlow, and data analysis environments,
such as MATLAB/Octave, to tens of thousands of cores presents
many technical challenges – in particular, rapidly dispatching
many tasks through a scheduler, such as Slurm, and starting many
instances of applications with thousands of dependencies. Careful
tuning of launches and prepositioning of applications overcome
these challenges and allow the launching of thousands of tasks in
seconds on a 40,000-core supercomputer. Specifically, this work
demonstrates launching 32,000 TensorFlow processes in 4 seconds
and launching 262,000 Octave processes in 40 seconds. These
capabilities allow researchers to rapidly explore novel machine
learning architecture and data analysis algorithms.

Keywords-Scheduler, interactive, machine learning, manycore,
high performance computing, data analytics.

 INTRODUCTION
Interactive supercomputing has been an ongoing

focal point of high performance computing (HPC) at
Lincoln Laboratory [Reuther 2004]. Since its
inception, users have connected their desktops and
laptops to Lincoln’s interactive supercomputer and
been able to launch parallel pMatlab jobs from their
desktop/laptop integrated developer environment
(IDE) [Reuther 2005].

This system architecture has evolved into the MIT
SuperCloud, a fusion of the four large computing
ecosystems – supercomputing, enterprise computing,
big data and, traditional databases – into a coherent,
unified platform that enables rapid prototyping
capabilities across all four computing ecosystems.
The MIT SuperCloud has spurred the development of
a number of cross-ecosystem innovations in high
performance databases [Byun 2012], [Kepner 2014a],
database management [Prout 2015], data protection

[Kepner 2014b], database federation [Kepner 2013],
[Gadepally 2015], data analytics [Kepner 2012] and
system monitoring [Hubbell 2015].

 This capability has grown in many dimensions.
The MIT Lincoln Laboratory Supercomputing Center
(LLSC) provides interactive supercomputing to
thousands of users at MIT Lincoln Laboratory and at
the MIT Beaver Works Center for Engaging
Supercomputing. LLSC not only continues to support
parallel MATLAB and Octave jobs, but also jobs in
Python [Van Rossum 2007], Julia [Bezanson 2017],
R [Ihaka 1996], Tensorflow [Abadi 2016], PyTorch
[Paszke 2017], and Caffe [Jia 2014] along with
parallel C, C++, Fortran, and Java applications with
various flavors of message passing interface (MPI).
Furthermore, the TX-Green flagship system now has
nearly 60,000 cores available for users’ parallel jobs.
The most significant jump in core count was the
addition of 648 Intel Xeon Phi 64-core nodes [Byun
2017, Cichon 2016], each of which has 64 compute
cores in a single processor socket laid out in a mesh
configuration [Jeffers 2016]. This equals 41,472 total
cores across the 648 compute nodes, all connected by
a non-blocking 10-Gigabit Ethernet network and a
non-blocking Intel OmniPath low-latency network.

Scaling immediate interactive launches to such a
large number of cores was a significant challenge;
this paper discusses the technical experimentation
and engineering involved in scaling the interactive
parallel launching capability of TX-Green to the scale
of 40,000 core jobs. In the Section II, we review the
background of interactive supercomputing, discuss
the components of a supercomputing scheduler,
review the results of a previous study comparing
state-of-the-art HPC schedulers and resource
managers. Section III details the experimentation and
steps taken to enable interactive supercomputing
launches to the scale of 40,000 core jobs, while

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8721-
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Assistant Secretary of Defense for Research
and Engineering.

 2

Section IV discusses the scaling launch time results
on the 64-core Xeon Phi compute nodes. Finally, the
paper is summarized in Section V.

 INTERACTIVE SUPERCOMPUTING LAUNCH
Whether on a laptop or smartphone, interactivity

is inherent in our daily interactions with computers
since that computer is dedicated exclusively to
ourselves when we are interacting with the device.
However, supercomputers are almost always a shared
set of resources. Traditionally, supercomputer jobs
were submitted to a job queue, from which the
scheduler chose the optimal job to execute next when
resources became available. This scheduling
technique is called batch scheduling, and it introduces
latency between job submission and job execution as
depicted in Figure 1 [Reuther 2007]. However, one
component of interactive supercomputing is enabling
very fast parallel on-demand (immediate) job
launches, while the other main component is
supporting parallel high productivity software
packages including MATLAB/Octave, Python, Julia,
and R along with domain specific packages like
Tensorflow, Caffe, and PyTorch. In this paper, we
focus on the job launches to enable the efficient use
of such high productivity software packages. Such
interactive launches are also depicted in Figure 1, and
this workflow does not have time spent in the pending
state.

Figure 1: Batch vs. interactive job execution cycles.

On-demand (immediate) parallel job launches and
interactive environments empower rapid prototyping
for algorithm development, data analysis, and
machine learning training. For these types of jobs,
interactive, on-demand supercomputing facilitates
more development turns thus driving greater insight
and productivity. There are four strategies for
enabling interactive, on-demand parallel jobs as

depicted in Figure 2. At one extreme, all jobs are
scheduled as batch jobs which can incur high latency
before execution, while at the other extreme all jobs
are scheduled immediately, which can cause
scheduler flooding. Most supercomputing centers use
batch queuing with reservations, which allow users to
reserve a set of resources sometime in the future for a
window of interactive computing. For the LLSC, we
have chosen the route of interactive, immediate
launches with user resource limits. This enables
immediate interactive jobs, while avoiding scheduler
flooding.

Figure 2: Batch versus interactive scheduler tradeoffs

To better understand how we have implemented
this capability in the scheduler, we must discuss the
components and functions of the job scheduler. At its
simplest level, job schedulers are responsible for
matching and executing compute jobs from different
users on computational resources. The users and their
jobs will have different resource requirements and
priorities. Similarly, the computational resources
have different resource availabilities and capabilities,
and they must be managed in such a way that they are
best utilized, given the mix of jobs that need to be
executed.

Figure 3: Scheduler architecture.

Div5 Seminar - 3
AIR – 18-Apr-2018

Batch vs. Interactive Development Cycles

More development turns using interactive
Interactive Best for:
• Rapid Prototyping

– Algorithm development
– Data analysis
– Machine learning training

• Application Steering
– Real-time / streaming

data analytics
– Debugging/validation

• Visualization

Algorithm Changes
Pending in Batch Queue
Executing

1 2 3

1 2 3 4 5

t

Batch

Interactive

Div5 Seminar - 4
AIR – 18-Apr-2018

Batch vs. Interactive Scheduling Trade-Offs

All Batch
Batch with

Reservations
Interactive with

Limits
All Immediate
Scheduling

Pro

• Jobs launches
optimize system
utilization

• Jobs launches
maximize system
utilization

• Reservations specify
timeslots to interact
with job

• Launch most jobs
when submitted

• Limits promotes
fairness

• Accommodates both
interactive and batch
jobs

• Run all jobs
immediately

Con

• Often high latency
before execution

• Often high latency
before execution

• Lower system
utilization

• Frequent scheduler
flooding

• Lower system
utilization

Div5 Seminar - 10
AIR – 18-Apr-2018

Compute
Cluster

• Four Primary Tasks
– Job Management
– Resource Management
– Scheduling
– Job Execution

• Most activities executed on
scheduler server

• Job monitoring and resource
monitoring daemons run on
each compute node

HPC & Big Data
Resource Manager/Scheduler Architecture

Job Lifecycle
Management

Resource
Management

Scheduling

U
se

r I
nt

er
fa

ce
(s

)

Job QueuesJob QueuesJob Queues

Job Log Files

Resource
Allocations

Job
Assignment

Job Dispatch

Job Retirement

Job
Monitoring &

Mgmt

Resource
Monitoring &

Mgmt

Resource
Allocation
PoliciesQueue

Management
Policies

Resource
Management
Policies

A
dm

inistrator Interface(s)

Job Execution

Pending
Job Reqs

Current
Resource

States

1Scalable System Scheduling for HPC and Big Data, Reuther et al,
Journal of Parallel and Distributed Computing, January 2018.

 3

A cluster job scheduler has four key operational
tasks: job lifecycle management, resource
management, scheduling, and job execution, as
shown in Figure 3. The job lifecycle management
task receives jobs from users through the user
interface and places them in one of the job queues to
wait for execution (regardless of whether jobs are
scheduled and executed on demand or batch queued).
Various resources for the job including memory,
licenses, and accelerators (such as GPUs) are
requested through the user interface by the user. The
job lifecycle management task is also responsible for
prioritizing and sorting candidate jobs for execution
by using the queue management policies. The
scheduling task periodically requests a prioritized list
of candidate queued jobs and determines whether
resources are available to execute one or more of the
jobs. The scheduler receives the state of all the
resources from the resource management task, which
in turn is receiving resource state and availability
information from the compute nodes. The scheduling
task allocates resources (usually one or more job slots
on compute nodes) and assigns the job to the
resource(s) if adequate resources are available to
execute each job. The job execution task is
responsible for dispatching/launching the job on the
resources. Upon the completion of each job, the job
execution task manages the closing down of the job
and reporting the statistics for the job to the job
lifecycle management task, which records it in logs.

In recent studies [Reuther 2016, Reuther 2018], we
conducted a detailed comparison of traditional
supercomputing schedulers and Big Data schedulers.
Two of the most important takeaways from this
comparison were:

1. The traditional supercomputing schedulers
including Slurm [Yoo 2003], LSF [Zhou
1993], and GridEngine [Slapnicar 2001] were
capable of launching synchronously parallel
(MPI-style) jobs as well as loosely parallel job
arrays. Big Data schedulers including Mesos,
Apache YARN [Vavilapalli 2013], and the
open-source Kubernetes project [Hindman
2011] supported only parallel job arrays.

2. Several schedulers including Slurm, Mesos,
and Kubernetes were designed to handle
100,000+ jobs, both in its queues and
executing on compute nodes.

Since Slurm supports both synchronously parallel
jobs and job arrays and scaled to managing 100,000+

jobs, it substantiated the continued use of Slurm as the
job scheduler for LLSC systems.

 LAUNCHING 40,000 CORE JOBS
Recently, LLSC upgraded its flagship system with

648 Intel Xeon Phi compute nodes. Each node has a
64-core Intel Xeon Phi 7210 processor, for a total of
41,472 cores, along with 192 GB RAM, 16 GB of on-
package MCDRAM configured in ‘flat’ mode, local
storage, 10-GigE network interface, and an OmniPath
application network interface each. The Lustre
[Braam 2003] central storage system uses a 10
petabyte Seagate ClusterStor CS9000 storage array
that is directly connected to the core switch. As with
all of the LLSC systems, enabling interactive jobs
was a top priority. However, the first attempts at
launching interactive MATLAB/Octave jobs through
slurm onto 40,000 processors resulted in 30- to 60-
minute launch times; these launch times were a
hindrance to any interactivity with the jobs.

To enable truly interactive launches, a number of
experiments and engineering trade-offs were
explored. First, we investigated how fast launches
could be enabled. We started by allocating a block of
nodes through Slurm with the salloc command,
feeding the node list into pMatlab [Kepner 2009], and
using a hierarchical secure shell (ssh) process
spawning mechanism to launch a large set of
interactive processes. This gave us a baseline for how
fast we could expect to launch 10,000+ core jobs –
launches of less than a minute should be possible. We
went on to explore the use of job arrays and
synchronously parallel launches, which each had
their trade-offs. Synchronously parallel jobs using
srun enabled the fastest launches, but the resources
for a job remained allocated until all of the
computational processes completed. Conversely,
each job array process relinquishes its resources as
soon as it finishes its work. Launch times were
similar. We also experimented with various queue
evaluation periodicities and job queue evaluation
depth values to find the most effective combination.

To further speed up launches, we decided to
allocate whole compute nodes and launch a single
scheduler-issued launcher process per compute node.
This launcher process subsequently spawns and
backgrounds each of the application processes that
are to be launched on its compute node.

We made several improvements in tuning the
launching of applications themselves. First, we

 4

copied the entire installations of five MATLAB
versions, two Octave versions, and five versions of
Anaconda Python including TensorFlow, Caffe, and
PyTorch onto the local hard drive of every compute
node. This reduced the latency of loading thousands
of instances from the central file system and across
the 10Gig-E network. We also used the timing flag
with MATLAB to record what segments of MATLAB
startups used the most time and reduced its launch
time further. This prompted us to also create a
MATLAB-lite version which loaded only the base
MATLAB toolboxes and did not include the internal
Java invocation. With all of these improvements, we
met the interactive launching goals that we had set out
to achieve.

 PERFORMANCE RESULTS
Training machine learning models requires high

level programming environments for building the
models and rapid interaction with the analyst to
converge on the best training parameters. Standard
approaches take minutes to hours to launch models on
thousands of cores. However, with the improvements
we discussed in the previous section, we are able to
launch hundreds of machine learning models in a
matter of seconds.

Figure 4: Tensorflow launch scaling results.

TensorFlow is one of the leading deep neural
network model frameworks available today.
TensorFlow is supported by Google, and it provides
a productive Python API for generating and training
deep neural networks [Abadi 2016]. Figure 4 is a log-
log plot scaling up the number of processor cores on
the x-axis versus the launch time on the y-axis. We

have achieved launch times of less than 5 seconds for
32,000+ cores (512 64-core Xeon nodes). In other
words, we are able to launch 512 TensorFlow models
simultaneously. This enables very rapid trade-off
analyses of neural network batch size, convergence
rates, input set randomization, etc. for a truly
interactive machine learning experience.

Figure 5: MATLAB/Octave launch scaling results.

Many researchers at MIT frequently use MATLAB
and Octave for rapid prototyping, algorithm
development, and data analysis. These activities
require rapid interaction and fast turnarounds to make
significant progress and convergence to a solution.
We achieved similar launching results with pMatlab
and parallel Octave jobs. Figure 5 is a log-log plot
scaling up the number of processor cores on the x-
axis versus the launch time on the y-axis. We have
achieved launch times of less than 10 seconds for
launching 32,000+ MATLAB/Octave jobs (512 64-
core Xeon nodes) launching one MATLAB/Octave
process per core. Furthermore, we have achieved
parallel launches of 260,000+ MATLAB/Octave
process launches in under 40 seconds. Each of the
cores on a Xeon Phi processor has four hyperthreads,
and this parallel launch involves launching 512
MATLAB/Octave processes per Xeon Phi processor,
two for each hyperthread.

Div5 Seminar - 25
AIR – 18-Apr-2018

• Machine Learning models require
– High level programming environments for

building models
– Rapid interaction with analyst

• Standard approaches take minutes to
hours to launch on thousands of cores

• MIT SuperCloud optimizes every aspect
of HPML system to enable
– Launching hundreds of machine learning

models in seconds
– 32,000+ cores (512 64-core Xeon nodes)
– Truly interactive machine learning

Interactive High Performance Machine Learning (HPML)
- Interactive Launch on 32,000+ Cores -

1

10

100

1000

0.001

0.01

0.1

1

10

100 1000 10000 100000

R
at

e
(m

od
el

s/
se

co
nd

)

La
un

ch
 T

im
e

(s
ec

on
ds

)

Number of Processor Cores

Title - 1

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

• High Performance Data Analysis (HPDA)

requires

– High level programming environments

– Rapid interaction and fast turnaround

• Standard approaches take minutes to

hours to launch on thousands of cores

• MIT SuperCloud optimizes every aspect

of HPDA system to enable

– 260,000+ data analytics

– 32,000+ cores (512 x 64-core Xeon nodes)

– Launched in 40 seconds

– 6000+ launches/second

– 500x faster than standard approaches
1

– Truly interactive supercomputing

Launching 260,000+ Data Analytics in 40 Seconds

0.1

1

10

100

1000

10000

1

10

100

1 10 100 1000 10000 100000 1000000

L
a
u

n
c
h

T

i
m

e

(
s
e
c
o

n
d

s
)

Number of Data Analytics

R
a
t
e

(
l
a
u

n
c
h

e
s
/
s
e
c
o

n
d

)

1Scalable System Scheduling for HPC and Big Data, Reuther et al,
Journal of Parallel and Distributed Computing, 2017

 5

Figure 6: Launch times in seconds of paralllel MATLAB/Octave
jobs over Nnode nodes and Nproc MATLAB/Octave processes per
node.

Figure 7: Launch rates of paralllel MATLAB/Octave jobs over
Nnode nodes and Nproc MATLAB/Octave processes per node.

We have further measured the launch time and
launch rate for the parallel MATLAB/Octave jobs,
varying the number of nodes from 1 to 512 in powers
of 2, and varying the number of processes per node
from 1 to 512 in powers of 2. The launch time results
are show in Figure 6; launch times remain under 10
seconds for all but the largest number of nodes onto
which the processes were launched. Further, launch
times are under 20 seconds but for the very largest
node numbers and processes per node. Figure 7
displays the launch rates in process launches per
second. This plot shows that the scheduler and the
local launchers can sustain launch rates of 6,000
processes per second. We have found that Slurm
handles the many parallel launches onto each of the
nodes quite well. Our two-tiered launching
mechanism is very effective on manycore processors
such as the Intel Xeon Phi. We have determined that
the rise in launch time for high node counts and
processes per node arises from backpressure from our
low-latency, high-bandwidth Lustre central file

system, which serves a few files to each of the
launching processes. However, serving a few files to
each process when there are many processes does add
up.

 SUMMARY
High performance launch at scale is a generally

enabling capability of interactive supercomputing. It
allows the processing of larger sets of sensor data, the
creation of higher-fidelity simulations, and the
development new algorithms for space observation,
robotic vehicles, communications, cyber security,
machine learning, sensor processing, electronic
devices, bioinformatics, and air traffic control. In this
paper, we have discussed the technical
experimentation and engineering involved in scaling
the interactive parallel launching capability of TX-
Green to the scale of 40,000 core jobs. The
applications for which we shared results are the
TensorFlow machine learning framework and the
MATLAB/Octave rapid prototyping language and
environment. These launching capabilities enable
very large Monte Carlo and parameter trade-off
analyses using these very familiar frameworks and
programming environments.

ACKNOWLEDGMENTS
The authors wish to acknowledge the following

individuals for their contributions: Bob Bond, Alan
Edelman, Chris Hill, Charles Leiserson, Dave
Martinez, and Paul Monticciolo.

REFERENCES
[Abadi 2016] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.

Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R.
Monga, S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P.
Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for
Large-Scale Machine Learning,” 12th USENIX Symposium on Operating
System Design and Implementation (OSDI), Savannah, GA, 2016.

[Bezanson 2017] J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, “Julia:
A Fresh Approach to Numerical Computing,” SIAM Review, vol. 59, pp.
65-98, 2017.

[Braam 2003] P. J. Braam, et.al., “The Lustre Storage Architecture, Cluster File
Systems, Inc., October 2003.

[Byun 2012] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J.
Kepner, A. McCabe, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A.
Reuther, A. Rosa, and C. Yee, ”Driving Big Data with Big Compute.”
IEEE High Performance Extreme Computing Conference (HPEC),
Waltham, MA, September 10-12, 2012.

[Byun 2017] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V.
Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein, P. Michaleas, L.
Milechin, J. Mullen, A. Prout, A. Rosa, S. Samsi, C. Yee, A. Reuther,
“Benchmarking Data Analysis and Machine Learning Applications on the
Intel KNL Many-Core Processor,” IEEE High Performance Extreme
Computing (HPEC) Conference, Waltham, MA, September 12-14, 2017.

[Cichon 2016] M. Cichon, “Lincoln Laboratory’s Supercomputing System
Ranked Most Powerful in New England,” MIT Lincoln Laboratory News,
November 2016. URL: https://www.ll.mit.edu//news/LLSC-
supercomputing-system.html

 6

[Gadepally 2015] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron,
C. Byun, L. Edwards, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A.
Rosa, C. Yee, A. Reuther, “D4M: Bringing Associative Arrays to
Database Engines,” IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA September 15-17, 2015.

[Hindman 2011] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. "Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center," NSDI, vol. 11, pp.
22-22. 2011.

[Hubbell 2015] M. Hubbell, A. Moran, W. Arcand, D. Bestor, B. Bergeron, C.
Byun, V. Gadepally, P. Michaleas, J. Mullen, A. Prout, A. Reuther, A.
Rosa, C. Yee, J. Kepner, “Big Data Strategies for Data Center Infras-
tructure Management Using a 3D Gaming Platform,” IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA,
September 15-17, 2015.

[Ihaka 1996] R. Ihaka and R. Gentleman, R: a Language for Data Analysis and
Graphics,” Journal of Computational and Graphical Statistics, vol. 5, no.
3 , pp.299-314, 1996.

[Jeffers 2016] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor
High Performance Programming: Knights Landing Edition, Second
Edition, Elsevier, 2016.

[Jia 2014] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” Proceedings of ACM Multimedia, pp. 675-678,
2014.

[Kepner 2009] J. Kepner, Parallel Matlab for Multicore and Multinode
Computers, SIAM Press, 2009.

[Kepner 2012] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa and C. Yee, “Dynamic Distributed
Dimensional Data Model (D4M) Database and Computation System,”
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5349–5352, 2012.

[Kepner 2013] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C.
Byun, M. Hubbell, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A.
Reuther, A. Rosa, and C. Yee, “D4M 2.0 Schema: A General Purpose
High Performance Schema for the Accumulo Database,” IEEE High
Performance Extreme Computing (HPEC) Conference, Waltham, MA,
Sep 10-12, 2013.

[Kepner 2014a] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V.
Gadepally, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Reuther, A.
Rosa, and C. Yee, “Achieving 100,000,000 Database Inserts per Second
Using Accumulo and D4M,” IEEE High Performance Extreme
Computing Conference (HPEC), Waltham, MA, September 9-11, 2014.

[Kepner 2014b] J. Kepner, V. Gadepally, P. Michaleas, N. Schear, M. Varia, A.
Yerukhimovich, and R. K. Cunningham, “Computing on Masked Data: A
High Performance Method for Improving Big Data Veracity,” IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA,
September 9-11, 2014.

[Paszke 2017] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, A. Lerer, “Automatic Differentiation in
PyTorch,” NIPS-W, 2017.

[Prout 2015] A. Prout, J. Kepner, P. Michaleas, W. Arcand, D. Bestor, B.
Bergeron, C. Byun, L. Edwards, V. Gadepally, M. Hubbell, J. Mullen, A.
Rosa, C. Yee, A. Reuther, “Enabling On-Demand Database Computing
with MIT SuperCloud Database Management System,” IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA,
September 15-17, 2015.

[Reuther 2004] A.I. Reuther, T. Currie, J. Kepner, H.G. Kim, A. McCabe, M.P.
Moore, N. Travinin, "On-Demand Grid Computing Using gridMatlab and
pMatlab," Proceedings of the High Performance Computing
Modernization Office Users Group Conference 2004, Williamsburg, VA,
8 June 8, 2004.

[Reuther 2005] A. Reuther, T. Currie, J. Kepner, H. Kim, A. McCabe, M.
Moore and N. Travinin, “Technology Requirements for Supporting On-
Demand Interactive Grid Commputing,” Proceedings of the DoD High
Performance Computing Modernization Program (HPCMP) Users
Group Conference (UGC), Nashville, TN, June 27-30, 2005.

[Reuther 2007] A. Reuther, J. Kepner, A. McCabe, J. Mullen, N.T. Bliss, and
H. Kim, “Technical Challenges of Supporting Interactive HPC,”
Proceedings of the High Performance Computing Modernization
Program (HPCMP) Users Group Conference (UGC), Pittsburgh, PA,
June 18-22 2007.

[Reuther 2013] A. Reuther, J. Kepner, W. Arcand, D. Bestor, W. Bergeron, C.
Byun, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, and A. Rosa,
“LLSuperCloud: Sharing HPC Systems for Diverse Rapid Prototyping,”
IEEE High Performance Extreme Computing (HPEC) Conference,
Waltham, MA, Sep 10-12, 2013.

[Reuther 2016] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M.
Hubbell, M. Jones, P. Michaleas, A. Prout, A. Rosa,. J. Kepner,
“Scheduler Technologies in Support of High Performance Data
Analysis,” IEEE High Performance Extreme Computing (HPEC)
Conference, Waltham, MA, September 13-15, 2016.

[Reuther 2018] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M.
Hubbell, M. Jones, P. Michaleas, A. Prout, A. Rosa,. J. Kepner, “Scalabile
System Scheduling for HPC and Big Data,” Journal of Parallel and
Distributed Computing (JPDC), vol. 111, pp. 76-92, January 2018.

[Slapnicar 2001] P. Slapničar, U. Seitz, A. Bode, and I. Zoraja, "Resource
Management in Message Passing Environments," Journal of Computing
and Information Technology (CIT), vol. 9, no. 1, 2001.

[Van Rossum 2007] G. Van Rossum, “Python Programming Language,”
USENIX Annual Technical Conference, 2007.

[Vavilapalli 2013] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M.
Konar, R. Evans, T. Gravnes, J. Lowe, H. Shah, S. Seth, and B. Saha,
“Apache Hadoop YARN: Yet Another Resource Negotiator,”
Proceedings of the 4th annual Symposium on Cloud Computing, ACM,
October 2013.

 [Yoo 2003] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple Linux
Utility for Resource Management,” Job Scheduling Strategies for Parallel
Processing, pp. 44-60, Springer Berlin Heidelberg, June 2003.

[Zhou 1993] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: A Load
Sharing Facility for Large, Heterogeneous Distributed Computer
Systems,” Software: Practice and Experience, vol. 23, no. 12, pp. 1305-
1336, 1993.

